1. Hervé Abdi (2007): Metric multidimensional scaling (MDS): analyzing distance matrices. Encyclopedia of Measurement and Statistics. SAGE Publications.
  2. Hervé Abdi & Lynne J Williams (2010): Principal component analysis. Wiley interdisciplinary reviews: computational statistics 2(4), pp. 433–459, doi:10.1002/wics.101.
  3. Stephen Bailey (2012): Principal Component Analysis with Noisy and/or Missing Data. Publications of the Astronomical Society of the Pacific 124(919), pp. 1015–1023, doi:10.1086/668105. Available at
  4. Mukund Balasubramanian (2002): The isomap algorithm and topological stability. Science 295(5552), doi:10.1126/science.295.5552.7a.
  5. Andrew J Blumberg & Michael Lesnick (2017): Universality of the homotopy interleaving distance. arXiv preprint arXiv:1705.01690.
  6. Adam Brown, Omer Bobrowski, Elizabeth Munch & Bei Wang (2020): Probabilistic convergence and stability of random mapper graphs. Journal of Applied and Computational Topology, pp. 1–42, doi:10.1007/s41468-020-00063-x.
  7. Peter Bubenik & Jonathan A Scott (2014): Categorification of persistent homology. Discrete & Computational Geometry 51(3), pp. 600–627, doi:10.1007/s00454-014-9573-x.
  8. Gunnar Carlsson & Facundo Mémoli (2013): Classifying clustering schemes. Foundations of Computational Mathematics, doi:10.1007/s10208-012-9141-9.
  9. Frédéric Chazal, David Cohen-Steiner, Marc Glisse, Leonidas J Guibas & Steve Y Oudot (2009): Proximity of persistence modules and their diagrams. In: Proceedings of the twenty-fifth annual symposium on Computational geometry, pp. 237–246, doi:10.1145/1542362.1542407.
  10. Frédéric Chazal, Vin De Silva & Steve Oudot (2014): Persistence stability for geometric complexes. Geometriae Dedicata 173(1), pp. 193–214, doi:10.1007/s10711-013-9937-z.
  11. Jared Culbertson, Dan P Guralnik, Jakob Hansen & Peter F Stiller (2016): Consistency constraints for overlapping data clustering. arXiv preprint arXiv:1608.04331.
  12. Jared Culbertson, Dan P Guralnik & Peter F Stiller (2018): Functorial hierarchical clustering with overlaps. Discrete Applied Mathematics 236, pp. 108–123, doi:10.1016/j.dam.2017.10.015.
  13. Brendan Fong & David I. Spivak (2019): An Invitation to Applied Category Theory: Seven Sketches in Compositionality. Cambridge University Press, doi:10.1017/9781108668804.
  14. Tobias Fritz (2020): A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics. Advances in Mathematics 370, pp. 107239, doi:10.1016/j.aim.2020.107239.
  15. Samuel Gerber, Tolga Tasdizen & Ross Whitaker (2007): Robust non-linear dimensionality reduction using successive 1-dimensional Laplacian eigenmaps. In: Proceedings of the 24th international conference on Machine learning, pp. 281–288, doi:10.1145/1273496.1273532.
  16. Jon M Kleinberg (2003): An impossibility theorem for clustering. Advances in Neural Information Processing Systems, doi:10.5555/2968618.2968676.
  17. Tom Leinster (2016): Basic Category Theory. Cambridge University Press, doi:10.1017/CBO9780511525858.
  18. Leland McInnes, John Healy, Nathaniel Saul & Lukas Gro├čberger (2018): UMAP: Uniform Manifold Approximation and Projection. Journal of Open Source Software 3(29), pp. 861, doi:10.21105/joss.00861.
  19. Luis N Scoccola (2020): Locally Persistent Categories And Metric Properties Of Interleaving Distances. PhD Thesis at Western University (Ontario). Available at
  20. Dan Shiebler (2020): Functorial Clustering via Simplicial Complexes. Topological Data Analysis and Beyond Workshop at NeurIPS 2020. Available at
  21. David I Spivak (2012): Metric realization of fuzzy simplicial sets. Self published notes. Available at
  22. Joshua B Tenenbaum, Vin De Silva & John C Langford (2000): A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), pp. 2319–2323, doi:10.1126/science.290.5500.2319.

Comments and questions to:
For website issues: