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The International Mathematical Olympiad (IMO) is perhaps the most celebrated mental competition
in the world and as such is among the greatest grand challenges for Artificial Intelligence (AI). The
IMO Grand Challenge, recently formulated, requires to build an AI that can win a gold medal in the
competition. We present some initial steps that could help to tackle this goal by creating a public
repository of mechanically checked solutions of IMO Problems in the interactive theorem prover
Isabelle/HOL. This repository is actively maintained by students of the Faculty of Mathematics,
University of Belgrade, Serbia within the course ”Introduction to Interactive Theorem Proving”.

1 Introduction

The International Mathematical Olympiad (IMO) is the World Championship Mathematics Competition
for High School (pre-college) students and is held annually in a different country. It has gradually
expanded to over 100 countries from 5 continents. The competition consists of six problems, which
pupils solve during two days (each day they are given three problems and 4.5 hours to work on them).
Each problem is worth seven points for the maximum total score of 42 points. The problems are chosen
from various areas of secondary school mathematics, generally classifiable as geometry, number theory,
algebra, and combinatorics. Problems are expressed with no a priori knowledge of higher mathematics
such as calculus and analysis, and solutions are often elementary. Few days before the contest, the
International Jury chooses the Olympiad problems. The Jury chooses six problems from the Shortlist,
a set of around 30 original, beautiful, and difficult problems submitted by mathematicians from around
the world. Fully solved shortlists of recent competitions are available on the official IMO web-site
(http://www.imo-official.org/), while the solutions of all shortlisted problems from 1959-2009
are available in The IMO Compendium [1].

IMO is the oldest of International Science Olympiads and is perhaps the most known mental compe-
tition in the world. As such it is relevant as one of the greatest grand challenges for Artificial Intelligence
(AI). Recently, a group of scientists gathered around the theorem prover Lean, has formulated the IMO
Grand Challenge1: Build an AI that can win a gold medal in the competition. To remove ambiguity
about the scoring rules, the authors of the challenge propose the formal-to-formal (F2F) variant of the
IMO: the AI receives a formal representation of the problem (in the Lean Theorem Prover), and needs
to emit a formal (i.e. machine-checkable) proof. A proposal for encoding IMO problems in Lean is
currently being developed.

There are already some automated theorem provers capable of solving some specific type of prob-
lems. For example, algebraic or semi-algebraic theorem provers are very successful at solving specific
classes of geometry problems. However, such provers rarely produce formal proofs and they do not

1http://imo-grand-challenge.github.io/
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offer, synthetic, human-understandable proofs and justifications (although algebraic proofs can be me-
chanically checked by analyzing proof certificates [3]). Another example of a successful technique for
automated solving of geometry problems is the so-called Area Method [4]. Such methods are usually
highly specialized for specific classes of problems (e.g., only to some classes of geometric problems),
and thus they are very far from general AI.

In this paper we present formalizations of several IMO problem solutions, created within the course
“Introduction to interactive theorem proving” at the Faculty of Mathematics, University of Belgrade.
Currently problems in algebra, combinatorics and number theory are formalized (geometry problems are
skipped, since their formalization requires a rich background theory of high-school synthetic geometry,
that is not available in Isabelle/HOL at the moment). All formalized solutions and problem statements
(including the three solutions presented in this paper) are publicly available in the GitHub repository
http://github.com/filipmaric/IMO. We hope that manually constructed proofs and their state-
ments could help better understand the challenges in formalizing IMO solutions and in the long run lead
to their better automation.

2 Isabelle/HOL/Isar

In this section we give a brief overview of terms and notions of the Isabelle/Isar proof language used
in this paper. This will give the reader only a very rough overview of the syntax used in the rest of the
paper, and we refer him to seek more details in the official Isabelle/HOL documentation, preferably [5].

Isabelle/HOL is an incarnation of a simply typed higher-order logic. The type system of Isabelle/HOL
is very close to functional programming languages. Base types have the usual names: bool, nat, int, real.
Type annotations are denoted by ::. For example, 3 :: int is an integer constant 3 (numerals are supported
by default). Type nat is an inductive type of natural numbers in HOL and all values are generated by
a constant zero (0) and a constructor (Suc). Statements about natural numbers are usually proved by
induction. Set types are also supported. The type ′a set denotes the type of sets with elements of type
′a (e.g., nat set denotes sets of natural numbers). Set of natural numbers less than n, {0,1, . . . ,n−1}, is
denoted by {0..<n}; set of natural numbers less than or equal to n, {0,1, . . . ,n}, is denoted by {0..n};
set of natural numbers greater than n is denoted by {n+1..}. Function types are denoted by ′a⇒′ b. For
example, function f from integer to real numbers is denoted by f :: nat⇒ int.

Terms are built from variables and constants by applying functions and operators. Functions are
curried and function application is written in prefix form (as in most functional languages). Terms can
also use some advanced mathematical notation. For example ∑ k=0..n. f k denotes the sum f (0) +
f (1)+ . . .+ f (n). The same sum can also be denoted by ∑ k≤ n. f k. Formulae (terms of type bool)
are built using the usual boolean connectives (∧, ∨, ¬, −→,←→), and quantifiers ∀x. P x and ∃x. P x.
Isabelle/HOL also supports the indefinite description operator SOME x. P x, describing any element that
satisfies the property P (assuming such element exists) and the definite description operator THE x. P x
describing the unique element that satisfies the property P (assuming such element exists).

The language Isar is used for writing readable, textbook-like structured theories and proofs. Defi-
nitions are introduced by the keyword definition, followed by the name of the constant or the function
being defined, its type and a defining equality. Recursive functions are defined using the keywords prim-
rec and fun. Keywords lemma and theorem are used to state the statement being proved. Statements
usually have the form:

lemma
fixes 〈variables〉

http://github.com/filipmaric/IMO
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assumes 〈assumptions〉
shows 〈goal〉

Types of variables used in the statement (or in the proof) can be stated upfront with the keyword fixes
(Isabelle supports type-inference so variables need not always be explicitly declared). Assumptions can
be stated after the assumes keyword, and conclusions must be stated after the shows keyword.

Lemmas and proof rules can also be specified in Isabelle’s meta-logic syntax:∧
x1, . . . , xn. J assumption1, . . . , assumptionk K =⇒ goal

Each lemma and theorem must be followed by a proof. Proofs can be either automatic or interactive,
structured proofs.

Automated proofs are specified by a keyword by followed by the name of the automated proof
method used (most often these are simp, auto, force, blast, metis, smt, presburger) and possibly by
additional parameters.

Structured proofs in Isar are written within a proof-qed block. Opening keyword proof can be
followed by the proof method that is applied in the beginning of the proof. Proofs by case analysis are
specified using the method cases (e.g., proof (cases "n > 0")). Proofs by induction are specified using
the method induction (e.g., proof (induction n rule: less_induct)). If method is not specified, the system
automatically chooses the first method (to be applied). If the proof starts by proof-, then no method is
being applied.

A typical proof introduces a chain of intermediate statements. Intermediate statements in the proof
are given using the keyword have, and the final statement (the goal of the current proof) is given using
the keyword show. This gives the following proof structure.

proof-
have "statement1" 〈proof〉
have "statement2" 〈proof〉
...
have "statementk" 〈proof〉
show ?thesis 〈proof〉

qed

Here ?thesis abbreviate the goal of the current proof-block. Each statement introduced by key word have
or show must have its own proof (that, again can be specified either using by or proof-qed block). If
automated provers (invoked by the keyword by) need to use additional facts, those facts must be explicitly
”pumped into the proof context”. There are many ways this can be done (for simplicity, we shall use only
few). The simplest one is to use the keyword using after the statement or the keyword from before the
statement, followed by the fact that is being inserted into the proof context (and therefore made available
to the automated prover). If needed, facts can be named (just beforehand they are stated) and those names
can be used instead of explicitly writing the fact enclosed by cartouches 〈 . . . 〉. If the facts that are used
are part of the assumptions of the current lemma, they can be accessed using the abbreviation assms.

Usually, intermediate statements are chained and the next statement is proved using the previous one.
This gives the following proof structure.

proof-
have "statement1" 〈proof〉
then have "statement2" 〈proof〉
...
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then show ?thesis 〈proof〉
qed

Another often encountered proof structure is when several intermediate statements are used to prove
the final goal. In Isar, this can be specified using the combination moreover-ultimately.

proof-
have "statement1" 〈proof〉
moreover have "statement2" 〈proof〉
...
moreover have "statementk" 〈proof〉
ultimately show ?thesis 〈proof〉

qed

Proofs often include chains of equations or inequalities. These are supported in Isar using keywords
also-finally.

proof-
have "t1 = t2" 〈proof〉
also have "... = t3" 〈proof〉
...
also have "... = tk" 〈proof〉
finally show ?thesis 〈proof〉

qed

The last proof, after the keyword finally has the fact t1 = tk pumped into its proof context. Instead of
a chain of equalities, a chain of inequalities or a mixed chain of equalities and inequalities can be used.

3 Example Problems

In this section we shall describe formalizations of three characteristic problems — one in algebra, one in
combinatorics and one in number theory.

3.1 A Problem in Algebra

As an example of an algebraic proof that is very straightforward to formalize, we will describe the
problem A1 from 20062. Since this proof is very short (both in informal and in formal language), we
shall show it in much detail.

We will first present the official solution to this problem, and then we will analyze the formulation of
this problem in Isabelle/Isar form:

Problem 1 (2006 A2) The sequence of real numbers a0, a1, a2, . . . is defined recursively by

a0 =−1,
n

∑
k=0

an−k

k+1
= 0 for n≥ 1.

Show that an > 0 for n≥ 1.

2The problem statement and its solution are described in the official competition bulletin http://www.imo-official.
org/problems/IMO2006SL.pdf.

http://www.imo-official.org/problems/IMO2006SL.pdf
http://www.imo-official.org/problems/IMO2006SL.pdf
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Solution. The proof goes by induction. For n = 1 the formula yields a1 = 1/2. Take n ≥ 1, assume
a1, . . . ,an > 0 and write the recurrence formula for n and n+1, respectively as

n

∑
k=0

ak

n− k+1
= 0 and

n+1

∑
k=0

ak

n− k+2
= 0.

Subtraction yields

0 = (n+2)
n+1

∑
k=0

ak

n− k+2
− (n+1)

n

∑
k=0

ak

n− k+1
= (n+2)an+1 +

n

∑
k=0

(
n+2

n− k+2
− n+1

n− k+1

)
ak.

The coefficient of a0 vanishes, so

an+1 =
1

n+2

n

∑
k=1

(
n+1

n− k+1
− n+2

n− k+2

)
ak =

1
n+2

n

∑
k=1

k
(n− k+1)(n− k+2)

ak.

The coefficients of a1, . . . ,an are all positive. Therefore, a1, . . . ,an > 0 implies an+1 > 0.

Writing the statement in the formal language is very straightforward (the sequence an is modeled by
a function that maps natural indices to real values).

theorem IMO_2006_SL_A2:
fixes a :: "nat⇒ real"
assumes "a 0 = -1" "∀ n ≥ 1. (∑ k ≤ n. a (n - k) / (k + 1)) = 0"
assumes "n ≥ 1"
shows "a n > 0"

Note that the application of the division operator implicitly casts the natural number k+1 to real.
In the official solution it is stated that induction is used, but it is not explicitly stated what induction

principle is used. A careful examination of the official proof reveals that complete (strong) induction
must be used. In the official proof, it is shown that an+1 > 0 holds, assuming that ak > 0 holds for all
1≤ k ≤ n. In Isabelle/HOL, the strong induction principle is given by the rule less_induct. All variables
are universally quantified.3

(
∧

x. (
∧

y. y < x =⇒ P y) =⇒ P x) =⇒ P a

This rule is used in the proof of the theorem.

. . .
shows "a n > 0"
using 〈n ≥ 1〉

proof (induction n rule: less_induct)
case (less n)
show ?case

...
qed

In formal proof, to show that a n > 0 holds for arbitrary n≥ 1, it suffices to show that a n > 0 holds
for arbitrary n ≥ 1, under the assumption that for any 1 ≤ k < n it holds that a k > 0. Therefore, many

3A more faithful formulation of the less_induct rule would be (
∧

x. (
∧

y. y < x =⇒ ?P y) =⇒ ?P x) =⇒ ?P ?a. In Isabelle,
once the theorem is proved, the object logic variables are lifted into schematic variables. For readability reasons, in this paper
we will assume implicit universal quantification.
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indices in our formal proof will be shifted by one from the indices in the official, informal proof (since
in formal proof we show that a n > 0, while informal proof shows that an+1 > 0).

The proof then distinguishes the base case (n = 1) and the inductive step (when n > 1).

show ?case
proof cases

assume n = 1
. . .

next
assume n 6= 1
. . .

qed

The induction base is quite easily discharged. The informal proof just states ”For n = 1 the formula
yields a1 = 1/2”, and this is quite directly formalized.

assume "n = 1"
have "a 1 = 1/2" using assms by auto
then show ?thesis using 〈n = 1〉 by simp

Note that a 1 = 1/2 follows automatically from the theorem assumptions (a0 =−1 and ∑
n
k=0

an−k
k+1 = 0,

denoted by assms), and this shows the goal a n > 0 (denoted by ?thesis), since in this case it holds that
n = 1.

As usual, the inductive step is much harder. The informal proof goes as follows. ”Take n≥ 1, assume
a1, . . . ,an > 0 and write the recurrence formula for n and n+1, respectively as

n

∑
k=0

ak

n− k+1
= 0 and

n+1

∑
k=0

ak

n− k+2
= 0.

Subtraction yields

0 = (n+2)
n+1

∑
k=0

ak

n− k+2
− (n+1)

n

∑
k=0

ak

n− k+1
.”

Formalization follows this quite faithfully (except that indices are shifted by one).

have "(∑ k < n. a k / (n - k)) = 0"
using assms(2)[of "n - 1"] 〈n > 1〉 sum.nat_diff_reindex[of "λ k. a k / (n - k)" "n"]
by simp

moreover have "(∑ k < n + 1. a k / (n + 1 - k)) = 0"
using assms(2)[of "n"] 〈n > 1〉 sum.nat_diff_reindex[of "λ k. a k / (n + 1 - k)" "n + 1"]
by simp

ultimately have "(n + 1) * (∑ k < n + 1. a k / (n + 1 - k)) - n * (∑ k < n. a k / (n - k)) = 0"
by simp

The proof steps use the lemma sum.nat_diff_reindex, already available in Isabelle/HOL:

(∑ i < n. g (n - Suc i)) = (∑ i < n. g i)
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It’s use in the informal proof is only implicit (sum re-indexing is considered fully trivial).
The informal proof continues by giving the equality between the difference of two sums with the

expression:

(n+2)an+1 +
n

∑
k=0

(
n+2

n− k+2
− n+1

n− k+1

)
ak.

This is also done in the formal proof, except that indices are again off by one.

then have "(n + 1) * a n = - (∑ k < n. ((n + 1) / (n + 1 - k) - n / (n - k)) * a k)"
by (simp add: algebra_simps sum_distrib_left sum_subtractf)

then have "(n + 1) * a n = (∑ k < n. (n / (n - k) - (n + 1) / (n + 1 - k)) * a k)"
by (simp add: algebra_simps sum_negf[symmetric])

The first proof step uses various algebraic simplifications (contained in the collection of theorems
called algebra_simps) and the following two properties of sums (sum_distrib_left and sum_subtractf):

r * (∑ n ∈ A. f n) = (∑n∈A. r * f n) (∑x∈A. f x - g x) = (∑x∈A. f x) - (∑x∈A. g x)

The second proof step uses various algebraic simplifications (collection of theorems algebra_simps)
and the following property of sums (sum_negf):

(∑x∈A. - f x) = - (∑x∈A. f x)

Note that although this formal proof is essentially the same as the informal proof, it is a bit more
verbose. Some intermediate steps had to be specified and proved using several lemmas already available
in Isabelle/HOL. Without the use of intermediate steps, automated provers in Isabelle were not able to
directly prove the final goal.

The informal proof continues: ”The coefficient of a0 vanishes, so

an+1 =
1

n+2

n

∑
k=1

(
n+1

n− k+1
− n+2

n− k+2

)
ak =

1
n+2

n

∑
k=1

k
(n− k+1)(n− k+2)

ak.

The coefficients of a1, . . . ,an are all positive. Therefore, a1, . . . ,an > 0 implies an+1 > 0”.
The formal proof roughly follows this.

also have "... = (∑ k ∈ {1..<n}. (n / (n - k) - (n + 1) / (n + 1 - k)) * a k)"
using 〈n > 1〉
by (subst sum_remove_zero, auto)

It is easily automatically deduced that the coefficient of a0 is n/(n− 0)− (n+ 1)/(n+ 1− 0) = 0.
However, it was necessary to formulate, and to prove, a separate lemma for isolating the first member of
the sum.

lemma sum_remove_zero:
fixes n :: nat
assumes "n > 0"
shows "(∑ k < n. f k) = f 0 + (∑ k ∈ {1..<n}. f k)"
using assms
by (simp add: atLeast1_lessThan_eq_remove0 sum.remove)
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Next, in the informal proof it trivially holds that the sum is positive, since the coefficients of a1, . . . ,an

are all positive. But in the formal proof it is proved that the sum is positive by proving that all its members
are positive. This is given by the Isabelle/HOL rule sum_pos.

Jfinite I; I 6= {};
∧

i. i ∈ I =⇒ 0 < f iK =⇒ 0 < (∑ x ∈ I. f x)

Applying this rule requires proving it’s three assumptions (separated by the word next).

also have "... > 0"
proof (rule sum_pos)

show "finite {1..<n}" by simp
next

show "{1..<n} 6= {}" using 〈n > 1〉 by simp
next

fix i
assume "i ∈ {1..<n}"
show "(n / (n - i) - (n + 1) / (n + 1 - i)) * a i > 0" (is "?ci * a i > 0")
proof-

have "a i > 0" using less 〈i ∈ {1..<n} 〉 by simp
moreover have "?ci > 0"
proof-

have "?ci = i / ((n - i) * (n + 1 - i))" using 〈i ∈ {1..<n}〉 by (simp add: field_simps of_nat_diff)
then show ?thesis using 〈i ∈ {1..<n}〉 by simp

qed
ultimately show ?thesis by simp

qed

The only non-trivial part in this proof is proving that the coefficient ?ci of a i is non-negative (the
first step of the third assumption). This is done essentially in the same way as in the informal proof —
two fractions are subtracted, and reduced to a common fraction with a numerator and denominator that
are obviously positive. To show that each a i is positive, the induction hypothesis (denoted by less) is
used.

The proof finishes by noting that we have proved that (n+1) · (a n) is positive, and that, since n+1 is
positive, so must also be a n (the last proof is found by the Sledgehammer tool and uses an SMT solver).
This step is implicit in informal proof.

finally have "(n + 1) * (a n) > 0" .
then show ?thesis by (smt mult_nonneg_nonpos of_nat_0_le_iff)

3.2 A Problem in Combinatorics

As an example of a problem that has a very short and elegant informal solution, but which is hard to
formalize we show the problem C1 from 20174.

Problem 2 (2017 C1) A rectangle R with odd integer side lengths is divided into small rectangles with
integer side lengths. Prove that there is at least one among the small rectangles whose distances from
the four sides of R are either all odd or all even.

4The problem statement and its solution are described in the official competition bulletin http://www.imo-official.
org/problems/IMO2017SL.pdf.

http://www.imo-official.org/problems/IMO2017SL.pdf
http://www.imo-official.org/problems/IMO2017SL.pdf
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The first major challenge is to give a formal statement of the problem. Although at first glance one
might think that division must form a rectangular grid (as shown on the left picture in Figure 1), more
general tilings are allowed (as shown on the right picture in Figure 1).

We shall assume that a coordinate system is introduced so that the lower left corner of the big rect-
angle is in its origin. Each rectangle will be determined by four non-negative integers (x1,x2,y1,y2):
coordinates of its left, right, bottom and top line. Unit squares are indicated by checkerboard pattern,
so our big rectangle can be represented by the quadruple (0,17,0,11). For a rectangle to be valid (non-
empty) it must hold that x1 < x2 and that y1 < y2.

Figure 1: Tiling of a rectangle

We formalize this as follows (since all coordinates are positive, instead of integers we use natural
numbers). The validity condition could have been encoded in the rectangle type, but that would require
using a bit more advanced features of Isabelle/HOL, so we did not go in that direction.

type_synonym rect = "nat × nat × nat × nat"

fun valid_rect :: "rect⇒ bool" where "valid_rect (x1, x2, y1, y2)←→ x1 < x2 ∧ y1 < y2"

Each unit square in a rectangle is characterized by its two integer coordinates (of its lower left corner).
Each valid rectangle contains a set of unit squares that can be obtained by their coordinates as a Cartesian
product of two discrete integer intervals.

type_synonym square = "nat × nat"
fun squares :: "rect⇒ square set" where "squares (x1, x2, y1, y2) = {x1..<x2} × {y1..<y2}"

We define a tiling (a subdivision) of a rectangle R to be a set of non-overlapping rectangles that
cover R. Two rectangles overlap if they share a common square. A set of rectangles is non-overlapping
if no two different rectangles overlap. A set of rectangles cover a given rectangle R if the union of all
squares is equal to the set of squares of R. We formalize this as follows.

definition overlap :: "rect⇒ rect⇒ bool" where "overlap r1 r2←→ squares r1 ∩ squares r2 6= {}"
definition non_overlapping :: "rect set⇒ bool" where

"non_overlapping rs←→ (∀ r1 ∈ rs. ∀ r2 ∈ rs. r1 6= r2 −→ ¬ overlap r1 r2)"

definition cover :: "rect set⇒ rect⇒ bool" where "cover rs r←→ (
⋃

(squares ‘ rs)) = squares r"

definition tiles :: "rect set⇒ rect⇒ bool" where "tiles rs r←→ cover rs r ∧ non_overlapping rs"

Finally, we can give the formal statement of the theorem.

theorem IMO_2017_SL_C1:
fixes a b :: nat
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assumes "odd a" "odd b" "tiles rs (0, a, 0, b)" "∀ r ∈ rs. valid_rect r"
shows "∃ (x1, x2, y1, y2) ∈ rs. let ds = {x1 - 0, a - x2, y1 - 0, b - y2}

in (∀ d ∈ ds. even d) ∨ (∀ d ∈ ds. odd d)"

The informal proof is very short and elegant.
”Let the width and height of R be odd numbers a and b. Divide R into ab unit squares and color

them green and yellow in a checkered pattern. Since the side lengths of a and b are odd, the corner
squares of R will all have the same color, say green. Call a rectangle (either R or a small rectangle)
green if its corners are all green; call it yellow if the corners are all yellow, and call it mixed if it has both
green and yellow corners. In particular, R is a green rectangle.”

Several definitions are introduced to formalize this passage, and one simple lemma is proved.

fun green :: "square⇒ bool" where "green (x, y)←→ (x + y) mod 2 = 0"
fun yellow :: "square⇒ bool" where "yellow (x, y)←→ (x + y) mod 2 6= 0"

fun corners :: "rect⇒ square set" where
"corners (x1, x2, y1, y2) = {(x1, y1), (x1, y2-1), (x2-1, y1), (x2-1, y2-1)}"

definition green_rect :: "rect⇒ bool" where "green_rect r←→ (∀ c ∈ corners r. green c)"
definition yellow_rect :: "rect⇒ bool" where "yellow_rect r←→ (∀ c ∈ corners r. yellow c)"
definition mixed_rect :: "rect⇒ bool" where "mixed_rect r←→¬ green_rect r ∧ ¬ yellow_rect r"

lemma
assumes "odd a" "odd b"
shows "green_rect (0, a, 0, b)"
unfolding green_rect_def by auto

The informal proof continues as follows. ”We will use the following trivial observations.

• Every mixed rectangle contains the same number of green and yellow squares;

• Every green rectangle contains one more green square than yellow square;

• Every yellow rectangle contains one more yellow square than green square.”

This is where things start to get harder. Unfortunately, these observations seem far from trivial, when
it comes to their formal proofs. Giving their formal statement requires following two definitions.

definition green_squares :: "rect⇒ square set" where
"green_squares r = {(x, y) ∈ squares r. green (x, y)}"

definition yellow_squares :: "rect⇒ square set" where
"yellow_squares r = {(x, y) ∈ squares r. yellow (x, y)}"

Stating the observations is now straightforward (we only show the middle one).

lemma green_rect:
assumes "valid_rect (x1, x2, y1, y2)" "green_rect (x1, x2, y1, y2)"
shows "card (green_squares (x1, x2, y1, y2)) = card (yellow_squares (x1, x2, y1, y2)) + 1"

There are two main approaches to prove this lemma. The first approach requires explicitly calculating
the number of green and the number of yellow squares in a green rectangle. The other approach requires
to establish a bijective mapping between all yellow squares and all but one green square in a rectangle.
We have taken the first approach. The number of green and yellow squares in a rectangle depends on
the rectangle dimensions, but also on whether the first square (the one with the coordinates (0,0)) is a
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green or yellow square. We will divide the set of squares (in a rectangle) into two halves in the following
manner. Denote the total number of squares by k. If k is even, those halves will be equal, and if k is
odd, one half will be greater by one square than the other half. In both cases, the number of squares
of the half that contains the starting square is equal k/2 rounded upwards (by the ceiling function) and
the number of squares of the other half is equal k/2 rounded downwards (by the floor function). This is
formalized by the following lemmas (the expression k div 2 rounds k/2 downwards, and (k + 1) div 2
rounds it upwards).

lemma
assumes "green (x1, y1)" "valid_rect (x1, x2, y1, y2)"
shows "card (yellow_squares (x1, x2, y1, y2)) = ((x2 - x1) * (y2 - y1)) div 2"

"card (green_squares (x1, x2, y1, y2)) = ((x2 - x1) * (y2 - y1) + 1) div 2

Only the first part of this lemma (the number of green squares) needed to be explicitly proved, while
the number of yellow squares is easily calculated as the difference between the total number of squares
and the number of green squares. An analogous lemma for a yellow starting square (x1,y1) is proved
(again not directly, but by reducing it to the present lemma for a green starting square, by translating the
whole rectangle by one square to the right).

The correctness of the formula for the number of green squares of a rectangle that starts on a green
square is proved by induction on the height of a rectangle (y2− y1−1). Both in the base case and in the
inductive step, a lemma that characterizes the number of green squares in a single row is used (it covers
both the case of a green and a yellow starting square in that row).

lemma
assumes "x1 < x2"
shows "card {(x, y). x1 ≤ x ∧ x < x2 ∧ y = y0 ∧ green (x, y)} =

(if green (x1, y0) then (x2 - x1 + 1) div 2 else (x2 - x1) div 2)"

This lemma is also proved by mathematical induction, this time over the length of the row (x2− x1−1).
In both inductive proofs the set of squares of the rectangle is given as a disjoint union of squares of
a smaller rectangle (for which we know the number of green squares by induction hypothesis) and a
degenerated rectangle (a row, i.e., a single square) for which we directly calculate the number of green
squares (depending on the color of its first square).

With those lemmas in place, the number of green and yellow squares in a green rectangle can easily
be connected, by also noting that both dimensions of that rectangle must be odd, so its total number of
squares is odd. The case of a yellow rectangle is fully analogous, while the mixed rectangle must have
an even number of squares that is evenly split between green and yellow squares.

The informal proof continues as follows. ”The rectangle R is green, so it contains more green unit
squares than yellow unit squares. Therefore, among the small retangles, at least one is green.”

