Mario Alvarez-picallo, Dan Ghica, David Sprunger & Fabio Zanasi (2022):
Rewriting for Monoidal Closed Categories.
In: 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022) 228.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany,
pp. 29:1–29:0,
doi:10.4230/LIPIcs.FSCD.2022.29.
Richard Baker (1991):
“Lebesgue measure” on R^.
Proceedings of the American Mathematical Society 113(4),
pp. 1023–1029,
doi:10.2307/2048779.
Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Paweł Sobociński & Fabio Zanasi (2016):
Rewriting modulo symmetric monoidal structure.
In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science.
ACM,
New York NY USA,
pp. 710–719,
doi:10.1145/2933575.2935316.
Available at https://dl.acm.org/doi/10.1145/2933575.2935316.
Matteo Capucci, Bruno Gavranovi\'c, Jules Hedges & Eigil Fjeldgren Rischel (2021):
Towards foundations of categorical cybernetics.
In: Applied Category Theory Conference (ACT 2021).
EPTCS,
pp. 235–248.
Available at http://arxiv.org/abs/2105.06332.
Matteo Capucci & Bruno Gavranović (2022):
Actegories for the Working Amthematician.
Nick Chater, Joshua B Tenenbaum & Alan Yuille (2006):
Probabilistic models of cognition: Conceptual foundations.
Trends in cognitive sciences 10(7),
pp. 287–291,
doi:10.1016/j.tics.2006.05.008.
Kenta Cho & Bart Jacobs (2019):
Disintegration and Bayesian inversion via string diagrams.
Mathematical Structures in Computer Science 29(7),
pp. 938–971,
doi:10.1017/S0960129518000488.
Kyle Cranmer, Johann Brehmer & Gilles Louppe (2020):
The frontier of simulation-based inference.
Proceedings of the National Academy of Sciences 117(48),
pp. 30055–30062,
doi:10.1073/pnas.1912789117.
Swaraj Dash, Younesse Kaddar, Hugo Paquet & Sam Staton (2023):
Affine monads and lazy structures for bayesian programming.
Proceedings of the ACM on Programming Languages 7(POPL),
pp. 1338–1368,
doi:10.1145/3571239.
David H. Fremlin (2010):
Measure theory. 2: Broad foundations,
2. ed edition.
Torres Fremlin,
Colchester.
Karl Friston, Thomas FitzGerald, Francesco Rigoli, Philipp Schwartenbeck & Giovanni Pezzulo (2017):
Active inference: a process theory.
Neural computation 29(1),
pp. 1–49,
doi:10.1162/NECO_a_00912.
Tobias Fritz (2020):
A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics.
Advances in Mathematics 370,
pp. 107239,
doi:10.1016/j.aim.2020.107239.
Tobias Fritz & Andreas Klingler (2023):
The d-Separation Criterion in Categorical Probability.
Journal of Machine Learning Research 24(46),
pp. 1–49.
Tobias Fritz & Wendong Liang (2023):
Free gs-Monoidal Categories and Free Markov Categories.
Applied Categorical Structures 31(2),
pp. 21,
doi:10.1007/s10485-023-09717-0.
Giorgio Gallo, Giustino Longo, Stefano Pallottino & Sang Nguyen (1993):
Directed hypergraphs and applications.
Discrete Applied Mathematics 42(2–3),
pp. 177–201,
doi:10.1016/0166-218X(93)90045-P.
Michèle Giry (1982):
A categorical approach to probability theory.
In: B. Banaschewski: Categorical Aspects of Topology and Analysis.
Springer Berlin Heidelberg,
Berlin, Heidelberg,
pp. 68–85,
doi:10.1007/BFb0092872.
Chris Heunen, Ohad Kammar, Sam Staton & Hongseok Yang (2017):
A convenient category for higher-order probability theory.
In: Proceedings - Symposium on Logic in Computer Science,
pp. 1–12,
doi:10.1109/LICS.2017.8005137.
ArXiv: 1701.02547 Citation Key: Heunen2017 ISSN: 10436871.
Kiyosi Itô (1984):
An Introduction to Probability Theory.
Cambridge University Press,
doi:10.1017/9781139171809.
Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum & Samuel J Gershman (2017):
Building machines that learn and think like people.
Behavioral and brain sciences 40,
pp. e253,
doi:10.1017/S0140525X16001837.
Sergey Levine (2018):
Reinforcement learning and control as probabilistic inference: Tutorial and review.
arXiv preprint arXiv:1805.00909.
Jan-Willem van de Meent, Brooks Paige, Hongseok Yang & Frank Wood (2018):
An introduction to probabilistic programming.
arXiv preprint arXiv:1809.10756.
Christian A Naesseth, Fredrik Lindsten & Thomas B Schon (2019):
Elements of Sequential Monte Carlo.
Foundations and Trends in Machine Learning 12(3),
pp. 187–306,
doi:10.1561/2200000074.
Judea Pearl (2012):
The causal foundations of structural equation modeling.
Handbook of structural equation modeling,
pp. 68–91.
Judea Pearl & Dana Mackenzie (2018):
The book of why: the new science of cause and effect.
Basic books.
Paolo Perrone (2019):
Notes on Category Theory with examples from basic mathematics.
arXiv preprint arXiv:1912.10642.
Alexey Radul & Boris Alexeev (2021):
The Base Measure Problem and its Solution.
In: Proceedings of the 24th International Conference on Artificial Intelligence and Statistics (AISTATS) 2021 130.
Proceedings of Machine Learning Research,
San Diego, California,
pp. 3583–3591.
Marcin Sabok, Sam Staton, Dario Stein & Michael Wolman (2021):
Probabilistic programming semantics for name generation.
Proceedings of the ACM on Programming Languages 5(POPL),
pp. 1–29,
doi:10.1145/3434292.
Moritz Schauer & Frank van der Meulen (2023):
Compositionality in algorithms for smoothing.
arXiv preprint arXiv:2303.13865.
Adam \'Scibior, Ohad Kammar, Matthijs Vákár, Sam Staton, Hongseok Yang, Yufei Cai, Klaus Ostermann, Sean K. Moss, Chris Heunen & Zoubin Ghahramani (2017):
Denotational Validation of Higher-Order Bayesian Inference.
Proc. ACM Program. Lang. 2(POPL),
doi:10.1145/3158148.
Terence Tao (2011):
An introduction to measure theory.
Graduate studies in mathematics 126.
American Mathematical Society,
Providence, R.I,
doi:10.1090/gsm/126/02.
Matthijs Vákár & Luke Ong (2018):
On S-Finite Measures and Kernels.
Available at http://arxiv.org/abs/1810.01837.
ArXiv:1810.01837 [math].
Paul Wilson & Fabio Zanasi (2023):
Data-Parallel Algorithms for String Diagrams.
ArXiv:2305.01041.
Yi Wu, Siddharth Srivastava, Nicholas Hay, Simon Du & Stuart Russell (2018):
Discrete-Continuous Mixtures in Probabilistic Programming: Generalized Semantics and Inference Algorithms.
In: Proceedings of the 35th International Conference on Machine Learning.
PMLR,
pp. 5343–5352.
Available at https://proceedings.mlr.press/v80/wu18f.html.