1. Michael Barr (1979): -autonomous categories. Lecture Notes in Mathematics 752. Springer, Berlin, doi:10.1007/BFb0064582.
  2. R. F. Blute, J. R. B. Cockett & R. A. G. Seely (2000): Feedback for linearly distributive categories: traces and fixpoints. J. Pure Appl. Algebra 154(1-3), pp. 27–69, doi:10.1016/S0022-4049(99)00180-2.
  3. R. F. Blute, J. R. B. Cockett, R. A. G. Seely & T. H. Trimble (1996): Natural deduction and coherence for weakly distributive categories. J. Pure Appl. Algebra 113(3), pp. 229–296, doi:10.1016/0022-4049(95)00159-X.
  4. J. R. B. Cockett & R. A. G. Seely (1997): Proof theory for full intuitionistic linear logic, bilinear logic, and MIX categories. Theory Appl. Categ. 3, pp. No. 5, 85–131.
  5. Patrik Eklund, Javier Gutiérrez García, Ulrich Höhle & Jari Kortelainen (2018): Semigroups in complete lattices. Developments in Mathematics 54. Springer, Cham, doi:10.1007/978-3-319-78948-4.
  6. Nikolaos Galatos, Peter Jipsen, Tomasz Kowalski & Hiroakira Ono (2007): Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Studies in Logic and the Foundations of Mathematics 151. Elsevier, doi:10.1016/S0049-237X(07)80005-X.
  7. G. Grätzer & F. Wehrung (1999): A new lattice construction: the box product. J. Algebra 221(1), pp. 315–344, doi:10.1006/jabr.1999.7975.
  8. D. A. Higgs & K. A. Rowe (1989): Nuclearity in the category of complete semilattices. J. Pure Appl. Algebra 57(1), pp. 67–78, doi:10.1016/0022-4049(89)90028-5.
  9. André Joyal & Myles Tierney (1984): An extension of the Galois theory of Grothendieck. Mem. Amer. Math. Soc. 51(309), pp. vii+71, doi:10.1090/memo/0309.
  10. G. M. Kelly & M. L. Laplaza (1980): Coherence for compact closed categories. J. Pure Appl. Algebra 19, pp. 193–213, doi:10.1016/0022-4049(80)90101-2.
  11. W. McCune (2005–2010): Prover9 and Mace4.
  12. Evelyn Nelson (1976): Galois connections as left adjoint maps. Comment. Math. Univ. Carolinae 17(3), pp. 523–541.
  13. George N. Raney (1960): Tight Galois connections and complete distributivity. Trans. Amer. Math. Soc. 97, pp. 418–426, doi:10.2307/1993380.
  14. Kimmo I. Rosenthal (1990): Quantales and their applications. Pitman Research Notes in Mathematics Series 234. Longman Scientific & Technical, Harlow.
  15. K. A. Rowe (1988): Nuclearity. Canad. Math. Bull. 31(2), pp. 227–235, doi:10.4153/CMB-1988-035-5.
  16. Luigi Santocanale (2020): The Involutive Quantaloid of Completely Distributive Lattices. In: Uli Fahrenberg, Peter Jipsen & Michael Winter: RAMiCS 2020, Palaiseau, France, April 8-11, 2020, Proceedings [postponed], Lecture Notes in Computer Science 12062. Springer, pp. 286–301, doi:10.1007/978-3-030-43520-2_18.
  17. Luigi Santocanale & Maria João Gouveia (2020): The continuous weak order. Journal of Pure and Applied Algebra, doi:10.1016/j.jpaa.2020.106472. In press.
  18. Zahava Shmuely (1974): The structure of Galois connections. Pacific J. Math. 54(2), pp. 209–225, doi:10.2140/pjm.1974.54.209.
  19. Rudolf Wille (1985): Tensorial decomposition of concept lattices. Order 2(1), pp. 81–95, doi:10.1007/BF00337926.
  20. David N. Yetter (2001): Functorial knot theory. Series on Knots and Everything 26. World Scientific Publishing Co., Inc., River Edge, NJ, doi:10.1142/9789812810465.

Comments and questions to:
For website issues: