JiříAdámek, Filippo Bonchi, Mathias Hülsbusch, Barbara König, Stefan Milius & Alexandra Silva (2012):
A coalgebraic perspective on minimization and determinization.
In: Foundations of Software Science and Computational Structures: 15th International Conference, FOSSACS 2012, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24–April 1, 2012. Proceedings 15.
Springer,
pp. 58–73,
doi:10.1007/978-3-642-28729-9_4.
Nix Barnett & James P. Crutchfield (2015):
Computational Mechanics of Input-Output Processes: Structured Transformations and the -Transducer.
Journal of Statistical Physics 161(2),
pp. 404–451,
doi:10.1007/s10955-015-1327-5.
Martin Biehl & Nathaniel Virgo (2023):
Interpreting Systems as Solving POMDPs: A Step Towards a Formal Understanding of Agency.
In: Active Inference. IWAI 2022. Communications in Computer and Information Science.
Springer,
pp. 16–31,
doi:10.1007/978-3-031-28719-0_2.
T Fritz, A Klinger, D. McNeely, A. Shah-Mohammed & Y. Wang (2023):
Hidden Markov Models and the Bayes Filter in Categoryical Probability.
Available at https://act2023.github.io/papers/paper73.pdf.
Abstract presented at Applied Category Theory 2023.
Tobias Fritz (2020):
A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics.
Advances in Mathematics 370,
pp. 107239,
doi:10.1016/j.aim.2020.107239.
Tobias Fritz, Tomáš Gonda & Paolo Perrone (2021):
De Finetti's Theorem in Categorical Probability.
Journal of Stochastic Analysis 2(4),
doi:10.31390/josa.2.4.06.
Tobias Fritz, Tomáš Gonda, Paolo Perrone & Eigil Fjeldgren Rischel (2020):
Representable Markov Categories and Comparison of Statistical Experiments in Categorical Probability (v2),
doi:10.48550/ARXIV.2010.07416.
Available at https://arxiv.org/abs/2010.07416v2.
The material on strongly representable Markov categories appears in version 2 of the preprint but not in version 3..
Tobias Fritz, Tomáš Gonda, Paolo Perrone & Eigil Fjeldgren Rischel (2023):
Representable Markov categories and comparison of statistical experiments in categorical probability.
Theoretical Computer Science 961,
pp. 113896,
doi:10.1016/j.tcs.2023.113896.
Ramakrishna Gurajala, Praveen B. Choppala, James Stephen Meka & Paul D. Teal (2021):
Derivation of the Kalman filter in a Bayesian filtering perspective.
In: 2nd International Conference on Range Technology (ICORT),
pp. 1–5,
doi:10.1109/ICORT52730.2021.9581918.
B. Jacobs (2020):
A channel-based perspective on conjugate priors.
Mathematical Structures in Computer Science 30(1),
pp. 44–61,
doi:10.1017/s0960129519000082.
Bart Jacobs, Aleks Kissinger & Fabio Zanasi (2019):
Causal Inference by String Diagram Surgery.
In: Mikołaj Bojańczyk & Alex Simpson: Foundations of Software Science and Computation Structures.
Springer International Publishing,
Cham,
pp. 313–329,
doi:10.1007/978-3-030-17127-8_18.
Bart Jacobs & Sam Staton (2020):
De Finetti's Construction as a Categorical Limit.
In: D. Petrişan & J. Rot: Coalgebraic Methods in Computer Science.
Springer International Publishing,
pp. 90–111,
doi:10.1007/978-3-030-57201-3_6.
Rudolph Emil Kalman (1960):
A New Approach to Linear Filtering and Prediction Problems.
Transactions of the ASME–Journal of Basic Engineering 82(Series D),
pp. 35–45,
doi:10.1115/1.3662552.
Nathaniel Virgo, Martin Biehl & Simon McGregor (2021):
Interpreting Dynamical Systems as Bayesian Reasoners.
In: International Workshops of ECML PKDD 2021.
Springer,
pp. 726–762,
doi:10.1007/978-3-030-93736-2_52.