1. J. Bart (1999): Categorical logic and type theory. Elsevier.
  2. J. Bénabou (1967): Introduction to bicategories. In: Reports of the Midwest Category Seminar 47. Springer, pp. 1–77, doi:10.1007/BFb0074298.
  3. J. Bénabou (1973): Les distributeurs. rapport 33, Université Catholique de Louvain, Institut de Mathématique Pure et Appliquée.
  4. P. N. Benton (1994): A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models (Extended Abstract). In: CSL, Lecture Notes in Computer Science 933. Springer, pp. 121–135, doi:10.1016/0890-5401(91)90052-4.
  5. G. J. Bird, G. M. Kelly, A. J. Power & R. H. Street (1989): Flexible limits for 2-categories. Journal of Pure and Applied Algebra 61(1), pp. 1 – 27, doi:10.1016/0022-4049(89)90065-0.
  6. R. Blackwell, G. M. Kelly & A. J. Power (1989): Two-dimensional monad theory. Journal of Pure and Applied Algebra 59(1), pp. 1–41, doi:10.1016/0022-4049(89)90160-6.
  7. R. Blute, R. Cockett & R. Seely (2006): Differential categories. Mathematical structures in computer science 16(06), pp. 1049–1083, doi:10.1017/S0960129506005676.
  8. F. Borceux, G.C. Rota, B. Doran, P. Flajolet, T.Y. Lam, E. Lutwak & M. Ismail (1994): Handbook of Categorical Algebra: Volume 1, Basic Category Theory. Encyclopedia of Mathematics and its Applications. Cambridge University Press, doi:10.1017/CBO9780511525872. Available at
  9. P.-L. Curien (2012): Operads, clones, and distributive laws. In: Proc. of the International Conference on Operads and Universal Algebra 9. Nankai Series in Pure Applied Mathematics and Theoretical Physics, doi:10.1142/9789814365123_0002.
  10. E. J. Dubuc (1970): Completeness concepts, pp. 7–59. Springer Berlin Heidelberg, Berlin, Heidelberg, doi:10.1007/BFb0060487.
  11. N. Durov (2007): New Approach to Arakelov Geometry.
  12. T. Ehrhard & L. Regnier (2003): The differential lambda-calculus. Theor. Comput. Sci. 309(1).
  13. M. Fiore (2005): Mathematical Models of Computational and Combinatorial Structures. In: Vladimiro Sassone: Foundations of Software Science and Computational Structures. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 25–46, doi:10.1007/3-540-44612-5_62.
  14. M. Fiore (2006): On the structure of substitution. Invited address for MFPSXXII.
  15. M. Fiore (2007): Differential structure in models of multiplicative biadditive intuitionistic linear logic. Lecture Notes in Computer Science 4583, pp. 163, doi:10.1016/S0304-3975(03)00392-X.
  16. M. Fiore, N. Gambino, M. Hyland & G. Winskel (2008): The cartesian closed bicategory of generalised species of structures. J. London Math. Soc. 77(1), doi:10.1112/jlms/jdm096.
  17. M. Fiore, N. Gambino, M. Hyland & G. Winskel (2018): Relative pseudomonads, Kleisli bicategories, and substitution monoidal structures. Selecta Mathematica 24(3), pp. 2791–2830, doi:10.1007/s00029-017-0361-3.
  18. R. Garner (2020): The Vietoris Monad and Weak Distributive Laws. Applied Categorical Structures 28(2), pp. 339–354, doi:10.1007/s002330010048.
  19. J.-Y. Girard (1987): Linear Logic. Theoretical Computer Science 50, pp. 1–102, doi:10.1016/0304-3975(87)90045-4.
  20. A. Hirschowitz & M. Maggesi (2007): Modules over monads and linearity. Lecture Notes in Computer Science 4576, pp. 218, doi:10.1007/s10990-006-8750-x.
  21. M. Hyland (2014): Elements of a theory of algebraic theories. Theor. Comput. Sci. 546, doi:10.1016/j.tcs.2014.03.005.
  22. M. Hyland (2014): Towards a Notion of Lambda Monoid. Electronic Notes in Theoretical Computer Science 303, pp. 59–77, doi:10.1016/j.entcs.2014.02.004.
  23. M. Hyland (2017): Classical lambda calculus in modern dress. Math. Struct. Comput. Sci. 27(5), doi:10.1017/S0960129515000377.
  24. G. M. Kelly (1980): A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on. Bulletin of the Australian Mathematical Society 22(1), pp. 183, doi:10.1017/S0004972700006353.
  25. G. M. Kelly & A. J. Power (1993): Adjunctions whose counits are coequalizers, and presentations of finitary enriched monads. Journal of Pure and Applied Algebra 89(1), pp. 163 – 179, doi:10.1016/0022-4049(93)90092-8.
  26. S. Lack (2010): A 2-Categories Companion, pp. 105–191. Springer New York, New York, NY, doi:10.1007/978-1-4419-1524-5_4.
  27. F. W. Lawvere (1984): Functorial Semantics of Algebraic Theories. PhD Thesis, Columbia, 1963.. Republished in Reprints in Theory and Applications of Categories 5.
  28. P. L. Lumsdaine & M. Warren (2015): The local universes model: an overlooked coherence construction for dependent type theories. ACM Transactions in Computational Logic 16, pp. 23.1–23.31, doi:10.1017/S0305004100061284.
  29. M. E. Maietti (2005): Modular correspondence between dependent type theories and categories including pretopoi and topoi. Mathematical Structures in Computer Science 15(6), pp. 1089–1149, doi:10.1017/S0960129505004962.
  30. P. Martin-Löf (1984): Intuitionistic Type Theory. Bibliopolis.
  31. J. Power & M. Tanaka (2005): Binding Signatures for Generic Contexts. In: TLCA, doi:10.1007/3-540-44612-5_62. Available at
  32. T. Streicher (1989): Correctness and completeness of a categorical semantics of the calculus of constructions. University of Passau, Germany.
  33. W. Taylor (1993): Abstract Clone Theory, pp. 507–530. Springer Netherlands, Dordrecht, doi:10.1007/978-94-017-0697-1_11.

Comments and questions to:
For website issues: