1. Michael Gordon Abbott, Thorsten Altenkirch & Neil Ghani (2003): Categories of Containers. In: Andrew D. Gordon: Foundations of Software Science and Computational Structures (FOSSACS 2003), Lecture Notes in Computer Science 2620. Springer, pp. 23–38, doi:10.1007/3-540-36576-1_2.
  2. Robert Atkey (2011): What is a Categorical Model of Arrows?. Electron. Notes Theor. Comput. Sci. 229(5), pp. 19–37, doi:10.1016/j.entcs.2011.02.014.
  3. Guillaume Boisseau & Jeremy Gibbons (2018): What You Needa Know about Yoneda: Profunctor Optics and the Yoneda Lemma (Functional Pearl). Proc. ACM Program. Lang. 2(ICFP), doi:10.1145/3236779.
  4. Joe Bolt, Jules Hedges & Philipp Zahn (2019): Bayesian open games. arXiv:1910.03656.
  5. Bryce Clarke, Derek Elkins, Jeremy Gibbons, Fosco Loregiàn, Bartosz Milewski, Emily Pillmore & Mario Román (2020): Profunctor optics, a categorical update. arXiv:2001.07488.
  6. David Dalrymple (2019): Dioptics: a Common Generalization of Open Games and Gradient-Based Learners. In: Fifth Symposium on Compositional Structures (SYCO 5).
  7. Brendan Fong, David I. Spivak & Rémy Tuyéras (2019): Backprop as Functor: A compositional perspective on supervised learning. In: Logic in Computer Science (LICS 2019), pp. 1–13, doi:10.1109/LICS.2019.8785665.
  8. Bruno Gavranovi\'c (2019): Compositional Deep Learning. University of Zagreb. Available at arXiv:1907.08292..
  9. Neil Ghani, Jules Hedges, Viktor Winschel & Philipp Zahn (2018): Compositional Game Theory. In: Anuj Dawar & Erich Grädel: Logic in Computer Science (LICS 2018), pp. 472–481, doi:10.1145/3209108.3209165.
  10. Neil Ghani, Clemens Kupke, Alasdair Lambert & Fredrik Nordvall Forsberg (2018): A compositional treatment of iterated open games. Theor. Comput. Sci. 741, pp. 48–57, doi:10.1016/j.tcs.2018.05.026.
  11. Neil Ghani, Clemens Kupke, Alasdair Lambert & Fredrik Nordvall Forsberg (2019): Compositional Game Theory with Mixed Strategies: Probabilistic Open Games Using a Distributive Law. In: Applied Category Theory (ACT 2019).
  12. Jules Hedges (2016): Towards compositional game theory. Queen Mary University of London.
  13. Jules Hedges (2018): Morphisms of Open Games. In: Sam Staton: Mathematical Foundations of Programming Semantics (MFPS 2018), Electronic Notes in Theoretical Computer Science 341, pp. 151–177, doi:10.1016/j.entcs.2018.11.008.
  14. Jules Hedges (2019): The game semantics of game theory. arXiv:1904.11287.
  15. Jules Hedges (2020): Open games in Haskell. Repository at
  16. Chris Heunen & Bart Jacobs (2006): Arrows, like Monads, are Monoids. In: Mathematical Foundations of Programming Semantics (MFPS 2006), Electronic Notes in Theoretical Computer Science 158. Elsevier, pp. 219–236, doi:10.1016/j.entcs.2006.04.012.
  17. John Hughes (2000): Generalising monads to arrows. Science of Computer Programming 37(1–3), pp. 67–111, doi:10.1016/s0167-6423(99)00023-4.
  18. Pierre Hyvernat (2014): A linear category of polynomial diagrams. Mathematical Structures in Computer Science 24(1), doi:10.1017/S0960129512001016.
  19. Bart Jacobs (1998): Categorical Logic and Type Theory. Studies in Logic and the Foundations of Mathematics 141. Elsevier, doi:10.1016/S0049-237X(98)80028-1.
  20. Shin-ya Katsumata (2014): Parametric effect monads and semantics of effect systems. In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 633–645, doi:10.1145/2578855.2535846.
  21. Fosco Loregian (2019): Coend calculus. arXiv:1501.02503.
  22. Craig Pastro & Ross Street (2008): Doubles for monoidal categories. Theory and Applications of Categories 21(4), pp. 61–75.
  23. Mitchell Riley (2018): Categories of Optics. arXiv:1809.00738.
  24. Exequiel Rivas & Mauro Jaskelioff (2017): Notions of computation as monoids. J. Funct. Program. 27, pp. e21, doi:10.1017/S0956796817000132.
  25. Mario Román (2020): Comb Diagrams for Discrete-Time Feedback. arXiv:2003.06214.
  26. Michael Shulman (2008): Framed bicategories and monoidal fibrations. Theory and applications of categories 20(18), pp. 650–738.
  27. David I. Spivak (2019): Generalized Lens Categories via functors C^\voidb@x op →Cat. arXiv:1908.02202.

Comments and questions to:
For website issues: