References

  1. Scott Aaronson & Daniel Gottesman (2004): Improved simulation of stabilizer circuits. Physical Review A 70(5), pp. 052328, doi:10.1103/PhysRevA.70.052328. Available at https://arxiv.org/pdf/quant-ph/0406196.pdf.
  2. Lowell Abrams (1997): Frobenius algebra structures in topological quantum field theory and quantum cohomology. Johns Hopkins University. Available at https://home.gwu.edu/~labrams/docs/thesis.pdf.
  3. Miriam Backens (2014): The ZX-calculus is complete for stabilizer quantum mechanics. New Journal of Physics 16(9), pp. 093021, doi:10.1088/1367-2630/16/9/093021. Available at https://arxiv.org/pdf/1307.7025.pdf.
  4. Miriam Backens & Ali Nabi Duman (2016): A complete graphical calculus for Spekkens’ toy bit theory. Foundations of Physics 46(1), pp. 70–103, doi:10.1007/s10701-015-9957-7. Available at https://arxiv.org/pdf/1411.1618.pdf.
  5. John C Baez, Brandon Coya & Franciscus Rebro (2018): Props in network theory. Theory and Applications of Categories 33(25), pp. 727–783. Available at http://www.tac.mta.ca/tac/volumes/33/25/33-25.pdf.
  6. John C Baez & Jason Erbele (2015): Categories in control. Theory and Applications of Categories 30(24), pp. 836–881. Available at http://www.tac.mta.ca/tac/volumes/30/24/30-24.pdf.
  7. John C Baez & Brendan Fong (2018): A compositional framework for passive linear networks. Theory and Applications of Categories 33(38), pp. pp 1158–1222. Available at http://www.tac.mta.ca/tac/volumes/33/38/33-38.pdf.
  8. Filippo Bonchi, Robin Piedeleu, PawełSobociński & Fabio Zanasi (2019): Graphical affine algebra. In: 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, pp. 1–12, doi:10.1109/LICS.2019.8785877. Available at http://www.zanasi.com/fabio/files/paperLICS19.pdf.
  9. Filippo Bonchi, PawełSobociński & Fabio Zanasi (2017): Interacting Hopf algebras. Journal of Pure and Applied Algebra 221(1), pp. 144–184, doi:10.1016/j.jpaa.2016.06.002. Available at https://arxiv.org/pdf/1403.7048.pdf.
  10. Titouan Carette, Emmanuel Jeandel, Simon Perdrix & Renaud Vilmart (2021): Completeness of Graphical Languages for Mixed State Quantum Mechanics. ACM Transactions on Quantum Computing 2(4), doi:10.1145/3464693. Available at https://arxiv.org/pdf/1902.07143.pdf.
  11. Lorenzo Catani & Dan E Browne (2017): Spekkens’ toy model in all dimensions and its relationship with stabiliser quantum mechanics. New Journal of Physics 19(7), pp. 073035, doi:10.1088/1367-2630/aa781c. Available at https://iopscience.iop.org/article/10.1088/1367-2630/aa781c/pdf.
  12. B. Coecke & A. Kissinger (2017): Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning. Cambridge University Press, doi:10.1017/9781316219317.
  13. Bob Coecke & Ross Duncan (2008): Interacting quantum observables. In: International Colloquium on Automata, Languages, and Programming. Springer, pp. 298–310, doi:10.1007/978-3-540-70583-3_25. Available at https://arxiv.org/pdf/0906.4725.pdf.
  14. Bob Coecke & Bill Edwards (2012): Spekkens’s toy theory as a category of processes. In: Proceedings of Symposia in Applied Mathematics 71, pp. 61–88, doi:10.1090/psapm/071. Available at https://arxiv.org/pdf/1108.1978.pdf.
  15. Bob Coecke, Bill Edwards & Robert W Spekkens (2011): Phase groups and the origin of non-locality for qubits. Electronic Notes in Theoretical Computer Science 270(2), pp. 15–36, doi:10.1016/j.entcs.2011.01.021. Available at https://arxiv.org/pdf/1003.5005.pdf.
  16. Bob Coecke & Aleks Kissinger (2017): Categorical Quantum Mechanics I: Causal Quantum Processes. Oxford University Press, doi:10.1093/oso/9780198748991.003.0012. Available at https://arxiv.org/pdf/1510.05468.pdf.
  17. Cole Comfort (2021): Distributive Laws, Spans and the ZX-Calculus. arXiv preprint. Available at https://arxiv.org/pdf/2102.04386.pdf.
  18. Brandon Coya (2018): Circuits, bond graphs, and signal-flow diagrams: A categorical perspective. University of California Riverside. Available at https://arxiv.org/pdf/1805.08290.pdf.
  19. Niel De Beaudrap (2013): A Linearized Stabilizer Formalism for Systems of Finite Dimension. Quantum Info. Comput. 13(1–2), pp. 73–115, doi:10.26421/QIC13.1-2-6. Available at https://arxiv.org/pdf/1102.3354.pdf.
  20. Ross Duncan & Simon Perdrix (2009): Graph states and the necessity of Euler decomposition. In: Conference on Computability in Europe. Springer, pp. 167–177, doi:10.1007/978-3-642-03073-4_18. Available at https://arxiv.org/pdf/0902.0500.pdf.
  21. Brendan Fong (2016): The algebra of open and interconnected systems. University of Oxford. Available at https://arxiv.org/pdf/1609.05382.pdf.
  22. David Gross (2006): Hudson’s theorem for finite-dimensional quantum systems. Journal of mathematical physics 47(12), pp. 122107, doi:10.1063/1.2393152. Available at https://arxiv.org/pdf/quant-ph/0602001.pdf.
  23. Erik Hostens, Jeroen Dehaene & Bart De Moor (2005): Stabilizer states and Clifford operations for systems of arbitrary dimensions and modular arithmetic. Physical Review A 71(4), pp. 042315, doi:10.1103/PhysRevA.71.042315. Available at https://arxiv.org/pdf/quant-ph/0408190.pdf.
  24. André Ranchin (2014): Depicting qudit quantum mechanics and mutually unbiased qudit theories. In: Bob Coecke, Hasuo Ichiro & Prakash Panangaden: Proceedings 14th International Conference on Quantum Physics and Logic, Kyoto University, Japan, 4-6 June 2017, Electronic Proceedings in Theoretical Computer Science 172. Open Publishing Association, pp. 68–91, doi:10.4204/eptcs.172.6. Available at https://arxiv.org/pdf/1404.1288.pdf.
  25. André Ranchin (2016): Alternative theories in quantum foundations. Imperial College London, doi:10.25560/52462. Available at https://spiral.imperial.ac.uk/bitstream/10044/1/52462/3/Ranchin-A-2017-PhD-Thesis.pdf.
  26. Peter Selinger (2007): Dagger compact closed categories and completely positive maps. Electronic Notes in Theoretical computer science 170, pp. 139–163, doi:10.1016/j.entcs.2006.12.018. Available at https://mathstat.dal.ca/~selinger/papers/dagger.pdf.
  27. PawełSobociński (2017): Graphical Linear Algebra: Orthogonality and projections. Available at https://graphicallinearalgebra.net/2017/08/09/orthogonality-and-projections/.
  28. Robert W Spekkens (2007): Evidence for the epistemic view of quantum states: A toy theory. Physical Review A 75(3), pp. 032110, doi:10.1103/PhysRevA.75.032110. Available at https://arxiv.org/pdf/quant-ph/0401052.pdf.
  29. Robert W Spekkens (2016): Quasi-quantization: classical statistical theories with an epistemic restriction. In: Quantum Theory: Informational Foundations and Foils. Springer, pp. 83–135, doi:10.1007/978-94-017-7303-4. Available at https://arxiv.org/pdf/1409.5041.pdf.
  30. Quanlong Wang (2018): Qutrit ZX-calculus is Complete for Stabilizer Quantum Mechanics. In: Bob Coecke & Aleks Kissinger: Proceedings 14th International Conference on Quantum Physics and Logic, Nijmegen, The Netherlands, 3-7 July 2017, Electronic Proceedings in Theoretical Computer Science 266. Open Publishing Association, pp. 58–70, doi:10.4204/EPTCS.266.3. Available at https://arxiv.org/pdf/1803.00696.pdf.
  31. Alan Weinstein (1987): Symplectic groupoids and Poisson manifolds. Bulletin of the American mathematical Society 16(1), pp. 101–104, doi:10.1090/S0273-0979-1987-15473-5. Available at https://www.projecteuclid.org/journals/bulletin-of-the-american-mathematical-society-new-series/volume-16/issue-1/Symplectic-groupoids-and-Poisson-manifolds/bams/1183553676.full.
  32. Fabio Zanasi (2018): Interacting Hopf Algebras: the theory of linear systems. Université de Lyon.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org