1. J. Backus (1978): Can programming be liberated from the von Neumann style?. Communications of the ACM 21(21), doi:10.1007/978-3-662-09507-2_10.
  2. J.-C. Birget (2009): Monoid generalization of the Richard Thompson groups. Journal of Pure and Applied Algebra 13, pp. 264–278, doi:10.1016/j.jpaa.2008.06.012.
  3. P. Freyd & A. Heller (1993): Splitting homotopy idempotents II. Journal of Pure and Applied Algebra 89, pp. 93–195, doi:10.1016/0022-4049(93)90088-b.
  4. S. Ginsburg, S. Greibach & M. Harrison (1967): One-way stack automata. Journal of the ACM 14, pp. 389–418, doi:10.1145/321386.321403.
  5. A. Gray & K. Pardue (2016): Products in a category with one object. arXiv:1604.03999.
  6. B. Jonsson & A. Tarski (1961): On two properties of free algebras. Mathematica Scandinavica 9, pp. 95–101, doi:10.7146/math.scand.a-10627.
  7. J. Lambek (1980): H. B. Curry, Essays in Combinatory Logic. Academic Press.
  8. M. Rabin (1969): Decidability of second order theories and automata on finite trees. Transactions of the American Mathematical Society 141, pp. 1–35, doi:10.2307/2272788.
  9. D. Smirnov (1971): Cantor algebras with one generator. Algebra and Logic 10, pp. 40–49, doi:10.1007/bf02217801.
  10. R. Statman (1992): Simply typed lambda calculus with surjective pairing. CMU Department of Mathematics Research Report, pp. 92–164.
  11. R. Statman (1996): On Cartesian monoids. Springer Lecture Notes in Computer Science 1258, pp. 446–459, doi:10.1007/3-540-63172-0_55.
  12. R. Thompson (1980): Word Problems, chapter Embeddings into finitely generated simple groups which preserve the word problem, pp. 401–444. North Holland, doi:10.1016/S0049-237X(08)71348-X.
  13. S. La Torre, P. Manhusadan & G. Parlato (2007): A robust class of context sensitive languages. Proceedings of 22nd IEEE Symposium on Logic in Computer Science, doi:10.1109/lics.2007.9.

Comments and questions to:
For website issues: