1. Faris Abou-Saleh, James Cheney, Jeremy Gibbons, James McKinna & Perdita Stevens (2016): Reflections on Monadic Lenses, pp. 1–31. Springer International Publishing, doi:10.1007/978-3-319-30936-11.
  2. F. Bancilhon & N. Spyratos (1981): Update semantics of relational views. ACM Transactions on Database Systems 6(4), pp. 557–575, doi:10.1145/319628.319634.
  3. Bob Coecke (2019): The Mathematics of Text Structure. arXiv Preprint arXiv:1904.03478 [cs.CL]. Available at
  4. Bob Coecke & Aleks Kissinger (2017): Picturing Quantum Processes, 1 edition. Cambridge University Press, doi:10.1017/9781316219317.
  5. Bob Coecke & Konstantinos Meichanetzidis (2020): Meaning updating of density matrices. arXiv preprint arXiv:2001.00862 [quant-ph]. Available at
  6. Bob Coecke & Dusko Pavlovic (2007): Quantum measurements without sums. In: G. Chen, L. Kauffman & S. Lamonaco: Mathematics of Quantum Computing and Technology. Taylor and Francis, pp. 567–604, doi:10.1201/9781584889007.ch16. ArXiv:quant-ph/0608035.
  7. Bob Coecke, Mehrnoosh Sadrzadeh & Stephen Clark (2010): Mathematical Foundations for a Compositional Distributional Model of Meaning. Lambek Festschrift Linguistic Analysis 36. Available at
  8. Bob Coecke, John Selby & Sean Tull (2018): Two Roads to Classicality. EPTCS 266, pp. 104–118, doi:10.4204/eptcs.266.7.
  9. J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce & Alan Schmitt (2005): Combinators for Bi-Directional Tree Transformations: A Linguistic Approach to the View Update Problem. In: Jens Palsberg & Martín Abadi: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2005, Long Beach, California, USA, January 12-14, 2005. ACM, pp. 233–246, doi:10.1145/1040305.1040325.
  10. Stefano Gogioso (2015): Categorical Semantics for Schrödinger's Equation. arXiv Preprint arXiv:1501.06489. Available at
  11. Stefano Gogioso (2015): Monadic Dynamics. arXiv Preprint arXiv:1501.04921. Available at
  12. Stefano Gogioso (2019): A Diagrammatic Approach to Quantum Dynamics. In: Markus Roggenbach & Ana Sokolova: 8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019), Leibniz International Proceedings in Informatics (LIPIcs) 139. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp. 19:1–19:23, doi:10.4230/LIPIcs.CALCO.2019.19.
  13. James Hefford, Vincent Wang & Matthew Wilson (2020): Categories of Semantic Concepts. arXiv Preprint arXiv:2004.10741. Available at
  14. C. Heunen & J. Vicary (2019): Categories for Quantum Theory: An Introduction. Oxford Graduate Texts in Mathematics Series. Oxford University Press, doi:10.1093/oso/9780198739623.001.0001.
  15. Chris Heunen & Martti Karvonen (2016): Monads on Dagger Categories. Theory and Applications of Categories 31(35), pp. 1016–1043.
  16. Chris Heunen, Aleks Kissinger & Peter Selinger (2014): Completely positive projections and biproducts. EPTCS 171, pp. 71–83, doi:10.4204/eptcs.171.7.
  17. Mitchell Riley (2018): Categories of Optics. arXiv Preprint arXiv:1809.00738. Available at
  18. Peter Selinger (2007): Dagger Compact Closed Categories and Completely Positive Maps. Electronic Notes in Theoretical Computer Science 170, pp. 139–163, doi:10.1016/j.entcs.2006.12.018.
  19. Peter Selinger (2008): Idempotents in Dagger Categories: (Extended Abstract). Electronic Notes in Theoretical Computer Science 210, pp. 107 – 122, doi:10.1016/j.entcs.2008.04.021. Proceedings of the 4th International Workshop on Quantum Programming Languages (QPL 2006).

Comments and questions to:
For website issues: