1. P. Baldan, A. Corradini, H. Ehrig & R. Heckel (2001): Compositional Modeling of Reactive Systems Using Open Nets. In: K. G. Larsen & M. Nielse: Proc. of CONCUR 2001, LNCS 2154. Springer, pp. 502–518, doi:10.1007/3-540-44685-0_34.
  2. E. Biermann, H. Ehrig, C. Ermel, K. Hoffmann & T. Modica (2009): Modeling Multicasting in Dynamic Communication-based Systems by Reconfigurable High-level Petri Nets. In: Proc. of IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2009). IEEE, pp. 47–50, doi:10.1109/VLHCC.2009.5295303.
  3. B. Braatz, H. Ehrig, K. Gabriel & U. Golas (2010): Finitary M-Adhesive Categories. In: H. Ehrig, A. Rensink, G. Rozenberg & A. Schürr: Proc. ICGT 2010, LNCS 6372. Springer, pp. 234–249, doi:10.1007/978-3-642-15928-2_16.
  4. B. Courcelle (1997): The Expression of Graph Properties and Graph Transformations in Monadic Second-Order Logic. In: Grzegorz Rozenberg: Handbook of Graph Grammars. World Scientific, pp. 313–400.
  5. H. Ehrig, K. Ehrig, C. Ermel & U. Prange (2010): Consistent Integration of Models based on Views of Meta Models. Formal Aspects of Computing 22 (3), pp. 327–345, doi:10.1007/s00165-009-0127-6.
  6. H. Ehrig, K. Ehrig, U. Prange & G. Taentzer (2006): Fundamentals of Algebraic Graph Transformation. EATCS Monographs in Theor. Comp. Science. Springer.
  7. H. Ehrig & K. Gabriel (2011): Transformation of Algebraic High-Level Nets and Amalgamation of Processes with Applications to Communication Platforms. Festschrift in Honour of Manfred Broy's 60th Birthday. International Journal of Software and Informatics 5(1-2,Part1).
  8. H. Ehrig, U. Golas & F. Hermann (2010): Categorical Frameworks for Graph Transformation and HLR Systems based on the DPO Approach. Bulletin of the EATCS 102, pp. 111–121.
  9. H. Ehrig, A. Habel, J. Padberg & U. Prange (2006): Adhesive High-Level Replacement Systems: A New Categorical Framework for Graph Transformation. Fundamenta Informaticae 74(1), pp. 1–29.
  10. H. Ehrig, K. Hoffmann, J. Padberg, C. Ermel, U. Prange, E. Biermann & T. Modica (2008): Petri Net Transformations. In: Petri Net Theory and Applications. I-Tech Education and Publication, pp. 1–16, doi:10.5772/5310.
  11. G. Engels, R. Heckel, G. Taentzer & H. Ehrig (1997): A Combined Reference Model- and View-Based Approach to System Specification. International Journal of Software Engineering and Knowledge Engineering 7(4), pp. 457–477.
  12. R. B. France, I. Ray, G. Georg & S. Ghosh (2004): Aspect-oriented approach to early design modelling. IEE Proceedings - Software 151(4), pp. 173–186, doi:10.1049/ip-sen:20040920.
  13. A. Habel & K.-H. Pennemann (2005): Nested constraints and application conditions for high-level structures. In: H.-J. Kreowski, U. Montanari, F. Orejas, G. Rozenberg & G. Taentzer: Formal Methods in Software and Systems Modeling, LNCS 3393. Springer, pp. 294–308, doi:10.1007/978-3-540-31847-7_17.
  14. A. Habel & K.-H. Pennemann (2009): Correctness of high-level transformation systems relative to nested conditions. Mathematical Structures in Computer Science 19, pp. 1–52, doi:10.1017/S0960129508007202.
  15. T. Heindel (2010): Hereditary Pushouts Reconsidered. In: H. Ehrig, A. Rensink, G. Rozenberg & A. Schürr: Proc. ICGT 2010, LNCS 6372. Springer, pp. 250–265, doi:10.1007/978-3-642-15928-2_17.
  16. S. Jurack & G. Taentzer (2010): A Component Concept for Typed Graphs with Inheritance and Containment Structures. In: H. Ehrig, A. Rensink, G. Rozenberg & A. Schürr: Proc. ICGT 2010, LNCS 6372. Springer, pp. 187–202, doi:10.1007/978-3-642-15928-2_13.
  17. S. Lack & P. Sobociński (2004): Adhesive Categories. In: Igor Walukiewicz: Proc. FOSSACS 2004, LNCS 2987. Springer, pp. 273–288, doi:10.1007/978-3-540-24727-2_20.
  18. S. Lack & P. Sobociński (2005): Adhesive and quasiadhesive categories. ITA 39(3), pp. 511–545, doi:10.1051/ita:2005028.
  19. J. de Lara, R. Bardohl, H. Ehrig, K. Ehrig, U. Prange & G. Taentzer (2007): Attributed Graph Transformation with Node Type Inheritance. TCS 376(3), pp. 139–163, doi:10.1016/j.tcs.2007.02.001.
  20. A. Rensink (2004): Representing First-Order Logic Using Graphs. In: H. Ehrig, G. Engels, F. Parisi-Presicce & G. Rozenberg: Proc. ICGT 2004, LNCS 3256. Springer, pp. 319–335, doi:10.1007/978-3-540-30203-2_23.
  21. H. Schölzel, H. Ehrig, M. Maximova, K. Gabriel & F. Hermann (2012): Satisfaction, Restriction and Amalgamation of Constraints in the Framework of M-Adhesive Categories: Extended Version. Technical Report 2012/1. TU Berlin, Fak. IV. Available at

Comments and questions to:
For website issues: