1. S. Abramsky (1996): Retracing Some Paths in Process Algebra. In: CONCUR'96: Concurrency Theory, Lecture Notes in Computer Science 1119. Springer, pp. 1–17, doi:10.1007/3-540-61604-7_44.
  2. Samson Abramsky & Bob Coecke (2008): Categorical Quantum Mechanics. arXiv:0808.1023 [quant-ph].
  3. Steve Awodey (2006): Category Theory. Ebsco Publishing, doi:10.1093/acprof:oso/9780198568612.001.0001.
  4. John C. Baez, Brandon Coya & Franciscus Rebro (2018): Props in Network Theory. arXiv:1707.08321 [math-ph].
  5. John C. Baez & Jason Erbele (2014): Categories in Control. arXiv:1405.6881 [quant-ph].
  6. John C. Baez & Brendan Fong (2015): A Compositional Framework for Passive Linear Networks.
  7. John C. Baez & Blake S. Pollard (2017): A Compositional Framework for Reaction Networks. Reviews in Mathematical Physics 29(09), pp. 1750028, doi:10.1142/S0129055X17500283.
  8. Krzysztof Bar, Aleks Kissinger & Jamie Vicary: Globular: An Online Proof Assistant for Higher-Dimensional Rewriting. arXiv:1612.01093 [cs, math], doi:10.23638/LMCS-14(1:8)2018.
  9. Joe Bolt, Bob Coecke, Fabrizio Genovese, Martha Lewis, Dan Marsden & Robin Piedeleu (2017): Interacting Conceptual Spaces I : Grammatical Composition of Concepts. CoRR abs/1703.08314.
  10. Filippo Bonchi, Jens Seeber & Pawel Sobocinski (2018): Graphical Conjunctive Queries. In: Dan Ghica & Achim Jung: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018), Leibniz International Proceedings in Informatics (LIPIcs) 119. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp. 13:1–13:23, doi:10.4230/LIPIcs.CSL.2018.13. Available at
  11. Filippo Bonchi, PawełSobociński & Fabio Zanasi (2014): A Categorical Semantics of Signal Flow Graphs. In: Paolo Baldan & Daniele Gorla: CONCUR 2014 Concurrency Theory, Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp. 435–450, doi:10.1007/978-3-662-44584-6_30.
  12. C. Brown & G. Hutton (1994): Categories, Allegories and Circuit Design. In: Proceedings of the 9th Annual IEEE Symposium on Logic in Computer Science (LICS). IEEE Computer Society, pp. 372–381, doi:10.1109/LICS.1994.316052.
  13. Kenta Cho & Bart Jacobs (2019): Disintegration and Bayesian Inversion via String Diagrams. Mathematical Structures in Computer Science 29(7), pp. 938–971, doi:10.1017/S0960129518000488.
  14. Stephen Clark, Bob Coecke & Mehrnoosh Sadrzadeh (2008): A Compositional Distributional Model of Meaning. In: Proceedings of the Second Symposium on Quantum Interaction (QI-2008), pp. 133–140.
  15. Stephen Clark, Bob Coecke & Mehrnoosh Sadrzadeh (2010): Mathematical Foundations for a Compositional Distributional Model of Meaning. In: J. van Benthem, M. Moortgat & W. Buszkowski: A Festschrift for Jim Lambek, Linguistic Analysis 36, pp. 345–384.
  16. Bob Coecke (2005): Kindergarten Quantum Mechanics. arXiv:quant-ph/0510032, doi:10.1063/1.2158713.
  17. Bob Coecke (2019): The Mathematics of Text Structure.
  18. Bob Coecke, Giovanni de Felice, Dan Marsden & Alexis Toumi (2018): Towards Compositional Distributional Discourse Analysis. Electronic Proceedings in Theoretical Computer Science 283, pp. 1–12, doi:10.4204/EPTCS.283.1.
  19. Bob Coecke & Ross Duncan (2008): Interacting Quantum Observables. In: Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir & Igor Walukiewicz: Automata, Languages and Programming, Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 298–310, doi:10.1007/978-3-540-70583-3_25.
  20. Bob Coecke & Aleks Kissinger (2017): Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning. Cambridge University Press, doi:10.1017/9781316219317.
  21. Bob Coecke & Robert W. Spekkens (2012): Picturing Classical and Quantum Bayesian Inference. Synthese 186(3), pp. 651–696, doi:10.1007/s11229-011-9917-5.
  22. Giovanni de Felice, Konstantinos Meichanetzidis & Alexis Toumi (2019): Functorial Question Answering. arXiv:1905.07408 [cs, math], doi:10.4204/EPTCS.323.6.
  23. Giovanni de Felice & Alexis Toumi: Discopy 0.2.3 Documentation.
  24. Antonin Delpeuch (2014): Autonomization of Monoidal Categories. arXiv:1411.3827 [cs, math], doi:10.4204/EPTCS.323.3.
  25. Antonin Delpeuch & Jamie Vicary (2018): Normalization for Planar String Diagrams and a Quadratic Equivalence Algorithm. arXiv:1804.07832 [cs].
  26. Lawrence Dunn & Jamie Vicary (2019): Coherence for Frobenius Pseudomonoids and the Geometry of Linear Proofs. arXiv:1601.05372 [cs], doi:10.23638/LMCS-15(3:5)2019.
  27. François Foltz, Christian Lair & GM Kelly (1980): Algebraic Categories with Few Monoidal Biclosed Structures or None. Journal of Pure and Applied Algebra 17(2), pp. 171–177, doi:10.1016/0022-4049(80)90082-1.
  28. Brendan Fong & Michael Johnson (2019): Lenses and Learners. arXiv:1903.03671 [cs, math].
  29. Brendan Fong, David I. Spivak & Rémy Tuyéras (2017): Backprop as Functor: A Compositional Perspective on Supervised Learning, doi:10.1109/LICS.2019.8785665.
  30. Neil Ghani, Jules Hedges, Viktor Winschel & Philipp Zahn (2018): Compositional Game Theory. arXiv:1603.04641 [cs], doi:10.1145/3209108.3209165.
  31. google/jax (2020): Composable Transformations of Python+NumPy Programs: Differentiate, Vectorize, JIT to GPU/TPU, and More.
  32. Edward Grefenstette & Mehrnoosh Sadrzadeh (2011): Experimental Support for a Categorical Compositional Distributional Model of Meaning. In: The 2014 Conference on Empirical Methods on Natural Language Processing., pp. 1394–1404.
  33. Johannes Hauschild & Frank Pollmann (2018): Efficient Numerical Simulations with Tensor Networks: Tensor Network Python (TeNPy). SciPost Physics Lecture Notes, pp. 5, doi:10.21468/SciPostPhysLectNotes.5.
  34. Günter Hotz (1965): Eine Algebraisierung Des Syntheseproblems von Schaltkreisen I. Elektronische Informationsverarbeitung und Kybernetik 1, pp. 185–205.
  35. André Joyal & Ross Street (1988): Planar Diagrams and Tensor Algebra. Unpublished manuscript, available from Ross Street's website.
  36. André Joyal & Ross Street (1991): The Geometry of Tensor Calculus, I. Advances in Mathematics 88(1), pp. 55–112, doi:10.1016/0001-8708(91)90003-P.
  37. Dimitri Kartsaklis, Mehrnoosh Sadrzadeh & Stephen Pulman (2013): Separating Disambiguation from Composition in Distributional Semantics, pp. 10.
  38. Dimitri Kartsaklis, Mehrnoosh Sadrzadeh & Stephen G. Pulman (2012): A Unified Sentence Space for Categorical Distributional-Compositional Semantics: Theory and Experiments. In: COLING.
  39. Aleks Kissinger & Sander Uijlen (2019): A Categorical Semantics for Causal Structure. arXiv:1701.04732 [math-ph, physics:quant-ph], doi:10.23638/LMCS-15(3:15)2019.
  40. Aleks Kissinger & John van de Wetering (2019): PyZX: Large Scale Automated Diagrammatic Reasoning. arXiv:1904.04735 [quant-ph], doi:10.4204/EPTCS.318.14.
  41. Aleks Kissinger & Vladimir Zamdzhiev (2015): Quantomatic: A Proof Assistant for Diagrammatic Reasoning. In: Amy P. Felty & Aart Middeldorp: Automated Deduction - CADE-25, Lecture Notes in Computer Science. Springer International Publishing, pp. 326–336, doi:10.1007/978-3-319-21401-6_22.
  42. Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason Grout & Sylvain Corlay (2016): Jupyter Notebooks-a Publishing Format for Reproducible Computational Workflows.. In: ELPUB, pp. 87–90, doi:10.3233/978-1-61499-649-1-87.
  43. Jean Kossaifi, Yannis Panagakis, Anima Anandkumar & Maja Pantic (2018): TensorLy: Tensor Learning in Python. arXiv:1610.09555 [cs].
  44. Stephen Lack (2004): Composing PROPs. Theory and Applications of Categories [electronic only] 13, pp. 147–163.
  45. Yves Lafont (2003): Towards an Algebraic Theory of Boolean Circuits. Journal of Pure and Applied Algebra 184(2-3), pp. 257–310, doi:10.1016/S0022-4049(03)00069-0.
