References

  1. J. C. Baez, B. Fong & B. S. Pollard (2016): A compositional framework for Markov processes. Journal of Mathematical Physics 57(3), doi:10.1063/1.4941578.
  2. J. Bénabou (1967): Introduction to bicategories. In: Reports of the Midwest Category Seminar. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1–77, doi:10.1007/BFb0074299.
  3. S. Castellan, P. Clairambault, S. Rideau & G. Winskel (2017): Games and Strategies as Event Structures. Logical Methods in Computer Science Volume 13, Issue 3, doi:10.23638/LMCS-13(3:35)2017.
  4. Alexander S Corner (2016): Day convolution for monoidal bicategories. University of Sheffield.
  5. G. S. H. Cruttwell, B. Gavranovi\'c, N. Ghani, P. Wilson & F. Zanasi (2022): Categorical Foundations of Gradient-Based Learning. In: Programming Languages and Systems, doi:10.1007/978-3-030-99336-8_1.
  6. J. L. Fiadeiro & V. Schmitt (2007): Structured Co-spans: An Algebra of Interaction Protocols. In: Algebra and Coalgebra in Computer Science, pp. 194–208, doi:10.1007/978-3-540-73859-6_14.
  7. M. Fiore, N. Gambino, M. Hyland & G. Winskel (2007): The cartesian closed bicategory of generalised species of structures. Journal of the London Mathematical Society 77(1), pp. 203–220, doi:10.1112/jlms/jdm096.
  8. M. Fiore & P. Saville (2019): A type theory for cartesian closed bicategories. In: 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), doi:10.1109/LICS.2019.8785708.
  9. B. Fong, D. Spivak & R. Tuyeras (2019): Backprop as Functor: A compositional perspective on supervised learning. In: 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), doi:10.1109/lics.2019.8785665.
  10. M. Gaboardi, S. Katsumata, D. Orchard & T. Sato (2021): Graded Hoare Logic and its Categorical Semantics. In: Programming Languages and Systems, pp. 234–263, doi:10.1007/978-3-030-72019-3_9.
  11. Z. Galal (2020): A Profunctorial Scott Semantics. In: 5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020), doi:10.4230/LIPICS.FSCD.2020.16.
  12. F. R. Genovese, J. Herold, F. Loregian & D. Palombi (2021): A Categorical Semantics for Hierarchical Petri Nets. Electronic Proceedings in Theoretical Computer Science 350, pp. 51–68, doi:10.4204/eptcs.350.4.
  13. R. Gordon, A. J. Power & R. Street (1995): Coherence for tricategories. Memoirs of the American Mathematical Society, doi:10.1090/memo/0558.
  14. N. Gurski (2013): Coherence in Three-Dimensional Category Theory. Cambridge University Press, doi:10.1017/CBO9781139542333.
  15. N. Gurski & A. Osorno (2013): Infinite loop spaces, and coherence for symmetric monoidal bicategories. Advances in Mathematics 246, pp. 1 – 32, doi:10.1016/j.aim.2013.06.028.
  16. C. Heunen & B. Jacobs (2006): Arrows, like Monads, are Monoids. In: 22nd Annual Conference on Mathematical Foundations of Programming Semantics (MFPS), doi:10.1016/j.entcs.2006.04.012.
  17. B. P. Hilken (1996): Towards a proof theory of rewriting: the simply typed 2λ-calculus. Theoretical Computer Science 170(1), pp. 407–444, doi:10.1016/S0304-3975(96)80713-4.
  18. T. Hirschowitz (2013): Cartesian closed 2-categories and permutation equivalence in higher-order rewriting. Logical Methods in Computer Science 9, pp. 1–22, doi:10.2168/LMCS-9(3:10)2013.
  19. G. Janelidze & G. M. Kelly (2001): A note on actions of a monoidal category. Theory and Applications of Categories 9(4), pp. 61–91. Available at tac.mta.ca/tac/volumes/9/n4/n4.pdf..
  20. A. Jeffrey (1997): Premonoidal categories and a graphical view of programs.
  21. S. Katsumata (2014): Parametric effect monads and semantics of effect systems. In: 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), doi:10.1145/2535838.2535846.
  22. A. Kerinec, G. Manzonetto & F. Olimpieri (2023): Why Are Proofs Relevant in Proof-Relevant Models?. Proceedings of the ACM on Programming Languages (POPL), doi:10.1145/3571201.
  23. S. Lack (2008): Icons. Applied Categorical Structures 18(3), pp. 289–307, doi:10.1007/s10485-008-9136-5.
  24. T. Leinster (2004): Higher operads, higher categories. London Mathematical Society Lecture Note Series 298. Cambridge University Press, doi:10.1017/CBO9780511525896.
  25. P. B. Levy (2003): Call-By-Push-Value: A Functional/Imperative Synthesis. Springer Netherlands, doi:10.1007/978-94-007-0954-6.
  26. P. B. Levy, J. Power & H. Thielecke (2003): Modelling environments in call-by-value programming languages. Information and Computation 185(2), pp. 182–210, doi:10.1016/s0890-5401(03)00088-9.
  27. S. Mac Lane & R. Paré (1985): Coherence for bicategories and indexed categories. Journal of Pure and Applied Algebra 37, pp. 59 – 80, doi:10.1016/0022-4049(85)90087-8.
  28. D. McDermott & T. Uustalu (2022): Flexibly Graded Monads and Graded Algebras. In: Lecture Notes in Computer Science. Springer International Publishing, pp. 102–128, doi:10.1007/978-3-031-16912-0_4.
  29. D. McDermott & T. Uustalu (2022): What Makes a Strong Monad?. Electronic Proceedings in Theoretical Computer Science 360, pp. 113–133, doi:10.4204/eptcs.360.6.
  30. P.-A. Melliès (2012): Parametric monads and enriched adjunctions. Available at https://www.irif.fr/~mellies/tensorial-logic/8-parametric-monads-and-enriched-adjunctions.pdf..
  31. P.-A. Melliès (2021): Asynchronous Template Games and the Gray Tensor Product of 2-Categories. In: 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), doi:10.1109/lics52264.2021.9470758.
  32. E. Moggi (1989): Computational lambda-calculus and monads. In: Proceedings, Fourth Annual Symposium on Logic in Computer Science. IEEE Comput. Soc. Press, doi:10.1109/lics.1989.39155.
  33. E. Moggi (1991): Notions of computation and monads. Information and Computation 93(1), pp. 55–92, doi:10.1016/0890-5401(91)90052-4.
  34. F. Olimpieri (2021): Intersection Type Distributors. In: 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), doi:10.1109/lics52264.2021.9470617.
  35. H. Paquet & P. Saville (2023): Strong pseudomonads and premonoidal bicategories. ArXiv:2304.11014.
  36. J. Power (2002): Premonoidal categories as categories with algebraic structure. Theoretical Computer Science 278(1-2), pp. 303–321, doi:10.1016/s0304-3975(00)00340-6.
  37. J. Power & E. Robinson (1997): Premonoidal categories and notions of computation. Mathematical Structures in Computer Science 7(5), pp. 453–468, doi:10.1017/s0960129597002375.
  38. J. Power & H. Thielecke (1997): Environments, continuation semantics and indexed categories. In: Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 391–414, doi:10.1007/bfb0014560.
  39. M. Román (2022): Promonads and String Diagrams for Effectful Categories. CoRR abs/2205.07664, doi:10.48550/arXiv.2205.07664. ArXiv:2205.07664.
  40. C. J. Schommer-Pries (2009): The Classification of Two-Dimensional Extended Topological Field Theories. University of California. Available at https://arxiv.org/pdf/1112.1000.pdf.
  41. R. A. G. Seely (1987): Modelling Computations: A 2-Categorical Framework. In: 2nd Annual IEEE Symp. on Logic in Computer Science (LICS).
  42. A. Slattery (2023): Pseudocommutativity and Lax Idempotency for Relative Pseudomonads. ArXiv:2304.14788.
  43. A. L. Smirnov (2008): Graded monads and rings of polynomials. Journal of Mathematical Sciences 151(3), pp. 3032–3051, doi:10.1007/s10958-008-9013-7.
  44. S. Staton (2017): Commutative Semantics for Probabilistic Programming. In: Programming Languages and Systems. Springer Berlin Heidelberg, pp. 855–879, doi:10.1007/978-3-662-54434-1_32.
  45. M. Stay (2016): Compact Closed Bicategories. Theories and Applications of Categories 31(26), pp. 755–798. Available at http://www.tac.mta.ca/tac/volumes/31/26/31-26.pdf.
  46. M. Tanaka (2005): Pseudo-Distributive Laws and a Unified Framework for Variable Binding. University of Edinburgh. Available at https://www.lfcs.inf.ed.ac.uk/reports/04/ECS-LFCS-04-438/ECS-LFCS-04-438.pdf.
  47. H. Thielecke (1997): Continuation Semantics and Self-adjointness. Electronic Notes in Theoretical Computer Science 6, pp. 348–364, doi:10.1016/s1571-0661(05)80149-5.
  48. T. Tsukada, K. Asada & C.-H. L. Ong (2018): Species, Profunctors and Taylor Expansion Weighted by SMCC. In: 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), doi:10.1145/3209108.3209157.
  49. L. Wester Hansen & M. Shulman (2019): Constructing symmetric monoidal bicategories functorially. ArXiv:1910.09240.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org