1. J. Beck (1969): Distributive laws. In: B. Eckmann: Seminar on Triples and Categorical Homology Theory. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 119–140, doi:10.1007/BFb0083084.
  2. F. Dahlqvist, V. Danos & I. Garnier (2016): Giry and the Machine. In: Proc. MFPS 2016, pp. 85–110, doi:10.1016/j.entcs.2016.09.033.
  3. F. Dahlqvist & D. Kozen (2020): Semantics of Higher-Order Probabilistic Programs with Conditioning. In: Proc. POPL 2020, doi:10.1017/S0960129516000426.
  4. F. Dahlqvist, L. Parlant & A. Silva (2018): Layer by Layer – Combining Monads. In: Proc. ICTAC 2018, doi:10.2168/lmcs-3(4:11)2007.
  5. D. Daley & D. Vere-Jones (2006): An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods. Probability and Its Applications. Springer New York.
  6. V. Danos & I. Garnier (2015): Dirichlet is Natural. In: Proc. MFPS 2015, Electr. Notes Theoret. Comput. Sci 319, pp. 137–164, doi:10.1016/j.entcs.2015.12.010.
  7. S. Dash & S. Staton (2020): A Monad for Point Processes. Talk at LAFI 2020.
  8. T. Ehrhard, M. Pagani & C. Tasson (2018): Measurable cones and stable, measurable functions: a model for probabilistic higher-order programming. Proc. ACM Program. Lang. (POPL) 2, doi:10.1145/3158147.
  9. T. Fritz (2019): A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics. arxiv:1908.07021.
  10. T. Fritz, P. Perrone & S. Rezagholi (2019): The support is a morphism of monads. In: Proc. ACT 2019.
  11. R. Garner (2019): Hypernormalisation, linear exponential monads and the Giry tricocycloid. In: Proc. ACT 2019.
  12. M. Giry (1982): A categorical approach to probability theory. In: Categorical aspects of topology and analysis (Ottawa, Ont., 1980), Lecture Notes in Mathematics 915. Springer, Berlin, pp. 68–85, doi:10.1007/BFb0092872.
  13. N.D. Goodman, V.K. Mansinghka, D.M. Roy, K. Bonawitz & J.B. Tenenbaum (2008): Church: a language for generative models. In: Proc. UAI 2008, pp. 220–229.
  14. A. Goy & D. Petrisan (2020): Combining probabilistic and non-deterministic choice via weak distributive laws. In: Proc. LICS 2020, doi:10.1017/S0960129505005074.
  15. M. Grohe & P. Lindner (2019): Probabilistic Databases with an Infinite Open-World Assumption. In: Proc. PODS 2019, pp. 17–31, doi:10.1145/3294052.3319681.
  16. M. Hamano (2019): A Linear Exponential Comonad in s-finite Transition Kernels and Probabilistic Coherent Spaces. arxiv:1909.07589.
  17. T. Herlau, M.N. Schmidt & M. Morup (2016): Completely random measures for modelling block-structured sparse networks. In: Proc. NeurIPS 2016, pp. 4260–4268, doi:10.5555/3157382.3157574.
  18. C. Heunen, O. Kammar, S. Staton & H. Yang (2017): A convenient category for higher-order probability theory. In: Proc. LICS 2017. IEEE Press, doi:10.1109/LICS.2017.8005137.
  19. B. Jacobs (2019): Structured Probabilitistic Reasoning. Draft available from the author's website.
  20. B. Jacobs & S. Staton (2020): De Finetti's construction as a categorical limit. In: Proc. CMCS 2020.
  21. B. Jacobs (2019): Learning along a Channel:the Expectation part of Expectation-Maximisation. In: Proc. MFPS 2019, doi:10.1016/j.entcs.2019.09.008.
  22. K. Keimel & G. Plotkin: Mixed powerdomains for probability and nondeterminism. arXiv:1612.01005.
  23. P. McCullagh (2002): What is a statistical model?. Annals of Statistics 30(5), pp. 1225–1310, doi:10.1214/aos/1035844977.
  24. E. Moggi (1991): Notions of Computation and Monads. Inf. Comput. 93(1), pp. 55–92, doi:10.1016/0890-5401(91)90052-4.
  25. P. Narayanan, J. Carette, W. Romano, C. Shan & R. Zinkov (2016): Probabilistic inference by program transformation in Hakaru (system description). In: Proc. FLOPS 2016. Springer, pp. 62–79, doi:10.1007/978-3-319-29604-3_5.
  26. D. Pollard (2001): A User's Guide to Measure Theoretic Probability. CUP, doi:10.1017/CBO9780511811555.
  27. A. Simpson (2017): Probability Sheaves and the Giry Monad. In: Proc. CALCO 2017, doi:10.4230/LIPIcs.CALCO.2017.1.
  28. S. Staton (2017): Commutative semantics for Probabilistic Programming. In: Proc. ESOP 2017, Lect. Notes Comput. Sci. 10201. Springer, pp. 855–879, doi:10.1007/978-3-662-46669-8_3.
  29. D. Varacca & G. Winskel (2006): Distributing probability over non-determinism. Mathematical structures in computer science 16, pp. 87–113, doi:10.1017/S0960129505005074.
  30. F. Wood, J.W. van de Meent & V. Mansinghka (2014): A new approach to probabilistic programming inference. In: Proc. AISTATS 2014.
  31. Y. Wu, S. Srivastava, N. Hay, S. Du & S.J. Russell (2018): Discrete-Continuous Mixtures in Probabilistic Programming: Generalized Semantics and Inference Algorithms. In: Proc. ICML 2018, pp. 5339–5348.
  32. M. Zwart & D. Marsden (2019): No-Go Theorems for Distributive Laws. In: Proc. LICS 2019, doi:10.1109/LICS.2019.8785707.

Comments and questions to:
For website issues: