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This work discusses an approach to teach to mathematicians the importance and effectiveness of the
application of Interactive Theorem Proving tools in their specific fields of interest. The approach
aims to motivate the use of such tools through short courses. In particular, it is discussed how, using
as case-of-study algebraic notions and properties, the use of the proof assistant Prototype Verification
System PVS is promoted to interest mathematicians in the development of their mechanized proofs.

1 Introduction

Previous academic experiences at our institutions pointed out the relevance of teaching foundations of
formal methods to Computer Science (CS) professionals [2]. In principle, what is expected is that when
CS students learn the foundations of logical deduction in an introductory course in Computational Logic,
they also develop technical capabilities to apply logical deduction and inductive methods to verify cor-
rectness properties of their programs through the use of proofs assistants. In the case of the institution
of the first author, this is formulated in the teaching methodology for the course on Computational Logic
offered to third-semester students in CS, who have a minimal background in programming, discrete math-
ematics, algebra and calculus [4]. The aim of the course is that CS students develop skills and expertise
in this relevant application of mathematical deduction through the performance of verification exercises
of correction of simple sorting algorithms (see the NASA PVS library theory sorting, developed by
members of our group, at https://github.com/nasa/pvslib).

In this work, we show how we coined out a completely different teaching approach to motivate
mathematicians to involve in their efforts in theorem proofs the routine of application of Interactive The-
orem Proving tools (ITPs). The discussion is supported by a PVS theory used to give short tutorials
to mathematicians with this aim and available at http://ayala.mat.unb.br/publications.html.
The tutorial deals mainly with notions and theorems of algebra in which the authors have some ex-
pertise (see NASA PVS libraries of Formal Developments on algebra and groups available at https:
//github.com/nasa/pvslib and [25, 29]).

1.1 Motivation

We aim to establish an adequate teaching approach to present to mathematicians the power of ITPs by
showing how these tools can contribute to understanding mathematical theories deeply by analyzing all
the particularities and formal requirements to specify and prove mathematical notions and properties.
The target audience is, researchers and graduate students in all areas of mathematics well-trained in pen-
and-paper proofs, who are not expected to be truly interested in time-consuming investments in a long
training in areas such as Mathematical Logic, Proof Theory, and Logical Deduction, but who may be
truly interested in profiting from the benefits of such powerful computational tools.
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Usually, researchers and students from the target audience are capable to use computational tools for
numerical and symbolic computations (e.g., Mathematica, Octave, Matlab, Maple) as well as mathemat-
ical editors (e.g., TEX, LATEX), Internet search engines, and professional communication tools (Zoom,
Skype, Teams, etc.), among others, but they are neither confident nor necessarily happy-users of such
systems. Therefore, to involve them in dealing with another kind of computational tool as a proof assis-
tant, the benefits for improving the precision and quality of their professional work (i.e., mathematical
proofs) should be made explicit quickly.

The main benefits of proof assistants should be diligently illustrated to convince such an audience of
the importance of following a formal discipline for proving and checking theorems:

1. The importance of specifying consistently mathematical notions respecting the dependency of each
notion on previously specified notions, and without allowing any omission;

2. The necessity of fulfilling formally all required cases, avoiding any informal or intuitive argumen-
tation, in the formalization of pen-and-paper proofs;

3. The importance of using such technologies to certify the correctness and quality of mathematical
proofs.

With this in mind, an eight-hour tutorial using the proof assistant PVS has been developed. The
given material briefly introduces the proof engine of the proof assistant presenting the mathematical
background, indeed, Gentzen Sequent Calculus and Induction, just mentioning the existence of associ-
ated research fields such as Proof Theory in which proof assistants are based. But the emphasis of the
tutorial is on illustrating, considering classical fields of mathematics such as analysis, algebra, and ge-
ometry, how an ITP as PVS may be applied to fully specify basic concepts and formalize non necessarily
elementary theorems of these fields.

In this paper we illustrate the proposed tutoring methodology that essentially follows two steps of in-
creasing precision: initially, motivating the application of the ITP to follow the logical reasoning involved
in well-known proofs of popular mathematical theorems and then, focusing on algebra, illustrating how
proofs might be fully formalized. All that is done without emphasizing the deductive underground for-
malisms such as Gentzen Calculus, Higher-Order deduction, and construction of inductive schemata, but
just focusing on the technical aspect of the application of the ITP to prove their theorems of interest.

1.2 A Few Related Works

Initially, the tutorial provides an overview of PVS by highlighting aspects of its specification language
and explaining the Sequent Calculus in which the proof engine of PVS is based, namely, Calculus à
la Gentzen, besides to present examples where PVS has been successfully used both in academic and
industrial environments. There is no innovation in such an approach, the emphasis on the target audience
has been applied in several courses on formal methods. In addition to our course on Computational
Logic for CS students previously mentioned, other approaches to teach formal methods to different
audiences have been proposed. Restricting the discussion to a few and recently reported approaches that
are focused on fulfilling quickly the specific interests of the attendants, we can mention the course on
Deductive Verification in Why3 by Sandrine Blazy at the Université Rennes 1, to train undergraduate
students to develop their own correctness proofs of non-trivial sorting and searching algorithms [7]; the
course taught at the École Nationale Supérioure d’Informatique pour L’Industrie et L’Entrepise, as part
of the Software Engineering curriculum, by Catherine Dubois et al, in which students develop skills on
formal methods [11]; and, the course by Kristin Yvonne Rozier prepared for the Aerospace Engineering
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departments at Iowa State University and the University of Cincinnati, to train attendants to look at a
verification question and identify what formal methods and tools are applicable to check safety-critical
systems [27]. It is interesting to stress Catherine Dubois et al’s position (in [11]) ratifying the importance
of the effectiveness of the teaching approach to meet the specific demands of the target audience (in our
case Mathematicians, and their case, CS/Engineers):

“Students are strongly focused on the direct applicability of the knowledge they are taught, and
they are not all going to pursue a professional career in the development of critical systems. Our
experience shows that students can gain confidence in formal methods when they understand
that, through a rigorous mathematical approach to system specification, they acquire knowledge,
skills and abilities that will be useful in their professional future.”

Some other considerations that we share, and that although evident are very relevant when learning
formal methods, were also pointed out by Bayer et al in [6], to whom we give special attention. Ac-
cording to this interesting report by undergraduate students from Jacobs University Bremen about their
beginner’s experience trying to formalize mathematical theorems: it is relevant to start from knowing
the main features of the ITP to be used; having programming experience is not necessarily a plus; it is
relevant to start from knowing the chosen ITP and what it indeed is; including ITP in the curricula in
fields such as Engineering and Mathematics is not feasible and tutorials may be a better approach to reach
the interest of these professionals and researchers; starting from formalizing simple theorems is better
than proposing very ambitious tasks; being aware of all details of the pen-and-paper proofs is important
to transfer them to the ITP; diminishing the grade of automation at the beginning, is more fruitful than
using the full automation power of a proof assistant.

1.3 Organization

Section 2 illustrates how the use of ITPs is motivated through reasoning about classical proofs of popular
theorems in different fields of mathematics; Section 3 presents how the relevance of ITPs is illustrated by
tutoring full formalizations of notions of group theory and theorems about cyclic, torsion and symmetric
groups in the HO predicate calculus; Finally, Section 4 discusses the extent to which the authors believe
this approach reach the proposed objectives.

2 Motivating the Use of ITPs

The first step to interest mathematicians in the application of ITPs needs to be very simple but motivating.
Then, our approach proposes the development of deduction exercises that are based almost on axiom-
atizations allowing mathematicians to follow the reasoning involved in well-known proofs of relevant
mathematical results. For an interesting diversity of mathematicians, it is also important the develop-
ment of examples from several fields. In this section, some of such examples are discussed in which
almost only predicate deduction and elementar type theory is applied using the proof assistant PVS.

2.1 Algebra - Propositional Deductions on Groups

This example uses just propositional deduction and deals with proofs based on axioms and properties
about symmetric, cyclic, and torsion groups. These properties are very familiar for advanced under-
graduate, graduate in Mathematics and mathematicians (e.g. see textbooks in abstract algebra such
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as [13], [22] or [21]). The objective of such an example is just introducing mathematicians to the ele-
ments of the ITP tool. Using such an example, we explain the environments of the proof assistant, in
which specifications are given and proofs are executed. This includes a quick start on the syntax of the
specification language, basic types, and the mechanics of the deductive engine, which for the case of
PVS are a functional language and sequent calculus, respectively.

Propositional variables for Cyclic, Abelian, Symmetric, and finite degree (FiniteDegree)
groups are specified. Also, a propositional variable for symmetric groups of degree greater than two
is given, nGT2. Cyclic groups contain a generator y such that for each element x in the group, there exists
an integer i such that x = yi; in Abelian groups the binary group operation, ∗, is commutative. The sym-
metric group of degree n is given by the set of n-permutations (bijective functions on the set {1, . . . ,n})
with neutral element given by the identity function and binary operator given by functional composition.
A group is said to be of finite degree if for all x in the group there exists a natural n such that xn is the
neutral element. Indeed, the granularity of a group as a structure G = 〈S,∗,e〉, where S is a non-empty
set with a binary associative function ∗ with neutral element e, and such that ∗ allows inverses (i.e., for
all x ∈ S there exists y such that x∗ y = y∗ x = e), is not specified in this example but will be given in the
next step of the tutoring approach, where full formalizations are provided.

Initially, some axioms specifying well-known properties are given.

Ax01 : AXIOM Cyclic => Abelian

Ax02 : AXIOM Symmetric_n AND nGT2 => NOT Abelian

Ax03 : AXIOM FiniteDegree <=> Torsion

Ax04 : AXIOM Finite => FiniteDegree

Ax05 : AXIOM NOT Finite <=> Infinite

Ax06 : AXIOM Abelian AND Torsion <=> AbelTorsion

And after that, simple propositional (well-know) consequences of these axioms are proposed to
present the specification and proof environments of the ITP. For instance, the first conjecture below
is a consequence of the first and second axiom; the second, of the third and fourth axioms, and so on.

Pr01 : CONJECTURE Symmetric_n AND Cyclic => NOT nGT2

Pr02 : CONJECTURE Finite => Torsion

Pr03 : CONJECTURE Cyclic AND Finite => AbelTorsion

Pr04 : CONJECTURE NOT Torsion => Infinite

In particular, in PVS, AXIOMS may be also called CONJECTURES that may be both promoted to
LEMMAS once proofs are completed.

The discussion at this point includes providing information about the existence and importance
of the field of proof theory and about the relation between PVS propositional proof commands and
Gentzen’s sequent rules; namely, PVS proof commands as (flatten) and (split) versus Gentzen
rules as (L∧),(R∨) and (R→) and, (R∧),(L∨) and (L→), respectively (see e.g., Chapter 4 in [4] or
slides that accompany the tutorial “Interactive Proving Mathematical Theorems” available at http:
//ayala.mat.unb.br/Summer_UnB_2020). Also, at this point, it is relevant to explain how axioms,
lemmas, and conjectures can be invoked or charged as antecedent formulas of the goal sequent using
PVS commands as (lemma) and (rewrite).

Besides, it is important to clarify to the attendants the limitations of the propositional language used
in such an example explaining that the expressiveness of the language and logical system of the ITP
would be enough to provide precise specifications of all required notions and properties and to complete
all holes in the proofs. For doing that, additional elements in the language such as quantifiers may be

http://ayala.mat.unb.br/Summer_UnB_2020
http://ayala.mat.unb.br/Summer_UnB_2020
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discussed letting clear how one could, for example, specify (and formalize) with precision the axiom
Ax01 above:

∃y ∈ G : ∀x ∈ G : ∃i ∈ Z : x = yi︸ ︷︷ ︸ ⇒ ∀u,v ∈ G : u∗ v = v∗u︸ ︷︷ ︸
Cyclic Abelian

Also, it would be of interest to discuss elements such as induction that will be required to formalize
the intuitive and simple pencil-and-paper proof of this property; essentially, the observation below.

∃i, j : u = y j,v = yi⇒ yi ∗ y j = yi+ j = y j+i = y j ∗ yi

2.2 Analysis - a Topological Proof of Infinitude of Primes

Probably, the most well-known proof of the infinitude of primes is the one presented in Elements IX and
attributed to Euclid, but here we chose an elegant proof about this fact by using a topological argumen-
tation due to Fürstenberg [14]. In the following, we will explain Fürstenberg’s proof and how his lines
of reasoning may be specified and formalized to lead the attendants to easily conclude. A detailed and
readable explanation of such proof is available in Chapter 1 of [1].

Firstly, we consider sets of the form {a+n ·b | n∈Z}, where a and b are integer numbers with b > 0.
The elements of each such set provide an infinite arithmetic progression from a with period b. Sets that
may be given in such a form satisfy the predicate add cyclic?. In PVS, add cyclic?(N) if and only
if N is of type set[int] and N = {a+n ·b | n : int}, for a and b of respective types int and posnat.

A topology consisting of open sets that are (possibly infinite) unions of such integer sets is given:
open?(X) if and only if X is the union of sets that satisfy the predicate add cyclic?, given by the
predicate Union add cyclics?. In this topology, any non-empty open set is infinite, and complements
of open sets are closed, and vice versa, as expected.

Also, finite intersections of open sets are open (i.e., fin int open?(X) ⇒ open?(X)) as finite
unions of closed sets are closed (i.e., fin union closed?(X)⇒ closed?(X)). Notice that a set of
the form {a+n ·b | n ∈ Z} is also closed since its complement is the (finite) union of add cyclic? sets
as below.

b−1⋃
j=1

{(a+ j)+n ·b | n ∈ Z}

Now, consider the set per PRIMES given by the union of all add cyclic? sets of the form {0+n ·
p | n ∈ Z}, where p in PRIMES. Notice that the complement of per PRIMES is the set {−1,1}.

If PRIMES were finite, as a finite union of closed sets, per PRIMES would be closed too, and conse-
quently, its complement {−1,1} would be open, which contradicts the fact that any non-empty open set
is infinite. Thus, PRIMES is infinite.

Below, we include a PVS specification of this proof that is mainly based on axioms (Ax00 - Ax09),
letting to the mathematicians the task to prove five easy conjectures to complete Fürstenberg’s proof.

add_cyclic?, open?, Union_add_cyclics?, fin_int_open?, fin_union_closed?

: pred[set[int]]

PRIMES : set[int]

X,Y : VAR set[int]
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finite?: pred[set[int]] = is_finite[int]

Ax00: AXIOM add_cyclic?(emptyset)

Ax01: AXIOM open?(X) <=> Union_add_cyclics?(X)

Ax02: AXIOM Union_add_cyclics?(X) AND Union_add_cyclics?(Y) =>

Union_add_cyclics?(union(X,Y))

Prop01: CONJECTURE open?(X) AND open?(Y) => open?(union(X,Y))

Ax03: AXIOM add_cyclic?(X) => Union_add_cyclics?(X)

Ax04: AXIOM fin_int_open?(X) => Union_add_cyclics?(X)

Prop02: CONJECTURE fin_int_open?(X) => open?(X)

closed?(X): bool = open?(complement(X))

Ax05: AXIOM X /= emptyset AND Union_add_cyclics?(X) => NOT finite?(X)

Ax06: AXIOM add_cyclic?(X) =>

EXISTS (Y:set[int]): Union_add_cyclics?(Y) AND X = complement(Y)

Prop03: CONJECTURE add_cyclic?(X) => closed?(X)

Ax07: AXIOM fin_union_closed?(X) => closed?(X)

per_PRIMES: set[int] = complement({x: int | x = 1 OR x = -1})

Ax08: AXIOM Union_add_cyclics?(per_PRIMES)

Ax09: AXIOM finite?(PRIMES) => fin_union_closed?(per_PRIMES)

Prop04: CONJECTURE finite?({x: int | x = 1 OR x = -1})

Prop05: CONJECTURE NOT finite?(PRIMES)

In this theory we define open sets restricted to the topology to be considered in the proof, as one can
see in specification Ax01. However, we point out that Prop01, Prop02 and Ax07 hold for any topology.

The specification uses PVS prelude set objects: emptyset, is finite, and complement and a
minimum of PVS prelude formulas on sets.

As an illustration the formalization of conjecture Prop05 consists just of application of axioms Ax07
and Ax09 to conclude closed?(per PRIMES). From that, one has that open?({−1,1}) using a PVS
prelude formula that states the nilpotency of the complement operator on sets. By Ax01 and Ax05

one obtains that this set is infinite, which using Prop04 gives the desired contradiction. Below, a few
additional details on how this is done in PVS are provided. The full proof is part of the model tutorial1

that accompanies this paper.
PVS separates the specification from the formalization in files with extensions “pvs” and “prf”,

respectively. Goals in PVS are sequents. For proving Prop05, once the proof environment is open, the
goal finite?(PRIMES) ` appears.

The PVS proof command (lemma Ax09) is then used to charge this axiom, and by propositional
simplification the formula fin union closed?(per PRIMES) becomes an antecedent of the goal se-
quent. Then, axiom Ax07 is invoked and instantiated with per PRIMES (using the PVS proof command
(inst ‘‘pre PRIMES’’)), obtaining, by propositional simplification, the sequent:

closed?(per PRIMES), fin union closed?(per PRIMES), finite?(PRIMES) `
Expanding the definition of closed?, the formula closed?(per PRIMES) becomes the antecedent

formula open?(complement(per PRIMES)). And then, expanding per PRIMES one obtains the se-
quent:

1http://ayala.mat.unb.br/publications.html

http://ayala.mat.unb.br/publications.html
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open?(complement(complement({1,-1}))),
fin union closed?(complement({1,-1})), finite?(PRIMES) `
By applying a PVS prelude lemma on nilpotency of the operator complement on sets, the first

formula becomes open?({1,-1}), and applying Ax01 one obtains the sequent:
Union add cyclics?({1,-1}),
open?({1,-1}), fin union closed?(complement({1,-1})), finite?(PRIMES) `
Invoking and instantiating adequately Ax05 and then, by propositional simplification, one obtains the

sequent:
{1,-1} 6= /0⇒ NOT finite?({1,-1}), Union add cyclics?({1,-1}),
open?({1,-1}), fin union closed?(complement({1,-1})), finite?(PRIMES) `
The proof is then concluded, by application of Prop04 that gives the formula finite?({1,-1})

and expanding the definition of the empty set, /0: {x:int : FALSE}. Thus, {1,-1} 6= {x:int |

FALSE} is proved by decomposing the equality, using the PVS command (decompose-equality)

that gives the inconsistent antecedent formula FORALL(x : int): NOT (x = 1 OR x = -1). One
concludes, instantiating this formula either with 1 or with -1.

For teaching issues, this theory does not consider algebraic aspects of sets of integers, but all the
required aspects may be considered to obtain a complete formalization (as those in [5] and [12], obtained
using CERES and Isabelle, respectively) as a nice further exercise.

2.3 Geometry - Pick’s Theorem

Euler’s formula states that if G is a connected plane graph with n vertices, e edges and f faces, then (see
the example in Fig. 1):

n− e+ f = 2

•

• •

•

Figure 1: Euler’s formula for three faces (the external face counts), four vertices and five edges

Pick’s theorem from 1899 is a classical consequence from Euler’s formula that establishes another
formula for the area of integral polygons in R2, where the vertices of such integral polygons belong to
the lattice Z2. See the example in Fig. 2.

An elementary polygon is a convex integral polygon that intersects only its vertices in the lattice Z2.
See an example also in Fig. 2. Elementary polygons that are triangles have an area equal to 1/2. Thus,
the area of any integral polygon is the half of the number of elementary triangles inside the polygon, for
any triangulation of the polygon in elementary triangles. See an example in Fig. 3.

Pick’s theorem sees an elementary triangulation of an integral polygon as a plane graph and applies
Euler’s formula to express its area in terms of its vertices.

Let f be the number of faces in an elementary triangulation of an integral polygon P, n = ni + nb

be the number of vertices in the polygon that is equal to the sum of internal and boundary vertices, e
= ei + eb be the number of edges in the polygon that is equal to the sum of internal and boundary



8 Teaching Interactive Proofs to Mathematicians

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Figure 2: An elementary Polygon (gray) and an integral Polygon (black) - with vertices in Z2
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Figure 3: Triangulation of an Integral Polygon in Elementary Polygons

edges. First, notice that the number of boundary vertices and edges is the same. Also, notice that each
elementary triangle in the boundary has a boundary and two internal edges, and any internal elementary
triangle has three internal edges. These simple observations are given as axioms Ax01, Ax02, Ax03

and Ax04 in the PVS specification below, where ni, nb, n, ei, eb and e are of type natural (nat),
f of type natural positive (posnat) and, Area p of type real (real). In particular, the left-hand side of
Ax04 counts the number of edges in each of the f - 1 elementary triangles, but each internal edge is
counted twice.

Ax01 : AXIOM ni + nb = n

Ax02 : AXIOM ei + eb = e

Ax03 : AXIOM eb = nb

Ax04 : AXIOM 3 * (f - 1) = 2 * ei + eb

EulerFormula : AXIOM n - e + f = 2

AreaIntPoly : AXIOM Area_p = (f - 1) / 2

Pick’s theorem establishes the area of any integral polygon P in terms of its internal and boundary
vertices by the formula:

Area P= ni+nb/2−1

Euler’s formula and the area of an integral polygon, Area P, are thus given as axioms. The second
is given as the sum of the area of the f - 1 elementary triangles in the triangulation of the polygon.
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Below, Prop01 is a simple reformulation of Ax04, and Prop02 is a consequence of Prop 01 and
Ax02. Prop03 is a reformulation of Prop02. Finally, Pick’s theorem is obtained from Prop02, (a simple
variant of) the Euler’s formula, Ax01 and Ax03, and the previous axiom for the area of integral polygons.

Prop01 : CONJECTURE 3 * f = 2 * ei + 2 * eb - eb + 3

Prop02 : CONJECTURE 3 * f = 2 * e - eb + 3

Prop03 : CONJECTURE f = 2 * (e - f) - eb + 3

EulerFormula_variant : CONJECTURE e - f = n - 2

Pick_Theorem : CONJECTURE Area_p = ni + nb / 2 - 1

An example such this one allows introducing attendants the algebraic deductive engine of the proof
assistant illustrating the grade of numerical automation of the system. Of course, a complete formal-
ization of this proof (as the one reported in [19] using HOL Light) is an interesting challenge for the
attendants.

3 Teaching Mathematical Deduction

After presenting examples such as the ones given in the previous section, the second step of the tutor-
ing approach aims to teach the real usability of ITPs by illustrating how mathematical notions can be
specified with precision and how elaborated proofs can be completely formalized. For this proposal, we
illustrate here how we do this with algebraic notions and properties. Also, we remark the importance of
providing information about important mathematical formal developments.

3.1 Complete Formalizations About Cyclic and Torsion Groups

From Subsection 2.1, that brings classical theorems about groups from abstract algebra, it is expected that
the attendants had realized that it is necessary a more powerful language (than the one of propositional
logic) to reach a full formalization of such mathematical theorems. For example, the specification of
the group, 〈S,∗,e〉, itself requires the language of predicate logic to quantify elements of the group to
specify, for instance, closure of the binary operator ∗: for all x,y in S, x∗ y belongs to S.

In the PVS theories pred algebra and symmetric n, (part of the tutorial cited in the introduction)
we present a full formalization of axioms and conjectures presented in Subsection 2.1. In the tutorial,
the adequate specification of the required definitions and properties are discussed, and attendants are
encouraged to prove the proposed theorems following a progressively increasing level of difficulty. By
illustrating fully formalizations of mathematical objects that are part of their professional reality atten-
dants are not only motivated to apply ITPs in their research but also to reasoning more thoroughly about
issues and gaps that frequently happen in their pen-and-paper proofs.

Besides motivating and promoting the increase of skills in formalization of mathematics, this method-
ology also enables attendants to realize the effectiveness of ITPs as important tools to document mathe-
matics, certify proofs, and check their correctness. All that naturally contributes to a better understanding
of mathematical theories, since by using an ITP it is impossible to omit details of the proof or to reach
the conclusion of a theorem omitting hypothesis. This contrasts with the pen-and-paper proving ap-
proach that usually accepts results omitting simple but crucial steps that are accepted as “trivial” or as
“analogously” provable.

Even though the authors participated in the development of several elaborated results in algebra, the
theorems included in the tutorial were calibrated in such a manner that they bring simple but challenging



10 Teaching Interactive Proofs to Mathematicians

formalizations exercises to the attendants. The tutorial includes specification of groups, subgroups, and
cyclic, torsion and symmetric groups, and basic properties such as unicity of the identity of groups, left-
and right-cancellative laws, the inverse of the inverse equals identity, and the inverse of multiplications
equals swapped multiplication of the inverses, among others. Also, more elaborated results such as cyclic
groups are Abelian, finite groups are torsion groups, finiteness of symmetric groups, the set of natural
exponents of an element of a finite group is a subgroup, etc.

In the following, we depict the formalization of the property Every cyclic group is Abelian to exem-
plify how more complex mathematical formalizations are introduced along with the tutorial.

Firstly, in the theory pred algebra which contains as parameters a non-interpreted non-empty type
T, a binary operator *:[T,T -> T] and a constant e of type T, we specify the structure of groups and
Abelian groups as a predicate.

G : VAR set[T] % G is a variable of type set of elements of T

% (G) would be the type of elements of G, subtype of T

closed?(G): bool = FORALL (x,y:(G)): member(x*y,G)

inv_exists?(G): bool = FORALL (x:(G)): EXISTS (y:(G)): x * y = e AND y * x = e

group?(G): bool = closed?(G) AND associative?[(G)](*) AND member(e,G) AND

identity?[(G)](*)(e) AND inv_exists?(G)

abelian_group?(G): bool = group?(G) AND commutative?[(G)](*)

Such specification is naturally explained to the attendants without much justification about the logical
system required (HO predicate logic). Some of the used predicates are included in the prelude of PVS, for
instance, associative?, commutative? and identity?. For the first two, it is necessary to provide
arguments about the type (G) over which the operator * is associative or commutative, and for the third
one, additionally, the argument e that acts as a neutral element for the operator * over (G).

Also, we introduce the specification of the inverse of an element in a group, inv by using the PVS
indefinite operator choose that is well-defined over non-empty sets.

inv(G:(group?))(x:(G)): (G) = choose({y:(G) | x * y = e AND y * x = e})

At this point, we have the opportunity to enrich the discussion on types explaining the type cor-
rectness conditions (TCCs) that are generated by PVS along the process of type checking. The PVS
type checker generates for the function inv the TCC nonempty?({y:(G) | x * y = e AND y * x

= e}). This TCC should be proved manually using the type of G and expanding the definition of group?.
In PVS TCCs are proof obligations that when cannot be automatically proved, the user should discharge
to obtain complete formalizations.

In order to define cyclic groups, we specify the exponent of an element y of T to a natural n regarding
the operator *, as a recursive function over the type of natural numbers (nat) and, then, we extend such
function over integer numbers for elements of type (G) using the inverse of y.

^(y : T, n : nat ) : RECURSIVE T =

IF n = 0 THEN e ELSE y * ^(y, n-1) ENDIF

MEASURE n
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^(G:(group?))(y:(G), i: int) : T = IF i >= 0 THEN ^(y,i)

ELSE ^(inv(G)(y),-i) ENDIF

In PVS the specifier must provide a decreasing MEASURE to define each recursive function, and this
measure, stated in functions of the parameters of the function, should decrease along chains of successive
recursive calls. For the case of (̂y,n) above, the measure n is the simplest adequate choice. When the
type checker is executed, it provides the termination TCC caret TCC2 below, whose proof ensures the
termination of such function.

caret_TCC2: OBLIGATION FORALL (n: nat): NOT n = 0 IMPLIES n - 1 < n

Finally, to extend the notion of exponent from naturals to integers (that is only possible over groups),
the operator (̂G)(y:(G),i: int) is specified as (̂y,i) if i is a natural number, and otherwise as
(̂inv(G)(y), -i).

The next step is to specify the notion of a cyclic group and then the property that states that every
cyclic group is Abelian.

cyclic?(G): bool = group?(G) AND

EXISTS (y: (G)):

FORALL(x:(G)): EXISTS (n: int): ^(G)(y,n) = x

In order to prove that cyclic groups are Abelian, accordingly to the usual mathematical intuition
about why this property holds, as mentioned in the end of Subsection 2.1 (i.e., any pair of elements
u,v of a cyclic group are such that if y is the generator of the group then for some integers i and j,
u ∗ v = yi ∗ y j = yi+ j = y j+i = y j ∗ yi), we ask the attendants to assume the conjectures power add aux

and power add aux2 presented below, and apply them to establish by case analysis on the sign of i
and j the required law for integer exponents, as given by the conjecture power add. PVS allows us to
specify and prove a lemma using previously specified but unproved “conjectures”. However, to provide
a full formalization of a lemma all proofs of the previously used conjectures as well as all TCCs must
be completed. The recommended discipline is to specify any unproved lemma as a “CONJECTURE” and
only after it is proved, as a “LEMMA”. At this point of the discussion it is relevant to stress to attendants
the big gap between intuition and formalization, letting clear why the proofs of lemmas power add aux

and power add aux2 require much too additional effort; indeed, they require careful applications of
mathematical induction on the exponents. These proofs are proposed to the attendants as further exercise
or homework on induction.

power_add_aux: CONJECTURE

FORALL (G: (group?), y: (G), n,m: nat): ^(y,n) * ^(y,m) = ^(y, n+m)

power_add_aux2: CONJECTURE

FORALL (G: (group?), y: (G), n, m: nat): ^(G)(y,m) * ^(G)(inv(G)(y),n) =

^(G)(y, m - n)

power_add: CONJECTURE

FORALL (G: (group?), y: (G), i,j: int): ^(G)(y,i) * ^(G)(y,j) = ^(G)(y, i+j)

In PVS, inductive proofs may be performed by application of the proof commands (induct) and
(measure-induct) that build simple and strong induction schemes, respectively. For instance, for the
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case of the conjecture power add aux above, the application of simple induction on n with the proof
command (induct "n") generates the expected goals, given below.

Induction base: FORALL(G, y, m) : (̂y,0) * (̂y,m) = (̂y,m)

Induction step: FORALL j : FORALL(G, y, m) : (̂y,j) * (̂y,m) = (̂y,j+m) IMPLIES

FORALL(G, y, m) : (̂y,j+1)* (̂y,m) = (̂y,j+1+m)

Proving these goals require expanding both the definition of the operator ˆ, and of the notion of a
group and, the second goal requires additionally Skolemization (using PVS commands as (skolem) or
(skeep)), propositional decomposition and adequate instantiation of the induction hypothesis.

Finally, the conjecture cyc abel specifies the property that cyclic groups are Abelian.

cyc_abel: CONJECTURE cyclic?(G) IMPLIES abelian_group?(G)

Notice that the properties cyclic? and then abelian group? hold just for groups, then one have
to prove only that from cyclic?(G) one can infer commutative?[(G)](*). This is obtained by using
power add and the commutativity of integers (indeed, of real numbers regarding addition to prove that
yi+ j = y j+i) that are provided in the prelude of PVS.

The theory pred algebra includes also torsion groups specified as below.
torsion?(G): bool = group?(G) AND FORALL (y:(G)): EXISTS (n: posnat) : y^n = e

A thought-provoking example is a conjecture that finite groups are torsion groups.
finite_torsion: CONJECTURE

FORALL (G: (group?)): is_finite(G) IMPLIES torsion?(G)

This is proved showing that for any y element of G, the function f : below[N+1]→ {y0, . . . ,yN−1},
where N is the cardinality of G, cannot be injective. Here, below[N+1] is the subtype of naturals
{0, . . . ,N}. Indeed, if f were not injective, there would exist i < j ≤ N such that yi = y j, from which
using properties of the operator ˆ one concludes that y j−i = e. Non injectivity of f is proved assuming
that it is injective. In PVS, the predicate is finite(G) is characterized by the existence of an injective
function g : (G)→ below[N]. The contradiction is obtained since composition of injective functions is
injective (formalized in the lemma composition injective of the PVS prelude library) that would
imply that g◦ f : below[N+1]→ below[N] is injective.

The last example is the conjecture that for any finite group G and element y in it, the set of natural
powers of y (power gen(y)) is indeed a subgroup of G, specified below.
power_gen(x:T): set[T] = { y: T | EXISTS (n:nat) : y = x^n }

subgroup?(H:set[T],G:(group?)): bool = subset?(H,G) AND group?(H)

power_gen_fin_group_is_subgroup: CONJECTURE

FORALL (G: (group?),y:(G)): is_finite(G) IMPLIES subgroup?(power_gen(y),G)

The proof consists in showing that the set power gen(y), for y in G is a subset of G and satisfies
all properties of groups. The interesting part of the proof is showing the existence of inverses: for
any natural n there exists a natural m such that yn ∗ ym = ym ∗ yn = e. From the previous conjecture
(finite torsion) G is a torsion group, which implies that there exists a non-zero natural k such that
(yn)k = e. This allows the choice of m as n(k− 1) and with this choice and properties of power one
concludes that yn ∗yn(k−1) = yn(k−1) ∗yn = ynk. An additional property of power, power mult aux, given
below, would be required to prove that ynk = (yn)k and conclude.
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power_mult_aux: CONJECTURE

FORALL (G:(group?), y:(G), m,n: nat): (y^n)^m = y^(n*m)

3.2 Formalizations About Symmetric Groups

More elaborated examples should be discussed to make evident to the attendants that ITPs can be indeed
applied to perform serious mathematical proofs, which is not at all a consensus for the mathematicians.
Thus, in addition to the previous basic examples, the tutorial contains additional and more elaborated
results. We illustrate this with the properties of a concrete structure that satisfies the definition of groups:
symmetric groups. It is formalized in the theory symmetric[n] included below, where the parameter n
is the degree of the symmetric group that is a positive natural number.

symmetric[n:posnat]: THEORY

BEGIN

IMPORTING pred_algebra[ [below[n] -> below[n]], o, LAMBDA(i: below[n]): i],

sets_aux@set_of_functions[below[n],below[n]]

symmetric: set[[below[n] -> below[n]]] =

{f : [below[n] -> below[n]] | bijective?(f)}

group_symmetric: CONJECTURE group?(symmetric)

sym_gt2_notabelian: CONJECTURE

n >=3 IMPLIES NOT abelian_group?(symmetric)

sym_cyc_lt2: CONJECTURE cyclic?(symmetric) IMPLIES n < 3

symmetric_is_finite: CONJECTURE is_finite(symmetric)

symmetric_is_torsion: CONJECTURE torsion?(symmetric)

power_gen_subgroup_sym: CONJECTURE

FORALL (y:(symmetric)): subgroup?(power_gen(y),symmetric)

END symmetric

The first interesting aspect of this formalization is importing the theory pred algebra whose pa-
rameters were given by the triple [T, *:[T,T -> T], e:T], a non-interpreted non-empty type T, a
binary operator * and a constant e of type T, and where groups were specified (see Subsection 3.1). This
theory is imported by symmetric[n] with arguments

[ [below[n] -> below[n]], o, LAMBDA(i: below[n]): i ]

Through this importation, the type T is interpreted as the set of functions from {0, . . . ,n− 1} into
{0, . . . ,n−1}, the binary operator *, as the composition of functions o, and the constant e, as the identity
function, LAMBDA(i: below[n]): i.

Thus, the set symmetric is specified as the subset of all bijective functions on below[n]. And
then the first interesting task is to prove the conjecture group symmetric that states that symmetric
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is indeed a group: group?(symmetric). The proof of group symmetric is, mainly, based on the
PVS prelude theory for functions since it provides results such as “Compositions of bijective functions
are also bijective functions”, “Bijective functions have bijective inverses”, “Function composition is
associative” and “The identity function is bijective”.

A well-known property about symmetric groups with a degree greater than 2 is that they are not
Abelian (Conjecture sym gt2 notabelian). The proof of this result consists in providing explicitly
two elements of symmetric that do not commute regarding the binary operator o. For instance, one can
construct as witnesses the functions f that maps 0 into 1, 1 into 0 and fixes all other elements of the
domain, and g that maps 0 into 2, 2 into 0 and fixes all other elements of the domain. Constructive proofs
of existential formulas are provided in such a manner. The above-mentioned functions f and g can be
specified in PVS, respectively, as

LAMBDA (i:below[n]) : IF i>=2 THEN i ELSIF i = 0 THEN 1 ELSE 0 ENDIF

LAMBDA (i:below[n]) : IF i>=3 THEN i ELSIF i = 0 THEN 2

ELSIF i = 1 THEN 1 ELSE 0 ENDIF

Using these functions the proof resumes to show that f ◦g 6= g◦ f , which can be done using the fact
that ( f ◦g)(0) = 2 and (g◦ f )(0) = 1.

The Conjecture sym cyc lt2 is proved as corollary of sym gt2 notabelian because cyclic groups
are Abelian.

An interesting formalization, that may illustrate to the attendants how much mathematicians (they!)
appeal to their intuition when they develop pen-and-paper proofs is the one of the next conjecture in
the theory symmetric[n]: symmetric is finite. In general, they justify the finiteness of the sym-
metric group of degree n just through the observation that the set of bijective functions correspond to
the set of n! permutations on a set of n elements, without worrying about building a proof of this
fact. Without concrete proof of this fact, further complete formalizations would be impossible (such
as the fact that symmetric groups are torsion groups). Since in PVS the predicate is finite(S) is
characterized by the existence of a natural number N and an injective function f:(S)->below[N], to
prove that the group symmetric is finite, it is necessary to make explicit such an injective function
for some adequate N. This formalization is obtained by application of a lemma in the imported the-
ory sets aux@set of functions of the NASA PVS library which states that the cardinality of the set
of functions from a finite domain to a finite co-domain of respective cardinalities m and n is nm. This is
specified as the existence of a bijective function, say h, from this set of functions to the type below[n m̂].
The formalization is concluded proving that the restriction of h to the domain symmetric is an injective
function, which implies the finiteness of symmetric.

As a corollary of the previous result and the fact that finite groups are torsion groups (see conjec-
ture finite torsion in the end of Subsection 3.1) one obtains the formalization of the conjecture
symmetric is torsion. All other properties of finite groups are then inherited by symmetric groups,
such as the fact that power gen(f), for any bijective function f on below[n] (see Subsection 3.1) is a
subgroup of symmetric.

3.3 Information About Formal Developments

Some information should be provided to attendants about serious mathematical important formal devel-
opments. Restricting our attention just to algebraic theorems, we can mention, for instance, the NASA
PVS Formal Developments library contains general results on algebra [8] as well advanced results on
group theory such as the Sylow’s Theorems [15], and Isomorphism Theorems for groups and rings, and
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the Chinese Remainder Theorem for Non-commutative rings [25], among others. Also, results about
groups, rings, and ordered fields are formalized in Coq as part of the FTA project [16]. Other important
formalizations in Coq deal with finite group theory [18] culminating in the formalization of the Feit and
Thompson’s proof of the Odd Order Theorem that states that every finite group of odd order is solv-
able [17]. Also in Coq, formalizations of real ordered fields [10] and finite fields [26], and formalization
of rings with explicit divisibility [9] are available. Formalizations of the Binomial Theorem for rings are
available in Nuprl [23] and Mizar [28]. In ACL2 a hierarchy of algebraic structures ranging from setoids
to vector spaces is built focusing on the formalization of computer algebra systems [20]. The Algebra
Library of Isabelle/HOL [3] provides a wide range of theorems on mathematical structures, including re-
sults on rings, groups, factorization over ideals, rings of integers and polynomial rings. A formalization
of the First Isomorphism Theorem for rings is also available in Mizar [24].

4 Discussion

The main interest of this position paper is to show how ITPs can be promoted among users of related
areas, who do not necessarily require or desire to develop a strong background in proof theory and math-
ematical deduction, but who just need or want to apply these tools in their areas of expertise. Usually, we
can reach the attention of mathematicians in workshops in which their time availability is restricted and
for which short-courses and tutorials should be limited to a few hours (usually, from two to at most eight
hours). Because of this, our proposal requires a huge effort to adopt nice well-known mathematical ex-
amples that fulfil the real interests of the attendants, it focuses on the mathematical aspects of the proofs
and omits long dissertations about logical systems, deduction and proof theory. Also, our position is that
good graduation and diversity of the complexity of the selected examples contributes to illustrate clearly
to the attendants the real power of ITPs to prove elaborated mathematical theorems. This contrast with
the high flexibility we have when teaching logical deduction to CS students in our one-semester sixty-
four-hour course on Computational Logic, mentioned in the introduction, for which we have enough time
and can focus on natural and sequent calculus-based deduction and spend at least a third of the semester
training students in the application of deductive tools ([2, 4]).
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