This is formalized by the following theorem (proved for any green rect).

lemma
assumes "green_rect (x1, x2, y1, y2)" "valid_rect (x1, x2, y1, y2)"

"tiles rs (x1, x2, y1, y2)" "∀ r ∈ rs. valid_rect r"
shows "∃ r ∈ rs. green_rect r"

The proof is by contradiction (we will show only the proof outline). If the negation of the thesis is
assumed, then all tiles are either yellow or mixed, so, by the previous lemmas, they have less or equal
green than yellow squares.
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proof (rule ccontr)
assume "¬ ?thesis"
then have "∀ r ∈ rs. yellow_rect r ∨ mixed_rect r" using mixed_rect_def

〈proof〉
then have "∀ r ∈ rs. card (green_squares r) ≤ card (yellow_squares r)"

〈proof〉

Therefore, the total number of green squares in the big rectangle is less or equal to the number of
yellow squares in the big rectangle, which is contradictory to earlier lemma about green rectangles. This
proof goes as follows.

have "card (green_squares (x1, x2, y1, y2)) ≤ card (yellow_squares (x1, x2, y1, y2))"
proof-

have "card (green_squares (x1, x2, y1, y2)) = card (
⋃

(green_squares ‘ rs))" 〈proof〉
also have "... = (∑ r ∈ rs. card (green_squares r))" 〈proof〉
also have "... ≤ (∑ r ∈ rs. card (yellow_squares r))" 〈proof〉
also have "... = card (

⋃
(yellow_squares ‘ rs))" 〈proof〉

also have "... = card (yellow_squares (x1, x2, y1, y2))" 〈proof〉
finally show ?thesis .

qed
then show False using ‘green_rect (x1, x2, y1, y2)‘ ‘valid_rect (x1, x2, y1, y2)‘ green_rect by auto

Showing that the cardinality of the union is the sum of cardinalities of its members is not trivial, since
it requires proving that the union is disjoint and that all involved sets are finite. For example, the outline
of the second subproof in the previous proof is the following.

have "card (
⋃

(green_squares ‘ rs)) = (∑ r ∈ rs. card (green_squares r))"
proof (rule card_UN_disjoint)

show "finite rs" 〈proof〉
show "∀ r ∈ rs. finite (green_squares r)" by auto
show "∀ r1 ∈ rs. ∀ r2 ∈ rs. r1 6= r2 −→ green_squares r1 ∩ green_squares r2 = {}" 〈proof〉

qed

To show that the tiling rs must contain a finite number of rectangles we show that each tile must
be inside the big rectangle, and that there are only finitely many rectangles that can be inside a given
rectangle (rs is the subset of {x1..x2} × {x1..x2} × {y1..y2} × {y1..y2}, which is finite). The disjointness
of sets of green squares follows from the fact that the tiles are non-overlapping.

The informal proof finishes as follows. ”Let S be such a small green rectangle, and let its distances
from the sides of R be x, y, u and v. The top-left corner of R and the top-left corner of S have the same
color, which happens if and only if x and u have the same parity. Similarly, the other three green corners
of S indicate that x and v have the same parity, y and u have the same parity, i.e. x, y, u and v are all odd
or all even.”

This is formalized as follows.

definition inside :: "rect⇒ rect⇒ bool" where "inside ri ro←→ squares ri ⊆ squares ro"

lemma
assumes "valid_rect (xi

1, xi
2, yi

1, yi
2)" "green_rect (xi

1, xi
2, yi

1, yi
2)" "green_rect (xo

1, xo
2, yo

1, yo
2)"

"inside (xi
1, xi

2, yi
1, yi

2) (xo
1, xo

2, yo
1, yo

2)"
shows "let ds = {xi

1 - xo
1, xo

2 - xi
2, yi

1 - yo
1, yo

2 - yi
2} in (∀ d ∈ ds. even d) ∨ (∀ d ∈ ds. odd d)"
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Interestingly, this lemma can be proved almost fully automatically. Even though its informal proof
is given in more detail than previous proofs that required much longer formal proofs.

3.3 A Problem in Number Theory

As an example of a problem in number theory we show the formalization of the problem N1 from 20175.
The formalization follows the official solutions, but reveals many gaps typical for informal proofs.

Problem 3 (2017 N1) The sequence a0, a1, a2, . . . of positive integers satisfies

an+1 =

{√
an, if

√
an is an integer

an +3, otherwise
for every n≥ 0

Determine all values of a0 > 1 for which there is at least one number a such that an = a for infinitely
many values of n.

The answer is ”all positive multiples of 3” and we can easily formalize the problem statement. A
slight problem is that sqrt in Isabelle/HOL is defined only for real numbers, so to avoid using reals we
define the square root of naturals.

definition sqrt_nat :: "nat⇒ nat" where
"sqrt_nat x = (THE s. x = s * s)"

theorem IMO_2017_SL_N1:
fixes a :: "nat⇒ nat"
assumes "∀ n. a (n + 1) = (if (∃ s. a n = s * s) then sqrt_nat (a n) else (a n) + 3)" and "a 0 > 1"
shows "(∃ A. infinite n. a n = A)←→ a 0 mod 3 = 0"

The informal proof begins as follows. ”Since the value of an+1 only depends on the value of an, if
an = am for two different indices n and m, then the sequence is eventually periodic. So we look for the
values of a0 for which the sequence is eventually periodic.” This is formulated by the following definition
and a series of lemmas.

definition eventually_periodic :: "(nat⇒ ’a)⇒ bool" where
"eventually_periodic a←→ (∃ p > 0. ∃ n0. ∀ n ≥ n0. a (n + p) = a n)"

lemma
fixes a :: "nat⇒ ’a"
assumes "∀ n ≥ n0. a (n + p) = a n"
shows "∀ k. a (n0 + k * p) = a n0"

〈proof〉

lemma
fixes a :: "nat⇒ ’a"
assumes "∀ n. a (n + 1) = f (a n)" "a n1 = a n2"
shows "∀ k. a (n1 + k) = a (n2 + k)"

〈proof〉

lemma

5The problem statement and its solution are available in the official competition bulletin http://www.imo-official.
org/problems/IMO2017SL.pdf.

http://www.imo-official.org/problems/IMO2017SL.pdf
http://www.imo-official.org/problems/IMO2017SL.pdf
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fixes a :: "nat⇒ ’a"
assumes "∀ n. a (n + 1) = f (a n)" "n1 < n2" "a n1 = a n2"
shows "eventually_periodic a"

〈proof〉

lemma
fixes a :: "nat⇒ ’a"
assumes "∀ n. a (n + 1) = f (a n)"
shows "(∃ A. infinite {n. a n = A})←→ eventually_periodic a"

〈proof〉

The first two lemmas are proved by induction (on the value k). The third lemma is proved by applying
the second lemma to prove that the sequence periodically repeats after n2−n1 elements, starting on the
index n1. The proof of the last lemma is split into two directions. In the first direction, we assume that
there exists an infinite set of indexes that contains elements with the same value. In that case, there must
be two different values n1 and n2 such that a n1 = a n2, so the sequence is eventually periodic by the
third lemma. In the second direction of the proof, we assume that the sequence is periodic, then by the
first lemma, the sequence attains the value an0 on the infinite set of indices n0 + k · p.

The informal proof then continues by a series of claims and their proofs.
Claim 1. ”If an ≡ −1(mod 3), then, for all m > n, am is not a perfect square. It follows that the

sequence is eventually strictly increasing, so it is not eventually periodic.
Proof. A square cannot be congruent to−1 modulo 3, so an ≡−1(mod 3) implies that an is not a square,
therefore an+1 = an +3 > an. As a consequence, an+1 ≡ an ≡−1(mod 3), so an+1 is not a square either.
By repeating the argument, we prove that, from an on, all terms of the sequence are not perfect squares
and are greater than their predecessors, which completes the proof.”

First we formalize the notion of being eventually increasing, give its equivalent characterization
(proved by induction) and prove that a strictly increasing sequence cannot be periodic (the proof by
contradiction is very simple since eventually strictly increasing and periodic sequence would have two
values an and an+p for which it would have to hold both an = an+p and an < an+p).

definition eventually_increasing :: "(nat⇒ nat)⇒ bool" where
"eventually_increasing a←→ (∃ n0. ∀ n ≥ n0. a n < a (n + 1))"

lemma
shows "eventually_increasing a←→ (∃ n0. ∀ i j. n0 ≤ i ∧ i < j −→ a i < a j)"

〈proof〉

lemma
assumes "eventually_increasing a"
shows "¬ eventually_periodic a"

〈proof〉

We need to formulate and prove that ”A square cannot be congruent to -1 modulo 3”. There is no
need to use negative numbers since an ≡−1(mod 3) is equivalent to an ≡ 2(mod 3).

lemma
fixes s :: nat
shows "(s * s) mod 3 6= 2"

〈proof〉
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Claim1 establishes several facts, but the only ”takeaway”, i.e., the only fact that is used later in the
proof is that if an≡−1(mod 3), then the sequence is not eventually periodic. Since Claim1 is useful only
for the proof of the main theorem, we do not formulate it as a general lemma, but instead we formulate
it as a named intermediate fact within the proof of the main theorem:

have Claim1: "∃ n. a n mod 3 = 2 =⇒¬ eventually_periodic a"

The informal proof gives a delicate connection between the fact that elements are not full squares and
that the sequence is strictly increasing. The language construction ”by repeating the argument” indicates
that the proof is essentially based on mathematical induction. Therefore, to prove the previous claim we
prove the following statement (by induction on the value m−n).

have "∀ m ≥ n. (@ s. a m = s * s) ∧ a m mod 3 = 2 ∧ a (m + 1) = a m + 3" 〈proof〉

From this it easily follows that the sequence is eventually increasing, and therefore, by a previous
lemma, not eventually periodic.

The informal proof continues with a second claim.
Claim 2. ”If an 6≡ −1(mod 3) and an > 9 then there is an index m > n such that am < an.

Proof. Let t2 be the largest perfect square which is less than an. Since an > 9, t is at least 3. The first
square in the sequence an,an +3,an +6, . . . will be (t +1)2,(t +2)2,(t +3)2, therefore there is an index
m > n such that am ≤ t +3 < t2 < an, as claimed.”

This claim is very easily stated (again as a named intermediate fact within the main proof).

have Claim2: "∀ n. a n mod 3 6= 2 ∧ a n > 9 −→ (∃ m > n. a m < a n)"

However, formal proof of this claim is very involved, since the informal proof is very imprecise. First
we define the value of ?t, and prove its basic properties. It requires showing that the set ?T of all perfect
squares less than a n is finite and non-empty (it contains the number 3 so it must be non-empty).

let ?T = "{t | t. t*t < a n}" and ?t = "Max ?T"
have "?t ≥ 3" "?t2 < a n" "a n ≤ (?t + 1)2" 〈proof〉

The claim ”The first square in the sequence an,an + 3,an + 6, . . . will be (t + 1)2,(t + 2)2,(t + 3)2”
was very hard to prove formally. The statement is formalized as follows.

have "∃ k. a (n + k) ∈ {(?t+1)2, (?t+2)2, (?t+3)2}"

Note that we used an+k instead of an + 3k. Although that is essentially the same, since these two se-
quences coincide until a perfect square occurs, the sequences an,an +3,an +6, . . . and an,an+1,an+2, . . .
must be formally linked (and this is going to be done within the proof). To prove the given statement, we
first prove the following number-theoretic fact.

have "a n mod 3 = (?t+1)2 mod 3 ∨ a n mod 3 = (?t+2)2 mod 3 ∨ a n mod 3 = (?t+3)2 mod 3"

Since it is assumed that a n mod 3 is not 2, it must be either 0 or 1. The proof of the fact then follows
from the next general lemma (whose proof goes by a case analysis of the value of t mod 3).

lemma
fixes t :: nat
shows "{(t + 1)2 mod 3, (t + 2)2 mod 3, (t + 3)2 mod 3} = {0, 1}"

〈proof〉
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The sought value a (n+k) that belongs to the set {(?t+1)2, (?t+2)2, (?t+3)2} will be equal to the first
element of the sequence (?t+1)2, (?t+2)3, (?t+3)2 that is congruent to a n modulo 3. We prove this in
the form of the following auxiliary claim.

fix i
assume "i > 0" and "∀ i’. 0 < i’ ∧ i’ < i −→ a n mod 3 6= (?t + i’)2 mod 3" and

"a n mod 3 = (?t + i)2 mod 3"
have "∃ k. a (n + k) = (?t + i)2"
〈proof〉

The sought index ?k is ((?t + i)2 - a n) div 3. We prove that an+?k will be equal to (?t + i)2, and that it
will be the first perfect square in the sequence an, an+1, . . . This follows from the following fact:

have "∀ k’ ≤ ?k. a (n + k’) = a n + 3 * k’"

The proof goes by induction on k′. The base case is trivial. In the inductive step we need to show that
the equality holds for k′+ 1 ≤?k under the assumption that it holds for k′ <?k. It suffices to prove that
a (n+k’) is not a full square. We prove that by contradiction. If it were a full square, since k’+1 ≤ ?k =
((?t + i)2 - a n) div 3 it would hold that 3 * (k’ + 1) ≤ (?t + i)2 - a n, i.e., that a (n+k’) = a n + 3 * k’
≤ (?t + i)2 - 3. Therefore, a(n+ k′) would be a full square strictly between ?t2 and (?t + i)2, which is
impossible by our assumption that ∀ i’. 0 < i’ ∧ i’ < i −→ a n mod 3 6= (?t + i’)2 mod 3. Since a (n+k’)
is not a full square, it holds that a (n+k’+1) = a (n+k’) + 3 = a n + 3*k + 3 = a n + 3*(k+1). This
finishes the inductive proof.
Therefore, a (n + ?k) = a (n + 3*?k) and a (n + 3*?k) = (?t + i)2 (this holds directly by the definition of
?k = ((?t + i)2 - a n) div 3). So there indeed exists k such that a (n + k) = (?t + i)2, which finishes the
proof of the axuiliary claim.
The statement ∃ k. a (n + k) ∈ {(?t+1)2, (?t+2)2, (?t+3)2} is then proved by case analysis of the fact
a n mod 3 = (?t+1)2 mod 3 ∨ a n mod 3 = (?t+2)2 mod 3 ∨ a n mod 3 = (?t+3)2 mod 3, applying the
auxiliary claim for i = 1, i = 2, and i = 3. From that it easily follows that ∃ k. a (n + k + 1) ∈ {?t+1,
?t+2, ?t+3}, so a (n + k + 1) ≤ ?t + 3 < ?t2 < a n, finishing he formal proof of Claim2.

The next claim in the informal proof is the following.
Claim 3. ”If an ≡ 0 (mod 3), then there is an index m > n such that am = 3.

Proof. First we notice that, by the definition of the sequence, a multiple of 3 is always followed by another
multiple of 3. If an ∈ {3,6,9} the sequence will eventually follow the periodic pattern 3,6,9,3,6,9, . . ..
If an > 9, let j be an index such that a j is equal to the minimum value of the set {an+1,an+2, . . .}. We
must have a j ≤ 9, otherwise we could apply Claim2 to a j and get a contradiction on the minimality
hypothesis. It follows that a j ∈ {3,6,9}, and the proof is complete.”

By analyzing the informal proof we note that the result for the case when an ≤ 9 is also applied
within the case an > 9. Therefore, it is wise to prove that case as the following sub-claim.

have Claim3_a: "∀ n. a n mod 3 = 0 ∧ a n ≤ 9 −→ (∃ m > n. a m = 3)"

It is easy to prove by using the recursive definition of a and direct calculations, except one little detail.
If a n mod 3 = 0, and a n ≤ 9 then n could be 0, 3, 6, or 9. In the case 3, 6, and 9, the claim then easily
follows by direct calculations using the definition of the sequence a. This is not the case if a n = 0. To
prove that this case is impossible, we must again use induction to prove.

have "∀ n. a n> 1"
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This proof uses the hypothesis a 0 > 1, and the fact that the square root of a number that is strictly greater
than 1 must itself be a number strictly greater than 1.

Claim3 is then stated as follows:

have Claim3: "∀ n. a n mod 3 = 0 −→ (∃ m > n. a m = 3)"

Its proof starts by case analysis on whether a n≤ 9. The case when a n≤ 9 is already covered by the
sub-claim. If a n > 9, we follow the informal proof by taking the minimal element of the set a ‘ {n+1..}
(it is the image of the set {n+1..} under the function a). Unfortunately, we cannot use the operator Min
to find its minimum, since it is intended only for finite sets. An arbitrary infinite set does not need to have
a minimal element. However, this is the set of natural numbers, and one of the characteristic features of
natural numbers is that they are well-ordered i.e., that each non-empty set contains a minimal element.
Isabelle/HOL supports the binder LEAST that determines the least element in a well-ordered set and we
will use it to define the value ?m.

let ?m = "LEAST x. x ∈ (a ‘ {n+1..})"
let ?j = "SOME j. j > n ∧ a j = ?m"

Note the use of the indefinite description operator SOME in the definition of ?j. This is justified by the
fact that ?m is a member of a ‘ {n+1..}. The proof continues by case analysis on a ?j ≤ 9. If that holds,
then Claim3 follows by Claim3_a. Otherwise we apply Claim2. To use it we must establish that a ?j mod
3 6= 2. This follows from the first sentence in the informal proof: ”First we notice that, by the definition
of the sequence, a multiple of 3 is always followed by another multiple of 3”. We formalize this by the
following statement:

have "∀ n n’. a n mod 3 = 0 ∧ n ≤ n’ −→ a n’ mod 3 = 0"

Now we use induction on n’ - n in the proof. This proof also requires proving and using the following
simple number-theoretic lemma.

lemma
fixes x :: nat
shows "(x * x) mod 3 = 0←→ x mod 3 = 0"
〈proof〉

Since a n mod 3 = 0, it must hold that a ?j mod 3 = 0 6= 2, so Claim2 can be used to obtain m > ?j such
that a m < a ?j, but this clearly contradicts the definition of ?j.

Finally, the informal proof gives the last claim.
Claim 4. ”If an ≡ 1 (mod 3), then there is an index m > n such that am ≡−1 (mod 3).

Proof. In the sequence, 4 is always followed by 2 ≡ −1 (mod 3), so the claim is true for an = 4. If
an = 7, the next terms will be 10, 13, 16, 4, 2, . . . and the claim is also true. For an ≥ 10, we again
take an index j > n such that a j is equal to the minimum value of the set {an+1,an+2, . . .}, which by the
definition of the sequence consists of non-multiples of 3. Suppose a j = 1 (mod 3). Then we must have
a j ≤ 9 by Claim2 and the minimality of a j. It follows that a j ∈ {4,7}, so am = 2 < a j for some m > j,
contradicting the minimality of a j. Therefore, we must have a j ≡−1 (mod 3).”

Similar as we did for the Claim3, first we prove the following sub-claim.

have Claim4_a: "∀ n. a n mod 3 = 1 ∧ a n ≤ 9 −→ (∃ m > n. a m mod 3 = 2)"
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The proof is again using direct calculations, the recursive definition of the sequence a and earlier estab-
lished fact that ∀ n. a n > 1.

Claim4 is then formulated as follows.

have Claim4: "∀ n. a n mod 3 = 1 −→ (∃ m > n. a m mod 3 = 2)"

The formal proof of this claim is very similar to the formalization of Claim3, so we omit the details.
Formalizing the sentence ”the set {an+1,an+2, . . .}, which by the definition of the sequence consists of
non-multiples of 3”, required proving the following fact (by induction on n’ - n).

have "∀ n n’. a n mod 3 6= 0 ∧ n ≤ n’ −→ a n’ mod 3 6= 0"

Once all four claims are formally proved, the theorem itself can be proved. Informal proof goes as
follows.

Main theorem. ”It follows from the previous claims that if a0 is a multiple of 3 the sequence will
eventually reach the periodic pattern 3,6,9,3,6,9, . . .; if a0 ≡ −1 (mod 3) the sequence will be strictly
increasing; and if a0 ≡ 1 (mod 3) the sequence will eventually be strictly increasing. So the sequence
will eventually be periodic if and only if, a0 is a multiple of 3.”

We show the full formal proof of this part (note that Claim3 is used in the first direction, while the
second direction uses only Claim1 and Claim4, while Claim2 is only a lemma used with the proof of
Claim3 and Claim4, and not in the main proof).

show ?thesis
proof

assume "a 0 mod 3 = 0"
then have "eventually_periodic a" using Claim3 two_same_periodic[OF assms(1)] by simp
then show "∃ A. infinite {n. a n = A}" using infinite_periodic[OF assms(1)] by simp

next
assume "∃ A. infinite {n. a n = A}"
then have "eventually_periodic a" using infinite_periodic[OF assms(1)] by simp
{

assume "a 0 mod 3 = 1"
then obtain m where "a m mod 3 = 2" using Claim4 by auto
then have False using Claim1 〈eventually_periodic a〉 by force

}
moreover
{

assume "a 0 mod 3 = 2"
then have False using Claim1 〈eventually_periodic a〉 by force

}
ultimately show "a 0 mod 3 = 0" by presburger

qed

4 Educational aspects

The repository of formalized IMO problems is created with an ITP course at Faculty of Mathematics,
University of Belgrade. It is an elective course at the fourth, final year of undergraduate studies. All
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students enrolled already passed courses in mathematical logic, functional programming, and many other
classic mathematical topics during their previous studies (algebra, analysis, combinatorics, numerical
mathematics etc.), so they already have quite a good understanding of all main concepts underlying ITP.
The course is taught 14 weeks with 2 hours of lecture and 3 hours of exercises per week, and covers
formalization of mathematics and elements of software verification in Isabelle/HOL. Grading is done
by several on-site tests with small and simple problems, and a larger project, done off-site (at home),
scoring up to 40% of the total points. Formalizing an IMO problem or a similar problem given at Serbian
national level competitions is given as one possible project assignment (students can also verify some
elementary algorithm or formalize several theorems from some introductory mathematics course).

Each student selects a problem and formalizes it. No collaboration between students is allowed, but
when students get stuck, they can get help from the teachers “free of charge” (they do not lose any points
for asking help). The course is new and has been given only twice, but our experience shows that most
students manage to finish their project (some on their own, and some after several rounds of guidance
by the teachers). Of course, it is very important that students are given informal proofs in advance, since
IMO problems, although very elementary, are very challenging and hard to solve. Developed formal
proofs are usually not the most elegant ones, as students often introduce definitions and lemmas that
already exist in the vast Isabelle/HOL libraries and often give long, manual Isar proofs for statements
that could be proved automatically if advanced automated proof methods are setup correctly. They are not
penalized for this, but are sometimes required to ”polish” their proofs by following detailed guidelines
given by the teachers.

Formalizing IMO problem solutions is a very good task for practicing interactive theorem proving
and we advocate that they should be used in courses of formal theorem proving.

• Although they are very hard, problems are usually formulated in elementary terms of high-school
mathematics and do not require any knowledge of advanced mathematical concepts. Therefore, all
students of mathematics and computer science can easily understand them. Official IMO solutions
do not use any advanced theorems and proof steps are justified by using elementary statements that
are already available in most proof assistants.

• Formalizing a problem solution usually requires several hours. Isar proofs are usually around
several hundred lines of code (the shortest proof we formalized was 95 LOC, while the longest
was 2024 LOC, although that depends on the code indenting style). Therefore, such problems
should not be used in limited-time on-site exams, but they are perfect for homework and project
assignments.

• A rich repository of manually formalized solutions might offer a good ground for developing and
training methods for automated solving of IMO problems (and hopefully contribute to the IMO
grand challenge).

Although IMO competitors are high-school pupils, we do not yet have any experience in formalizing
IMO solutions with that population. We suppose that teaching use of proof assistants would be too
demanding. On the other hand, we think that analyzing existing problem formalizations could help the
most advanced competitors in recognizing the subtlest proof details and mastering the highest level of
mathematical precision and rigor, that could help reaching maximal scores in competitions.
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5 Related Work

Relationship between informal proofs and their formal counterparts is often discussed in the literature.
One example, is Dana Scott’s Foreword of the Freek Wiedijk’s seminal paper comparing 17 theorem
provers [8]. Scott showed examples of proofs done by changing problem representation (e.g., algebraic
and geometric) and showed examples of proofs that involve augmenting the original problem with sup-
porting elements (e.g., auxiliary points and lines introduced in a geometric configuration), that make the
original problem significantly easier to solve. Scott argued that although these changes are often easily
realized and understood by humans, computers on the other hand have much difficulty in finding such
proofs. A popular informal proof method is given by the so-called ”Proofs Without Words”, where the
property is intuitively described by a convenient figure (e.g., there are many such diagrams that illustrate
the Pythagorean theorem). One famous problem with such a proof is the calisson puzzle6. Although
”the proof” is very intuitive (and indeed remarkable), E. W. Dijkstra criticized that it is an example of
”an elaborate nonproof” (since key arguments are not formally stated nor proved, a slight change of the
problem could yield ”the proof” incorrect).

Although the body of formalized mathematics is growing every day, examples of formalized IMO
solutions or similar types of problems are scarce: Manuel Eberl has formalized three out of six problems
from IMO 2019 (Q1, Q4, and Q5) [2], and several problems statements have been formally encoded in
Lean (http://github.com/IMO-grand-challenge/formal-encoding).

One library of formalized solutions of high-school problems is presented by Pham, Bertot and Nar-
box [6]. They developed a dynamic geometry proving tool for interactive proving for high-school
students and used a specific axiomatic system adapted to this task using the notion of vectors. Sana
Stojanović-Ðurd̄ević (the second author of the current paper), proposed a method for proving high-
school problems in geometry by using coherent logic and a set of automated theorem provers to fill-in
the gaps in the manually generated proof outlines [7]. They used a semi-formal TPTP-like language.
The method has been successfully applied to a collection of geometric problems from Serbian high-
school textbooks in geometry. Generated proofs are automatically translated to Coq and Isabelle/HOL
and formally verified.

6 Conclusions and Further Work

In this paper we have presented Isabelle/HOL formalization of several official IMO problem solutions.
The formalization is created within the Interactive Theorem Proving course on Faculty of Mathematics,
University of Belgrade, and is available in a repository http://github.com/filipmaric/IMO. Our
experience shows that most final year undergraduate students at the end of the course can successfully
cope with such assignments, if they are given enough time, guidance and support by the teachers.

Our experience shows that the difference between formal and informal proof significantly varies,
mainly depending on the category of the problem. Problems in algebra usually have very rigorous infor-
mal proofs, that are easy to formalize. Unlike those, problems in combinatorics usually give a very rough
proof outline, that requires significant effort to formalize. In many cases a significant effort is required
even to give a precise problem statement (problems in combinatorics usually require many introductory
definitions). The proofs in number theory are somewhere in between (depending on the problem).

6http://nau.edu/wp-content/uploads/sites/145/NAU-High-School-Math-Day-The-Calissons-Problem-fall-19.
pdf

http://github.com/IMO-grand-challenge/formal-encoding
http://github.com/filipmaric/IMO
http://nau.edu/wp-content/uploads/sites/145/NAU-High-School-Math-Day-The-Calissons-Problem-fall-19.pdf
http://nau.edu/wp-content/uploads/sites/145/NAU-High-School-Math-Day-The-Calissons-Problem-fall-19.pdf
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If human competitors were to generate formal proofs, the competition would be much harder for
them (and definitely unsuitable for high-school pupils). Our analysis shows that many official solutions
(that would certainly be graded by maximal scores) are quite far from fully formal and often resort to
obviousness and intuition. Therefore, in our opinion, the current formulation of the IMO grand challenge
is extremely unfair for the artificial intelligence. We suggest to split the challenge in two parts:

• Informal challenge, that would require automated provers only to generate high-level proof out-
lines, that can be manually judged, the same way as pupils solutions are judged.

• Formal challenge, that would require provers to generate machine checkable proofs given high-
level proof outlines of various granularity (the coarsest one being only the formal problem state-
ment).

Our repository is open and we hope that a wider community of contributors will be formed. Everyone
is invited to contribute either by formalizing new IMO problem statements, or by providing alternative
solutions to existing problems. We assume that many existing formal proofs could be shortened and
better automated and we invite contributors to provide such proofs.
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