
R. Behjati and A. Elmokashfi (Eds.): Workshop on
Formal Methods for and on the Cloud (iFMCloud’16)
EPTCS 228, 2016, pp. 16–26, doi:10.4204/EPTCS.228.3

c© Einar Broch Johnsen, Ka I Pun & S. Lizeth Tapia Tarifa
This work is licensed under the
Creative Commons Attribution License.

Modeling Deployment Decisions for Elastic Services with ABS∗

Einar Broch Johnsen, Ka I Pun, S. Lizeth Tapia Tarifa
Department of Informatics, University of Oslo, Norway

{einarj,violet,sltarifa}@ifi.uio.no

The use of cloud technology can offer significant savings for the deployment of services, provided
that the service is able to make efficient use of the available virtual resources to meet service-level re-
quirements. To avoid software designs that scale poorly, it is important to make deployment decisions
for the service at design time, early in the development of the service itself. ABS offers a formal,
model-based approach which integrates the design of services with the modeling of deployment de-
cisions. In this paper, we illustrate the main concepts of this approach by modeling a scalable pool
of workers with an auto-scaling strategy and by using the model to compare deployment decisions
with respect to client traffic with peak loads.

1 Introduction

Insufficient scalability and bad resource management of software services can easily consume any po-
tential savings from cloud deployment. Failed service-level agreements (SLAs) cause penalties for the
provider, while oversized SLAs waste resources on the customer’s side. IBM Systems Sciences Institute
estimates that a defect which costs one unit to fix in design, costs 15 units to fix in testing (system/ac-
ceptance) and 100 units or more to fix in production [3]; this cost estimation does not even consider the
impact cost due to, for example, delayed time to market, lost revenue, lost customers, and bad public
relations.

Deployment on the cloud gives software designers far reaching control over the resource parameters
of the execution environment, such as the number and kind of processors, the amount of memory and
storage capacity, and the bandwidth. In this context, designers can also control their software’s trade-offs
between the incurred cost and the delivered quality-of-service. SLA-aware services, which are designed
for scalability, can even change these parameters dynamically, at runtime, to meet their service contracts.

The formally defined Abstract Behavioral Specification language ABS [9] realizes a separation of
concerns between the cost of execution and the capacity of dynamically provisioned cloud resources [12].
Models are executable; a simulation tool for ABS supports rapid prototyping and visualization. The use
of languages such as ABS enables developers to shift deployment decisions from late in the software en-
gineering process to become an integral part of software design [8]. ABS permits to design and validate
these services by connecting executable models to quality of service requirements, using a Cloud API
to interface with an abstraction of the cloud provisioning. The modeling approach and analyses devel-
oped for ABS have been successfully applied in an industrial context to SDL Fredhopper’s eCommerce
Optimization [1] and to Apache’s Hadoop YARN [14].

In this paper, we illustrate the use of ABS to make deployment decisions at the modeling level for a
so-called hot pool [5]: a local scaling point in a service with a load balancer distributing jobs to workers.
Hot pools were originally introduced for resilience, but represent a viable approach for fine-grained
scaling of services on the cloud. We model different deployment scenarios for the hot pool, varying in

∗This work was done in the context of the EU project FP7-610582 ENVISAGE: Engineering Virtualized Services
(http://www.envisage-project.eu).

http://dx.doi.org/10.4204/EPTCS.228.3
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
einarj,violet,sltarifa
@ifi.uio.no

Einar Broch Johnsen, Ka I Pun & S. Lizeth Tapia Tarifa 17

the numbers of workers, and show how to model a simple autoscaler for the hot pool. We use simulations
to compare performance and resource usage for the hot pool using different deployment scenarios. We
refer to [1, 12] for related work on the ABS modeling language.

2 The ABS Language

ABS is a modeling language for the development of executable distributed and deployed object-oriented
models. The main characteristics of ABS can be listed as follows:

1. it has a formal syntax and semantics;

2. it has a clean integration of concurrency and object orientation based on concurrent object groups
(COGs) [9, 15];

3. it permits synchronous as well as asynchronous communication [4, 10];

4. it offers a wide variety of complementary modeling alternatives that integrates a functional layer
with algebraic datatypes and functional programming, an imperative layer [6,7,9] with COGs and
asynchronous communication, it allows the modeling of real-time behavior [2];

5. compared to object-oriented programming languages, it abstracts from low-level implementation
choices for data structures, and compared to design-oriented languages like UML diagrams, it is
executable and models the control flow of systems;

6. it supports deployment modeling by means of a separation of concerns between the resource costs
of executions and the resource capacities of (virtual) locations. Deployment decisions can be made
inside the models [12], using a Cloud API to interact with the cloud provisioning layer [11];

The functional layer of ABS is used to model computations on the internal data of objects. It allows
designers to abstract from the implementation details of imperative data structures at an early stage in the
software design. The functional layer combines a language for parametric algebraic data types (ADTs)
and a simple functional language with case distinction and pattern matching. ABS includes a library with
predefined datatypes such as Bool, Int, String, Rat, Unit, etc. It also has parametric datatypes
such as lists, sets and maps. All other types and functions are user-defined.

The imperative layer of ABS allows designers to express communication and synchronization be-
tween concurrent objects. In the imperative layer, processes are encapsulated within COGs [9, 15], the
processes are created automatically at method call reception and terminated after the method call execu-
tion is finished. ABS combines active (with a run method which is automatically activated) and reactive
behavior of objects. ABS is based on cooperative scheduling: Inside COGs processes may suspend at
explicitly defined scheduling points, at which point control may be transferred to another process. Sus-
pension allows other pending processes to be activated. However, the suspending process does not signal
any particular process, instead the selection of the new process is left to the scheduler. In between these
explicit scheduling points, only one process is active inside a COG, which means that race conditions
are avoided. Real Time ABS [2] extends ABS with support for the modeling and manipulation of dense
time. This extension allows to represent execution time inside methods. The local passage of time is
expressed in terms of a statement called duration (as in, e.g., UPPAAL [13]). To express dense time,
we consider a model represented by two types Time and Duration. Time values capture points in
time as reflected on a global clock during execution. In contrast, finite durations reflect the passage of
time.

18 Modeling Deployment Decisions for Elastic Services with ABS

Environment

Client
Client

Client
Client

Client
Client

Busy Workers

CloudProvider

VM

Worker

VM

Worker

VM

Worker

VM

Worker

VM

Worker

VM

Worker

VM

Worker

VM

Worker

Database
Access Data

Cloud API allows to
create, and shutdown

machines.

Application Manager

Service
Endpoint

Resource Management

Load Balancer AutoscalerStart/Release
 Worker

Process

Launch/shutdown InstanceInvoke Service

Available Workers

VM

Worker

VM

Worker

VM

Worker

Add/Remove
 Worker

Figure 1: An architecture for a service with a resource-aware hot pool of workers.

The ABS Cloud API provides an interface to model cloud infrastructure in ABS [11]. The ABS
Cloud API supports the dynamic acquisition and release of virtual machines with resources. Virtual ma-
chines in ABS are modeled using deployment components [12]. A deployment component is a modeling
abstraction which captures locations offering resources to computations. The language also supports cost
annotations to model resource consumption. The combination of deployment components with resource
computations and cost annotations allows modeling implicit passage of time. In this case, time can be
observed by measuring the executing model, and monitoring the response time of a system. In this paper
we will model so-called elastic computing resources, where the computation speed of virtual machines
is determined by the amount of elastic computing resources allocated to these machines per discrete time
interval (referred as time interval in the rest of the paper). The ABS Cloud API includes methods for
launching and shutting down virtual machines. In the implementation, this is done by creating deploy-
ment components on which an application manager can deploy objects. In addition, the ABS Cloud API
keeps track of the accumulated costs incurred by job execution on the cloud. ABS is supported by a
range of analysis tools (see, e.g., [1]); for the analysis results in this paper, we are using the simulation
tool which generates Erlang code.

3 Modeling a Scalable Service in ABS

Let us consider an example which models a service that executes heavy and parallel computations on
the cloud. Figure 1 depicts such an architecture. In this architecture, clients, which want to access the
service, call a service endpoint. The service endpoint communicates with a load balancer to get workers
that will process the jobs requested by the clients. Each worker is able to process one call of the service
at a time, and for that it needs to access a shared database. The load balancer keeps a list of workers
which are currently processing jobs and a list of workers which are available for new jobs, and distributes
jobs among the workers. In Section 4, we will introduce an autoscaler. The autoscaler will increase or
decrease the number of workers as needed. For this particular scenario, we will deploy the workers on the

Einar Broch Johnsen, Ka I Pun & S. Lizeth Tapia Tarifa 19

cloud, and each worker will have its own dedicated virtual machine. Since our concern is the deployment
strategy for the hot pool, we will abstract from the deployment of the other parts of the system. In ABS
any object which is not explicitly deployed on a deployment component, will run in an environment with
unbounded available resources.

class ClosedClient (SE ep, Int cycle, Rat cost, Int nbrOfJobs) implements Client {
Int jobcount = 0;
Unit run() {

await duration(cycle, cycle);
Bool result = await ep!invokeService(cost); jobcount = jobcount + 1;
if (jobcount < nbrOfJobs) { this!run(); }

}
}

class OpenClient (SE ep, Int cycle, Rat cost, Int nbrOfJobs) implements Client {
Int jobcount = 0;
Unit run() {

Fut<Bool> fresult = ep!invokeService(cost); jobcount = jobcount + 1;
await duration(cycle, cycle);
if (jobcount < nbrOfJobs) { this!run(); } await fresult?; Bool result = fresult.get;

}
}

Figure 2: An ABS model of closed and open clients. The former waits for a reply before it sends a new
invocation, the latter sends a new invocation after a fixed period of time.

3.1 Modeling the Environment

In our example, the environment consists of clients calling the service. We are going to model two kind
of clients: ClosedClient and OpenClient. Figure 2 contains the ABS model of these clients. The
clients’ behavior is captured in the run method. The closed client does not flood the system. In each
iteration this client waits for a cycle to pass, after that it sends an invocation of the service and waits for
the result. The iteration will finish once the client has sent the desired number of jobs. The open client
may flood the system. In each cycle this client sends an invocation without waiting for the result. If the
cycle is very short, the system will receive a sudden burst of requests.

Time

of requests

50 100 150 200

50

100

25

75

0

Closed clients Open clients

Figure 3: A workload pattern in terms of closed and open clients.

Figure 3 suggests a workload scenario which is implemented in Figure 4 using the client behaviors

20 Modeling Deployment Decisions for Elastic Services with ABS

described above. This workload creates 30 closed clients at time 50 and at time 150 and 80 open clients at
time 100 and at time 200. Each client will send 10 requests, where each request has an average resource
cost of 81, specified in the parameter taskCost. The closed client has a cycle of 5 time units while the
open client has a cycle of one time unit, creating peaks of requests. We will use this workload to test the
QoS and the accumulated billing cost of the different deployment scenarios for the system.

...
await duration(50,50); nClts = nClosedClients;
while (nClts > 0) { new ClosedClient(endpoint, 5,taskCost, nbrOfJobs); nClts = nClts - 1;}
await duration(50,50); nClts = nOpenClients;
while (nClts > 0) { new OpenClient(endpoint, 1, taskCost, nbrOfJobs); nClts = nClts - 1;}
await duration(50,50); nClts = nClosedClients;
while (nClts > 0) { new ClosedClient(endpoint, 5,taskCost, nbrOfJobs); nClts = nClts - 1;}
await duration(50,50); nClts = nOpenClients;
while (nClts > 0) { new OpenClient(endpoint, 1, taskCost, nbrOfJobs); nClts = nClts - 1;}
...

Figure 4: Implementing the workload pattern in ABS.

3.2 Modeling the Service with Static Deployment

In this section we model an initial version of the service. In this case, the application manager consists of
the load balancer and the service endpoint, where the load balancer is statically configured with a fixed
number of workers.

Figure 5 contains the ABS model of a worker which processes jobs. The worker is modeled by
the class WorkerObject with two methods process and getDC. The implementation of method
process abstracts from the functional behavior by adding a cost annotation, but captures the fact that
the task needs a transaction to the database, it also takes into account the time needed to make this
transaction. Note that this implementation can be refined with more explicit functionality and more fine-
grained cost annotations. The rest of the method implementation checks whether or not the method call
has kept its deadline. Since we want to check the QoS, we model hard deadlines instead of soft deadlines.
The method getDC returns the identifier of the virtual machine where the worker is deployed, using the
ABS keyword thisDC().

interface Worker {
Bool process(Rat taskCost, Time started, Duration deadline);
DC getDC();

}

class WorkerObject(Database db) implements Worker {

Bool process(Rat taskCost, Time started, Duration deadline) {
[Cost: taskCost] skip;
Duration remainingTime = subtractFromDuration(deadline, timeDifference(now(),started));
Bool success = await db!accessData(remainingTime);
return success;

}

DC getDC(){ return thisDC();}
}

Figure 5: ABS model of the worker.

Figure 6 contains part of the ABS model of a load balancer with a round robin scheduling policy. The
RoundRobinLoadBalancer implements the interface LoadBalancer. This class keeps two lists,

Einar Broch Johnsen, Ka I Pun & S. Lizeth Tapia Tarifa 21

one with the identifiers of workers which are in use (or busy) and one with the identifiers of workers
which are available. The class also has methods to add and remove workers to the lists, and to move
workers from one list to the other. Method addWorker adds the identifiers of new workers to the
list of available workers. In this version of the system, this method is called by the main block to
configure a static deployment scenario with a fixed number of workers. Methods getWorker and
releaseWorker move workers from the lists available to inuse and vice versa. These methods
are called by the service endpoint to assign processing jobs to the workers. Method firingWorker
permanently removes a worker from the list of available workers. Methods getNbrAvailableW and
getNbrInuseW calculates the number of available workers and the number of workers that are in use,
respectively. Note that we are not using the last three methods in this version of the system, they are used
later in Section 4. Figure 6 also contains the ABS implementation of the service endpoint. This class has
one method invokeService which is called by the clients and forwards the client request to one of
the workers.

interface LoadBalancer {
Unit addWorker(Worker w);
Worker getWorker();
Unit releaseWorker(Worker w);
Worker firingWorker();
Int getNbrAvailableW();
Int getNbrInuseW();

}

class RoundRobinLoadBalancer() implements LoadBalancer {

List<Worker> available = Nil; List<Worker> inuse = Nil;

Unit addWorker(Worker w){
available = appendright(available,w);

}

Worker getWorker(){
await (available != Nil);
Worker w = head(available); available = tail(available); inuse = appendright(inuse,w);
return w;

}

Unit releaseWorker(Worker w){
available = appendright(available,w); inuse = without(inuse,w);
}

Worker firingWorker(){
await (available != Nil);
Worker w = head(reverse(available)); available = without(available,w);
return w;

}
...

}

interface SE {
Bool invokeService(Rat cost);

}

class ServiceEndpoint(LoadBalancer lb, Duration responseTime) implements SE {
Bool invokeService(Rat cost){

Time started = now();
Worker w = await lb!getWorker();
Bool success = await w!process(cost,started,responseTime);
await lb!releaseWorker(w);
return success;

}
}

Figure 6: ABS model of the load balancer and the service endpoint.

22 Modeling Deployment Decisions for Elastic Services with ABS

Static Deployment. Figure 7 models the static deployment of the system as depicted by Figure 1
(without the autoscaler). In this case we create the database, the load balancer and the service endpoint,
afterwards we deploy a fixed number of worker on the cloud. We also need to include the workload that
the system will process (as described in Section 3.1).

{ ...
Database db = new Database();
LoadBalancer lb = new RoundRobinLoadBalancer();
SE endpoint = new ServiceEndpoint(lb, respTime);
//start workers
Int ctr = 0;
while (ctr<nWorkers) {

Fut<DC> fs = cloud!launchInstance(map[Pair(Speed, nResources)]);
DC vm = fs.get;
[DC: vm] Worker w = new WorkerObject(db);
lb!addWorker(w);
ctr=ctr+1;
}

//start clients to generate a desired workload
...

}

Figure 7: Static deployment of the service.

4 Extending the Service with Autoscaling and Dynamic Deployment

In this section, we extend the model with an autoscaler to allow dynamic reconfiguration of the deploy-
ment on the cloud.

Figure 8 models an autoscaler which increases and decreases the number of workers deployed on the
cloud depending on the number of available workers. The run method models the initial deployment
of workers. The method resize acts as a monitor which periodically checks if we need to adjust the
number of workers. We use the following ad hoc policy: If the number of available workers is less than
one quarter of the total number of workers, then we triple the number of available workers. If the number
of available workers is greater than one third of the busy workers, then we reduce the number of available
workers to half.

Dynamic Deployment. Figure 9 models the initial deployment of the system as depicted in Figure 1.
In this case we create the database, the load balancer, the autoscaler with an initial number of workers,
and the service endpoint. We also need the workload, as described in Section 3.1.

5 Comparing the Simulation Results

Using the static and dynamic deployment models described above, we now analyze the behavior of our
system and compare different scenarios using simulations. Having early analysis results at design time
allow us to observe how the model complies with certain non-functional properties capturing quality of
service, and therefore related to SLAs. As an example, let us analyze if the model satisfies the following
SLA, formulated in terms of model time:

Einar Broch Johnsen, Ka I Pun & S. Lizeth Tapia Tarifa 23

class Autoscaler(CloudProvider cloud, LoadBalancer lb, Int nbrOfWorkers, Int nResources,
Database db, Int cycle) implements Autoscaler {

Unit run(){
Int ctr = 0;
while (ctr<nbrOfWorkers) {

Fut<DC> fs = cloud!launchInstance(map[Pair(Speed, nResources)]);
DC vm = fs.get;
[DC: vm] Worker w = new WorkerObject(db);
lb!addWorker(w);
ctr=ctr+1;

}
this!resize();

}

Unit resize(){
Int ctr = 0;
await duration(cycle, cycle);
Int available = await lb!getNbrAvailableW();
Int inuse = await lb!getNbrInuseW();
if (available < ((available+inuse)/4)){
ctr = 0;
Rat extraworkers= 2*inuse;
while (ctr<extraworkers) {

Fut<DC> fs = cloud!launchInstance(map[Pair(Speed, nResources)]);
DC vm = fs.get;
[DC: vm] Worker w = new WorkerObject(db);
await lb!addWorker(w);
ctr=ctr+1;

}
}
if ((inuse/3 < available) && (available > nbrOfWorkers)){
ctr = 0;
Rat removeworkers= available/2;
while (ctr<removeworkers) {

Worker w = await lb!firingWorker();
DC dc = await w!getDC();
Bool down = await cloud!shutdownInstance(dc);
ctr=ctr+1;

}
}
this!resize();

}
}

Figure 8: ABS model of the autoscaler.

{ ...
Database db = new Database();
LoadBalancer lb = new RoundRobinLoadBalancer();
Autoscaler as = new Autoscaler(cloud,lb,nWorkers,nResources,db,interval);
SE endpoint = new ServiceEndpoint(lb, respTime);
//start clients to generate a desired workload
...

}

Figure 9: Dynamic deployment of the service.

“The service must maintain a response time of less than 10 time intervals with an average success
rate of at least 90%. In addition, for an interval of 300 time intervals, the billing cost should not
exceed the amount of 250000, where the billing cost is 50 per virtual machine, charged every 5 time
intervals.”

To assess possible deployments to meet this SLA, we compare four scenarios. For static deployment, we
consider three scenarios by varying the number of workers, and hence the number of virtual machines,
between 80, 100, and 120. The fourth scenario is a dynamic deployment with the autoscaler. We run

24 Modeling Deployment Decisions for Elastic Services with ABS

Figure 10: Average provisioning of virtual machines and machines in use for the different static and
dynamic deployment scenarios

each scenario 100 times using the ABS simulator. In each run we record the total number of workers and
the number of busy workers which have been in use in each time interval. We also record the success
rate of the invocations made by the clients (with a deadline of 10 time intervals) and the accumulated
billing cost of running the scenarios until time 300.

Figure 11: Average number of successful requests and total billing cost until time 300 for the different
static and dynamic deployment scenarios

Figure 10 shows the number of provisioned machines (total number of workers) and the number of
machines in use (workers in use) per time interval for each scenario, averaged over the 100 simulations.
The red, blue, and purple lines in this figure capture the static deployment scenarios with 80, 100, and

Einar Broch Johnsen, Ka I Pun & S. Lizeth Tapia Tarifa 25

120 workers, respectively. The straight vertical lines represent the statically fixed number of provisioned
machines (virtual machines deployed on the cloud) in each time interval, while the oscillating lines
capture the number of machines that are actually in use per time interval. In the case of the dynamic
deployment scenario, the black and orange lines capture the varying number of provisioned machines
and of machines in use per time interval, respectively. For the static deployment scenarios, we can
observe over-provisioning of machines when the workload is low and congestion when the workload has
peaks (see Figures 3 and 4 for the description of the workload). Note that the workload peaks occur
when open clients are created, as indicated in Figure 3. For the scenarios with static deployment, the
period of congestion is inversely proportional to the total number of workers: the higher the number of
workers, the shorter the period of congestion. For the dynamic deployment scenario, the total number
of machines and the number of machines in use varies according to the workload, and the duration of
both periods with over-provisioning of machines and with congestion are significantly shorter than for
the static scenarios.

Figure 11 compares the success rates (shown as the percentage of requests which have been executed
within their deadline) and the accumulated billing costs for all scenarios until time 300, averaged over
the 100 simulations. The success rate is scaled with the left y-axis while the cost is scaled with the
right one. In the static deployment scenarios, the success rate improves as the total number of machines
increases. In fact the third scenario with 120 machines was chosen because it has 100% success rate.
For the dynamic deployment scenario, the average success rate, approximately 96%, is much better than
for the static scenario with 80 machines (60% success rate), and is close to the static scenario with 100
machines (95% success rate) while it is a bit lower than the static scenario with 120 machines. When
comparing the accumulated billing costs, the dynamic scenario is substantially lower than any of the
static scenarios. In conclusion, the dynamic scenario offers the best trade-off between cost and quality
of service which complies with the SLA described above.

6 Concluding Remarks

This paper revisits the main modeling concepts of ABS for modeling scalable and elastic services de-
ployed on the cloud. We show by a simple example how different deployment decisions can be expressed
and how these decisions affect the service-levels, formulated in terms of the success rate of service re-
quests, and the accumulated billing cost for deploying the service, calculated from a pricing policy for
the virtual machines. The accuracy of predictions made using ABS models has been demonstrated on
Hadoop benchmarks [14] and on industrial case studies [1]. We believe model-based decision making
about deployment strategies enable higher quality and more cost-efficient services, both as part of the
initial development process and as a tool for DevOps teams.

References

[1] Elvira Albert, Frank S. de Boer, Reiner Hähnle, Einar Broch Johnsen, Rudolf Schlatte, Silvia Lizeth
Tapia Tarifa & Peter Y. H. Wong (2014): Formal Modeling of Resource Management for Cloud Architectures:
An Industrial Case Study using Real-Time ABS. Journal of Service-Oriented Computing and Applications
8(4), pp. 323–339, doi:10.1007/s11761-013-0148-0.

[2] Joakim Bjørk, Frank S. de Boer, Einar Broch Johnsen, Rudolf Schlatte & S. Lizeth Tapia Tarifa (2013): User-
defined Schedulers for Real-Time Concurrent Objects. Innovations in Systems and Software Engineering
9(1), pp. 29–43, doi:10.1007/s11334-012-0184-5.

http://dx.doi.org/10.1007/s11761-013-0148-0
http://dx.doi.org/10.1007/s11334-012-0184-5

26 Modeling Deployment Decisions for Elastic Services with ABS

[3] B. W. Boehm & P. N. Papaccio (1988): Understanding and Controlling Software Costs. IEEE Trans. SW
Eng. 14(10), pp. 1462–1477, doi:10.1109/32.6191.

[4] Frank S. de Boer, Dave Clarke & Einar Broch Johnsen (2007): A Complete Guide to the Future. In Rocco
de Nicola, editor: Proc. 16th European Symposium on Programming (ESOP’07), LNCS 4421, Springer, pp.
316–330, doi:10.1007/978-3-540-71316-6_22.

[5] Christoph Fehling, Frank Leymann, Ralph Retter, Walter Schupeck & Peter Arbitter (2014): Cloud Com-
puting Patterns: Fundamentals to Design, Build, and Manage Cloud Applications. Springer Publishing
Company, Incorporated, doi:10.1007/978-3-7091-1568-8.

[6] Reiner Hähnle (2013): The Abstract Behavioral Specification Language: A Tutorial Introduction. In: Formal
Methods for Components and Objects, LNCS 7866, Springer, pp. 1–37, doi:10.1007/978-3-642-40615-7_1.

[7] Reiner Hähnle, Michiel Helvensteijn, Einar Broch Johnsen, Michael Lienhardt, Davide Sangiorgi, Ina Schae-
fer & Peter Y. H. Wong (2013): HATS Abstract Behavioral Specification: The Architectural View. In Bern-
hard Beckert, Ferruccio Damiani, Frank S. de Boer & MarcelloM. Bonsangue, editors: Formal Methods for
Components and Objects, LNCS 7542, Springer, pp. 109–132, doi:10.1007/978-3-642-35887-6_6.

[8] Reiner Hähnle & Einar Broch Johnsen (2015): Designing Resource-Aware Cloud Applications. IEEE Com-
puter 48(6), pp. 72–75, doi:10.1109/MC.2015.172.

[9] Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte & Martin Steffen (2011): ABS: A Core
Language for Abstract Behavioral Specification. In Bernhard Aichernig, Frank S. de Boer & Marcello M.
Bonsangue, editors: Proc. 9th International Symposium on Formal Methods for Components and Objects
(FMCO 2010), LNCS 6957, Springer, pp. 142–164, doi:10.1007/978-3-642-25271-6_8.

[10] Einar Broch Johnsen & Olaf Owe (2007): An Asynchronous Communication Model for Distributed Concur-
rent Objects. Software and Systems Modeling 6(1), pp. 35–58, doi:10.1007/s10270-006-0011-2.

[11] Einar Broch Johnsen, Rudolf Schlatte & S. Lizeth Tapia Tarifa (2012): Modeling Resource-Aware Virtualized
Applications for the Cloud in Real-Time ABS. In Toshiaki Aoki & Kenji Tagushi, editors: Proceedings of
the 14th International Conference on Formal Engineering Methods (ICFEM’12), LNCS 7635, Springer, pp.
71–86, doi:10.1007/978-3-642-34281-3_8.

[12] Einar Broch Johnsen, Rudolf Schlatte & S. Lizeth Tapia Tarifa (2015): Integrating deployment architectures
and resource consumption in timed object-oriented models. Journal of Logical and Algebraic Methods in
Programming 84(1), pp. 67–91, doi:10.1016/j.jlamp.2014.07.001.

[13] Kim Guldstrand Larsen, Paul Pettersson & Wang Yi (1997): UPPAAL in a Nutshell. International Journal on
Software Tools for Technology Transfer 1(1–2), pp. 134–152, doi:10.1007/s100090050010.

[14] Jia-Chun Lin, Ingrid Chieh Yu, Einar Broch Johnsen & Ming-Chang Lee (2016): ABS-YARN: A Formal
Framework for Modeling Hadoop YARN Clusters. In Perdita Stevens & Andrzej Wasowski, editors: 19th
International Conference on Fundamental Approaches to Software Engineering (FASE 2016), LNCS 9633,
Springer, pp. 49–65, doi:10.1007/978-3-662-49665-7_4.

[15] Jan Schäfer & Arnd Poetzsch-Heffter (2010): JCoBox: Generalizing Active Objects to Concurrent Compo-
nents. In: European Conference on Object-Oriented Programming (ECOOP 2010), LNCS 6183, Springer,
pp. 275–299, doi:10.1007/978-3-642-14107-2_13.

http://dx.doi.org/10.1109/32.6191
http://dx.doi.org/10.1007/978-3-540-71316-6_22
http://dx.doi.org/10.1007/978-3-7091-1568-8
http://dx.doi.org/10.1007/978-3-642-40615-7_1
http://dx.doi.org/10.1007/978-3-642-35887-6_6
http://dx.doi.org/10.1109/MC.2015.172
http://dx.doi.org/10.1007/978-3-642-25271-6_8
http://dx.doi.org/10.1007/s10270-006-0011-2
http://dx.doi.org/10.1007/978-3-642-34281-3_8
http://dx.doi.org/10.1016/j.jlamp.2014.07.001
http://dx.doi.org/10.1007/s100090050010
http://dx.doi.org/10.1007/978-3-662-49665-7_4
http://dx.doi.org/10.1007/978-3-642-14107-2_13

	1 Introduction
	2 The ABS Language
	3 Modeling a Scalable Service in ABS
	3.1 Modeling the Environment
	3.2 Modeling the Service with Static Deployment

	4 Extending the Service with Autoscaling and Dynamic Deployment
	5 Comparing the Simulation Results
	6 Concluding Remarks