  46. Joachim Lambek (1999): Type Grammar Revisited. In: Alain Lecomte, François Lamarche & Guy Perrier: Logical Aspects of Computational Linguistics. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1–27, doi:10.1007/3-540-48975-4_1.
  47. Joachim Lambek (2001): Type Grammars as Pregroups. Grammars 4, pp. 21–39, doi:10.1023/A:1011444711686.
  48. Joachim Lambek (2008): From Word to Sentence: A Computational Algebraic Approach to Grammar. Open Access Publications. Polimetrica.
  49. S.M. Lane (1998): Categories for the Working Mathematician. Graduate Texts in Mathematics. Springer New York, doi:10.1007/978-1-4612-9839-7.
  50. F. William Lawvere (1963): Functorial Semantics of Algebraic Theories. Proceedings of the National Academy of Sciences of the United States of America 50(5), pp. 869–872, doi:10.1073/pnas.50.5.869.
  51. matplotlib (2020): Plotting with Python.
  52. Konstantinos Meichanetzidis (2020): Quantum Natural Language Processing.
  53. networkx (2020): Python Software for Complex Networks.
  54. Roman Orus (2014): A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States. Annals of Physics 349, pp. 117–158, doi:10.1016/j.aop.2014.06.013.
  55. Evan Patterson (2017): Knowledge Representation in Bicategories of Relations. arXiv:1706.00526 [cs, math].
  56. Roger Penrose (1971): Applications of Negative Dimensional Tensors. Scribd.
  57. John Power & Edmund Robinson (1997): Premonoidal Categories and Notions of Computation. Mathematical Structures in Computer Science 7(5), pp. 453–468, doi:10.1017/S0960129597002375.
  58. Anne Preller & Joachim Lambek (2007): Free Compact 2-Categories. Mathematical Structures in Computer Science 17(2), pp. 309–340, doi:10.1017/S0960129506005901.
  59. David Reutter & Jamie Vicary (2019): High-Level Methods for Homotopy Construction in Associative $n$-Categories. arXiv:1902.03831 [math], doi:10.1109/LICS.2019.8785895.
  60. Mitchell Riley (2018): Categories of Optics. arXiv:1809.00738 [math].
  61. Chase Roberts, Ashley Milsted, Martin Ganahl, Adam Zalcman, Bruce Fontaine, Yijian Zou, Jack Hidary, Guifre Vidal & Stefan Leichenauer (2019): TensorNetwork: A Library for Physics and Machine Learning. arXiv:1905.01330 [cond-mat, physics:hep-th, physics:physics, stat].
  62. P. Selinger (2010): A Survey of Graphical Languages for Monoidal Categories. New Structures for Physics, pp. 289–355, doi:10.1007/978-3-642-12821-9_4.
  63. Dan Shiebler, Alexis Toumi & Mehrnoosh Sadrzadeh (2020): Incremental Monoidal Grammars. arXiv:2001.02296 [cs].
  64. Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington & Ross Duncan (2020): Tket : A Retargetable Compiler for NISQ Devices. arXiv:2003.10611 [quant-ph].
  65. PawełSobociński, Paul W. Wilson & Fabio Zanasi (2019): CARTOGRAPHER: A Tool for String Diagrammatic Reasoning. In: CALCO 2019 139, pp. 20:1–20:7, doi:10.4230/LIPIcs.CALCO.2019.20.
  66. Statebox (2020): Exchange Format for Morphisms in Monoidal Categories.
  67. Ross Street (1996): Categorical Structures. Handbook of algebra 1, pp. 529–577.
  68. Till Tantau (2013): Graph Drawing in TikZ. In: Walter Didimo & Maurizio Patrignani: Graph Drawing, Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp. 517–528, doi:10.1007/978-3-642-36763-2_46.
  69. Stefan van der Walt, S. Chris Colbert & Gael Varoquaux (2011): The NumPy Array: A Structure for Efficient Numerical Computation. Computing in Science Engineering 13(2), pp. 22–30, doi:10.1109/MCSE.2011.37.
  70. Simon Wadsley & Nick Woods (2015): PROPs for Linear Systems. arXiv:1505.00048 [math].
  71. William Zeng & Bob Coecke (2016): Quantum Algorithms for Compositional Natural Language Processing. Electronic Proceedings in Theoretical Computer Science 221, pp. 67–75, doi:10.4204/EPTCS.221.8.

Comments and questions to:
For website issues: