References

  1. AlgebraicJulia team: AlgebraicJulia: Bringing compositionality to technical computing. Available at https://www.algebraicjulia.org.
  2. R. M. Anderson & R. M. May (1992): Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, doi:10.1017/s0950268800059896.
  3. J. C. Baez & K. Courser (2020): Structured cospans. Theor. Appl. Categ. 35, pp. 1771–1822, doi:10.48550/arXiv.1911.04630. Available at arXiv:1911.04630.
  4. J. C. Baez, K. Courser & C. Vasilakopoulou (2022): Structured versus decorated cospans. Compositionality 4(3), doi:10.32408/compositionality-4-3. Available at arXiv:2101.09363.
  5. J. C. Baez & B. S. Pollard (2017): A compositional framework for reaction networks. Reviews in Mathematical Physics 29(09), pp. 1750028, doi:10.1142/s0129055x17500283. Available at arXiv:1704.02051.
  6. J. Bezanson, A. Edelman, S. Karpinski & V. B. Shah (2017): Julia: A fresh approach to numerical computing. SIAM Review 59(1), pp. 65–98, doi:10.1137/141000671.
  7. D. Destoumieux-Garzón, P. Mavingui, G. Boetsch, J. Boissier & F. Darriet (2018): The One Health concept: 10 years old and a long road ahead. Frontiers in Veterinary Science, pp. 14, doi:10.3389/fvets.2018.00014.
  8. O. Diekmann & J. A. P. Heesterbeek (2000): Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation 5. John Wiley & Sons, doi:10.1093/ije/30.1.186.
  9. V. Faghihi, A. R. Hessami & D. N. Ford (2015): Sustainable campus improvement program design using energy efficiency and conservation. Journal of Cleaner Production 107, pp. 400–409, doi:10.1016/j.jclepro.2014.12.040.
  10. B. Fong (2015): Decorated cospans. Theor. Appl. Categ. 30(33), pp. 1096–1120, doi:10.48550/arXiv.1502.00872. Available at arXiv:1502.00872.
  11. B. Fong & D. I. Spivak (2018): Hypergraph categories, doi:10.48550/arXiv.1806.08304. Available at arXiv:1305.0297.
  12. J. W. Forrester (1961): Industrial Dynamics. Pegasus Communications.
  13. B. Güneralp, J. D. Sterman, N. P. Repenning, R.S. Langer, J. I. Rowe & J.M. Yanni (2005): Progress in eigenvalue elasticity analysis as a coherent loop dominance analysis tool. In: The 23rd International Conference of The System Dynamics Society. System Dynamics Society.
  14. J. Hines: Molecules of structure: building blocks for System Dynamics models, Version 2.02. Available at https://vensim.com/modeling-with-molecules-2-02/.
  15. P. S. Hovmand (2014): Community Based System Dynamics. Springer, doi:10.1007/978-1-4614-8763-0.
  16. C. E. Kampmann (2012): Feedback loop gains and system behavior (1996). System Dynamics Review 28(4), pp. 370–395, doi:10.1002/sdr.1483.
  17. W. O. Kermack & A. G. McKendrick (1927): A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A 115(772), pp. 700–721, doi:10.1098/rspa.1927.0118.
  18. S. Libkind, A. Baas, M. Halter, E. Patterson & J. Fairbanks (2022): An algebraic framework for structured epidemic modeling. Phil. Trans. R. Soc. A. 380, pp. 20210309, doi:10.1098/rsta.2021.0309. Available at arXiv:2203.16345.
  19. S. Libkind, A. Baas, E. Patterson & J. Fairbanks (2022): Operadic modeling of dynamical systems: mathematics and computation. EPTCS 372, pp. 192–206, doi:10.4204/eptcs.372.14. Available at arXiv:2105.12282.
  20. K. H. Lich & J. Kuhlberg (2020): Engaging Stakeholders in Mapping and Modeling Complex Systems Structure to Inform Population Health Research and Action. In: Y. Apostolopoulos, K. H. Lich & M. K. Lemke: Complex Systems and Population Health. Oxford University Press, pp. 119, doi:10.1093/oso/9780190880743.003.0009.
  21. J. S. Mackenzie & M. Jeggo (2019): The One Health approach—why is it so important?. Tropical Medicine and Infectious Disease 4(2), pp. 88, doi:10.3390/tropicalmed4020088.
  22. E. Patterson, O. Lynch & J. Fairbanks (2022): Categorical data structures for technical computing. Compositionality 4(2), doi:10.32408/compositionality-4-5. Available at arXiv:2106.04703.
  23. B. Richmond (1985): STELLA: Software for bringing System Dynamics to the other 98%. In: Proceedings of the 1985 International Conference of the System Dynamics Society: 1985 International System Dynamics Conference. System Dynamics Society, pp. 706–718.
  24. R. Ross (1916): An application of the theory of probabilities to the study of a priori pathometry—Part I. Proceedings of the Royal Society of London. Series A 92(638), pp. 204–230, doi:10.1098/rspa.1916.0007.
  25. R. Ross & H. P. Hudson (1917): An application of the theory of probabilities to the study of a priori pathometry—Part II. Proceedings of the Royal Society of London. Series A 93(650), pp. 212–225, doi:10.1098/rspa.1917.0014.
  26. M. Saleh, P. Davidsen & K. Bayoumi (2005): A comprehensive eigenvalue analysis of system dynamics models. In: Proceedings of the International System Dynamics Conference, The System Dynamics Society, Boston. System Dynamics Society, pp. 130.
  27. D. I. Spivak (2013): The operad of wiring diagrams: formalizing a graphical language for databases, recursion, and plug-and-play circuits, doi:10.48550/arXiv.1305.0297. Available at arXiv:1305.0297.
  28. J. D. Sterman (1994): Learning in and about complex systems. System Dynamics Review 10(2-3), pp. 291–330, doi:10.1002/sdr.4260100214.
  29. J. D. Sterman (2000): Business Dynamics. McGraw-Hill, Inc..
  30. M. A. Trecker, D. J. Hogan, C. L. Waldner, J. R. Dillon & N. D. Osgood (2015): Revised simulation model does not predict rebound in gonorrhoea prevalence where core groups are treated in the presence of antimicrobial resistance. Sexually Transmitted Infections 91(4), pp. 300–302, doi:10.1136/sextrans-2014-051792.
  31. J. A. M. Vennix (1996): Group Model Building: Facilitating Team Learning Using System Dynamics. Chichester.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org