Static Enforcement of Role-Based Access Control

Asad Ali and Maribel Ferndndez
Department of Informatics, King’s College London, Strand WC2R 2LS, UK
asad.2.ali@kcl.ac.uk

We propose a new static approach to Role-Based Access Control (RBAC) policy enforcement. The
static approach we advocate includes a new design methodology, for applications involving RBAC,
which integrates the security requirements into the system’s architecture. We apply this new approach
to policies restricting calls to methods in Java applications. We present a language to express RBAC
policies on calls to methods in Java, a set of design patterns which Java programs must adhere to for
the policy to be enforced statically, and a description of the checks made by our static verifier for
static enforcement.

1 Introduction

The objectives of an access control system are often described in terms of protecting system resources
against inappropriate or undesired user access. When there is a request for a resource, the system must
check who triggered the request (authentication), check if that user has the permission for the request to
be fulfilled (authorisation) and as a result allow or deny the request (enforcement). Thus, an implemen-
tation of access control requires a specification of the rights associated to users in relation to resources
(a policy). For this, several models of access control have been defined, from simple access control
lists giving for each user the list of authorised operations, to more abstract models, such as the popular
Role-Based Access Control (RBAC) model [7]].

Our focus is on enforcement, for which there exist two main approaches, static and dynamic, with a
recently emerged third approach combining the two: the hybrid approach. The static approach performs
all access checks at compile time, whereas the dynamic approach performs these at run time. In short, the
static approach enables policy violations to be detected earlier, facilitating debugging and reducing the
impact on testing, and usually involves a lower run-time cost. However, the kinds of policies enforceable
statically are not as expressive nor as flexible as those enforceable by the dynamic approach. We refer
to [12] for a more detailed comparison; see also [3]] for hybrid analysis of programs, although not directly
applicable to our problem (discussed further in Section [g).

The overall goal of our work is to enforce general access control policies using a hybrid approach,
that is, using a combination of compile-time and run-time checks. In this paper, we present the first
stage of our work, which is focused solely on static enforcement. Our main result is a mechanism to
fully verify RBAC policies statically. More precisely, we consider implementations of RBAC policies in
Java, where policies restrict method invocations, and present a static source-code verifier to enforce the
policies. Our static verifier ensures that validated programs contain no unauthorised method invocations.

RBAC is a widely used policy specification model. Our static program analysis is applicable to
RBAC implementations under certain important conditions. The first of these is that the source code must
be available at compile time. Secondly, the code should not be modified at run time through mechanisms
such as reflection, therefore our system is aimed at non-malicious programmers. Thirdly, the policy
should not change at run time nor should it rely on dynamic information (which changes throughout
execution). The latter condition holds for the first and second ‘levels’ of the standardised RBAC models:

M.H. ter Beek and A. Ravara (Eds.): 10th International Workshop on © A. Ali & M. Ferndndez
Automated Specification and Verification of Web Systems (WWV’14) This work is licensed under the
EPTCS 163, 2014, pp. 36 doii10.4204/EPTCS.163.4 Creative Commons|Attribution License.

http://dx.doi.org/10.4204/EPTCS.163.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

A. Ali & M. Fernandez 37

flat-RBAC and hierarchical-RBAC [8]], if we disallow administrative changes to the policy (Section
discusses in more detail these restrictions and our plans to relax them in future work). We therefore
provide a policy specification language which supports resource, permission and role definitions, and also
role hierarchies. To the best of our knowledge, these kinds of policies are typically enforced dynamically
in today’s available RBAC systems (e.g., Java Web Security amongst others [, [10]). One significant
reason for this is that during static analysis, it is difficult to know which regions of code are accessible
by users with which roles. This is because the roles are not usually part of the application at the design
and source level — they exist only at run time as part of the (dynamic) security context information. We
have solved this problem through the use of a program design methodology, which integrates the RBAC
model in the system’s architecture.

To highlight the problem, consider the following Java code [[11]]:
if (securityContext.isUserInRole(‘admin’’)) wipeData() ;

These kinds of code snippets are common in RBAC implementions. In such cases, a programmer
would want to be sure that only the authorised role (‘admin’, in this example) can invoke the security-
critical, or protected method (‘wipeData’, in this example). This would usually be done using a dynamic
check — the if statement (which in this case utilises Java Servlet API’s isUserInRole() method [11]),
before any such method invocation. The program would then have to be rigorously tested to ensure that
each role can reach only those invocations that it is allowed to. It would be reasonable to assume that the
number of test cases needed would increase as the number of roles increases and the number of protected
invocations in the program increases.

Catching errors at an early stage statically aids debugging and reduces testing time. So, since a
hierarchical-RBAC (and also flat-RBAC) policy is static (with administrative changes disabled), a pro-
gram implementing this policy should be able to be checked at compile time for policy compliance.
Having said that, just because the policy is static does not mean it is trivial to statically check the pro-
gram for policy compliance. Let us start by removing the dynamic check in our example code — the if
statement — leaving just the invocation of the protected method. We now need to know statically which
roles can perform the invocation. The difficulty is that the active role exists only in the security context of
the program’s execution. In this paper, we show that it is indeed possible to statically enforce hierarchical
(or flat) RBAC policies. Moreover, only the assignment of permissions to roles is assumed to be static,
user-role assignments can change, providing more flexibility.

Summarising, we propose a static solution to RBAC policy enforcement for Java programs through
the use of new RBAC MVC design patterns combined with a set of static verification checks made by
our static verifier. The patterns integrate roles into the program as a set of Model-View-Controller
(MVCQ) [13] components (i.e. classes) for each role. Each role’s associated MVC classes act as a role-
specific interface to accessing resources — protected methods in resources are invoked in these role classes
only. The flow of the program directs users to the set of role classes associated to their active role. Fi-
nally, the protected invocations are checked statically for policy compliance. We present a static verifier,
which performs syntactic checks and call graph analysis to ensure the invocations to methods belonging
to resource classes are made only in role classes, such invocations are permitted according the policy and
role classes do not invoke methods of components belonging to other roles.

The rest of the paper is organised as follows. After recalling the basic notions in RBAC and the
concept of a design pattern in Section[2] we give an overview of the approach in Section 3] followed by
the definition of the policy language in Section 4] Section [5] introduces the RBAC MVC patterns and
Section[6|describes the static verifier. The implementation is described in Section|[7] Section [§|discusses
related work and Section [9 concludes and discusses future work.

38 Static Enforcement of RBAC

2 Preliminaries

Role-Based Access Control is a mechanism to protect resources from unauthorised use in an organisation,
where instead of specifying all the accesses each user is allowed to execute, access authorisations on
objects are specified for roles [7]. Each role is given a set of access rights, and each user is given a
set of roles so that only authenticated users who have activated the required role can access and use the
restricted resources. Roles can be arranged in a hierarchy, where a more senior role ‘subsumes’ another;
the senior role inherits the permissions of the subsumed role and can be assigned further permissions.

A design pattern describes a particular recurring design problem that arises in a specific design
context, and presents a generic scheme for its solution [6]. Patterns are usually described using the
semi-formal Unified Modelling Language (UML) notation, showing its constituent components, their
responsibilities and relationships, and the way in which they collaborate. The goal of patterns is to
provide a mechanism to guide the implementation of a solution to a specific problem.

Our work utilises concepts from the well known and widely used Model-View-Controller (MVC)
pattern. This pattern achieves separation of concern for user interaction [[13]], separating data processing
from user interaction, allowing both to be modified independently. Data processing is handled by model
components, data presentation and user-interaction are handled by view components and the communi-
cation between these two is handled by controller components.

3 Conceptual Overview of Approach

Programs that restrict access to resources from users typically involve an initial user authentication phase,
where users log in and retrieve their access rights, then allowing users to undertake user tasks which may
involve accessing resources, and finally logging out of the system. We present a simplified model of the
general flow of a program which implements RBAC in the left-hand side of Figure [l In RBAC, au-
thentication also involves retrieving and activating the role(s) associated to the user, and logging out also
involves deactivating the role(s). Controlling access most commonly takes place between ‘Tasks’ and
‘Resources’, for example through a reference monitor intercepting all access requests made to resources
at run time, stopping those requests which are unauthorised.

General Flow of RBAC Programs Specialised Flow in Our Approach

Session
Interface

Logout Logout

Access requests
checked at run-

time Role
Interface
Validated Access requests
requests checked at
continue

compile-time

Resources Resources

Figure 1: General and specialised flow of programs that enforce RBAC

In our approach, we divide user tasks into three groups: role tasks that users with certain roles in the
system can perform (these may access resources), other tasks that the policy is not directly concerned

A. Ali & M. Fernandez 39

with and session tasks related to the functioning of the session. After a successful log-in, users are
presented with a session interface. This is made up of MVC components that implement session tasks
e.g. log-out. The session interface will retrieve and hold a list of all the roles assigned to the user in
the policy. From here, the user can choose to perform role tasks by selecting one of the retrieved roles,
resulting in the session interface displaying the role interface for the selected role. Each role has an
associated role interface which implements its role tasks through a set of MVC components: a set of
view components, one controller and one model component. Direct access to resources is prevented;
resources can only be accessed through a role interface. The user interacts with a Role View which
communicates with its Role Controller, which communicates with its Role Model which finally may
access a resource. In this way, if an access request is found at compile time in a class that is part of a role
interface, then the role that the interface belongs to is the role that can reach and execute this request.
Our RBAC MVC patterns guide the implementation of the program to achieve this flow.
We now define the core concepts in our approach.

Definition 1 (Resource). A resource is realised as a resource class containing some methods whose
invocation needs to be restricted. Invocations are restricted for instances of resource classes.

Methods in resource classes are categorised as follows.

Definition 2 (Actions and Auxiliary Methods). An action is a method in a resource class that must
only be invoked by those users with the permission to do so. An auxiliary method is a method in a
resource class that is not part of the policy definition. Such methods are usually required for the correct
initialisation and operation of a class, and should not be invoked directly by users.

Definition 3 (Permission). A permission is a pair [res,act] where res is the name of a resource and act
is the name of an action of that resource. The action is allowed to be invoked on any instance of that
resource class by the role (see Definition [6)) which the permission is assigned to.

Definition 4 (Access). An access to a resource is an invocation or call to an action method of an instance
of a resource class.

Definition 5 (Task). We divide the concept of a user task into three groups as follows. Firstly, a role
task is an operation, or business function, to be performed by an authorised user in a specific role, which
could involve the invocation of one or more actions on resources. Secondly, a session task is an operation
required to correctly manage the session e.g. log-in and log-out. Thirdly, an other task is an operation or
function that is executable by all users, regardless of the notion of role as it does not access resources (in
the access control sense).

An example of arole task is as follows. A user in an Admin role in a GP surgery may need to perform
the task registerPatient, which would involve a call to an action e.g. addPatient inthe Patients
resource.

Definition 6 (Role). At the policy level, a role consists of a name and a list of permissions to access
resources.

In the context of our system, a role is implemented by a set of MVC components: a set of Role View
components (i.e. classes), a Role Controller class and a Role Model class (as defined below). Together,
these provide a role-specific interface for the user to perform tasks. We define these components below.

Definition 7 (Role Model). A Role Model provides role-task methods which should only call those
actions that are permitted for its role. Its name must be prefixed with the name of the role, followed by
‘Model’.

40 Static Enforcement of RBAC

Definition 8 (Role Controller). A Role Controller acts as an intermediary between the Role Model and
View classes. Its name must be prefixed with the name of the role, followed by ‘Controller’. Role
Controller methods are invoked in Role View classes to communicate with the Controller.

Definition 9 (Role View). A Role View provides (part of) the user-interface for users to execute the tasks
of their role. Its name must be prefixed with the name of the role, followed by ‘View’ (followed by any
valid Java identifier).

For any role r, its single associated role model class contains the code that performs the tasks r can
do in the system. The role’s multiple associated role view classes and its single associated role controller
class, provide the means for users that have activated this role to access these tasks (and perform them).

An example of a set of role components is as follows. Firstly, a role model class AdminModel, which
provides a role task registerPatient () that calls on the addPatient () action in the Patients
resource. Secondly, a set of role view components AdminViewPatients, AdminViewAppointments, e.t.c.
Thirdly, a role controller AdminController acting as an intermediary between the role view and model
components.

Definition 10 (Session). A session is the state of the program in which an authenticated user is able to
perform the three kinds of tasks in the system. The session has a user interface composed of a session-
specific interface, the role-specific interface (made up of Role MVC components discussed above) of
the current active role and any interfaces implementing other tasks. The session-specific interface is
made up of a set of MVC components: one Session Model, one Session Controller and a set of Session
View classes. The Session Model implements the session tasks which are: log-in/authentication, role
activation, log-out, calling a role-interface and calling classes that implement other tasks. The Session
Views and Controller provide the means for the user to access these session tasks. The session-specific
interface is always active so that the session tasks are always available to the user. We, of course, have
minimum expectations such as log-out only being available if logged-in and so forth. The session-
specific interface also allows the user to interact with the system via their role by calling a role interface,
or without their role thus calling other-task implementing classes. Names of session classes start with
the string ‘Session’ followed by either ‘Model’, ‘Controller’ or ‘View’. For the latter, since there can be
many Session View classes, any valid class identifier (in Java) is allowed to follow in the name.

The classes required for the session — Session Classes — constitute part of our Trusted Computing
Base (TCB); the other part is the actions, which we trust behave safely. The session classes should
contain the minimum code necessary to implement session tasks, so that the TCB is small. We perform
few checks, and exercise few constraints, on session classes in order for their implementation to be as
flexible as possible. Therefore, we do not deal with authentication in this paper. However, an important
aspect of an RBAC system is the active role, which is to be implemented by the session classes. We give
guidelines for implementing the active role below by first defining the concept of authenticated user.

Definition 11 (Authenticated User). An authenticated user is a user that passes the authentication pro-
cess, which is left open and unrestricted for the programmer in our approach except for one condition: af-
ter successful authentication, the session model class contains a list retrievedRoles containing the names
of the roles given to that user in the policy.

Definition 12 (Active Role). The active role is the single role r, selected by the user from the retrieve-
dRoles (see Definition whose role interface is being displayed to the user so that they may perform
the role tasks associated with r,. Role activation constitutes storing r, in a field called activeRole in the
session model class and invoking the role controller of that role. This process is achieved in a method
activateRole() in the session model class (See Definition . This will result in presenting a role view
of the active role’s role interface to the user by composing it with the session interface.

A. Ali & M. Fernandez 41

4 Policy Language: JPol

We define a policy specification language for hierarchical-RBAC, called JPol, where resources, together
with their associated lists of actions, and roles, together with their associated permissions, can be de-
clared. To simplify, we assume that only the access requests that are allowed are expressed, so all other
requests are not allowed. The policy file will be parsed and represented as a set of tables, to be used only
at compile-time by the static verifier in order to perform the access checks.

The policy language does not support user definitions and user-role assignments, since we do not deal
with authentication in this paper. Since with our static verifier, only the roles which have been declared
in the policy will be permitted to be assigned to users, the resources will still be protected because each
role will have been checked at compile-time to ensure it does not perform any illegal access requests.
The proposed approach is flexible: new users can be added to the system and user-role assignments can
change depending on changes within the organisation.

4.1 Syntax and Representation

The policy language adopts an object-oriented, Java-like syntax designed to make the policy imple-
menter’s transition from target program language, Java, to policy language as effortless as possible.
However, as we will see later, the static verifier relies solely on the information generated as a result
of parsing the policy file. Thus, the syntax of the policy language can change and be adapted to any
environment using hierarchical- (or flat-) RBAC. We could, for instance, use one of the existing RBAC
specification languages.

The grammar of the policy language is as follows, where the keyword subsumes indicates role inher-
itance. The abstract syntax of the policy language is illustrated in Figure

stmts = (stmt *;’)+

stmt D= decRole | decRoleSubsume | decRes
| addActRes | addPermRole

decRole = ‘Role’” ID ‘=’ ‘new’ ‘Role’ name

decRoleSubsume ::= ‘Role’ ID ‘=’ ‘new’ ‘Role’ name
‘subsumes’ ID

decRes = ‘Resource’ ID ‘=’ ‘new’ ‘Resource’ name

addActRes = ID “.” ‘addAction’ name

addPermRole = ID “.” ‘addPermission’ permission

name = ‘(v ID %)’

permission = ‘(“ ID °,” ID °)°

‘ Parenthesis denote a list Bl

Class

Figure 2: Abstract syntax of policy on the left and a class on the right

42 Static Enforcement of RBAC

The parser for the policy specification language checks that a policy declaration is syntactically
correct, producing the Abstract Syntax Tree (AST) shown in Figure [2] It then generates intermediate
data structures — tables called ‘Resources’ and ‘Roles’ containing the information needed for the static
verifier.

Listing |1| shows an example specification in JPol for patient-related resources and permissions for
roles in an example GP/doctor’s surgery, with the resulting tables ‘Resources’ and ‘Roles’ shown in

Figure 3]

Listing 1: Example JPol code declaring Resources with their actions and Roles with their permissions

Resource nhspatient = new Resource(‘Nhspatient’);
nhspatient.addAction(‘getFirstName ’);

Resource privatepatient = new Resource(‘Privatepatient’);
privatepatient.addAction(‘getFirstName ’);

Role nhsdoctor = new Role(‘NHSDoctor ’);
nhsdoctor.addPermission(‘Nhspatient’, ‘getFirstName’);

Role privatedoctor = new Role(‘PrivateDoctor’);
privatedoctor.addPermission(‘Privatepatient’, ‘getFirstName’);
Role admin = new Role(‘Admin’);

admin.addPermission(‘Nhspatient’, ‘getFirstName’);
admin.addPermission(‘Privatepatient’, ‘getFirstName’);
Resources Roles
name actions name permissions
Nhspatient getFirstName NHSDoctor Nhspatient, getFirstName
Privatepatient [getFirstName PrivateDoctor |Privatepatient, getFirstName
Admin Nhspatient, getFirstName
Privatepatient, getFirstName

Figure 3: Example Roles and Resources Tables Representation

4.2 Semantics

We can state the semantics of the policy language in a concise manner by mapping the abstract syntax
to elements of the RBAC model: there is a one-to-one correspondence between the resources, roles and
permissions specified in JPol and in the RBAC model. In particular, an ‘addPermission’ statement in
JPol syntax (see the grammar rule for ‘addPermRole’ above) corresponds directly to a permission in the
RBAC sense. Therefore, we can define policy satisfaction as follows.

Definition 13 (Policy Satisfaction). A Java program satisfies a JPol policy if, for any invocation res.m
that exists in the program, where res is an instance of a resource class Res and m an action, only au-
thenticated users with active role r, such that the JPol policy specifies the permission [Res,m] for r, can
perform res.m.

S Program Design Patterns - RBAC MVC

In order for the target program to be statically checked for policy compliance, it must follow our RBAC
MVC Patterns described below.

A. Ali & M. Fernandez 43

5.1 RBAC Model, Controller, View and Session Patterns

The class diagrams of the patterns are shown together in Fig. @] RBAC Model contains only packages
with names containing ‘model’, describing the design of resource and role model classes. RBAC Con-
troller adds packages with names containing ‘controller’, describing the design of role controller classes.
The empty interface class ‘RoleController’ simply groups all role controllers to simplify the link with
session classes. RBAC View adds packages with names containing ‘view.n’ (where n represents any
valid package identifier in Java) to these, describing the design of sets of role view classes. RBAC Ses-
sion adds the package ‘session’, to guide the implementation of two key RBAC concepts: activating a
role and users having multiple roles being able to switch between them. It also adds the package ‘other’
containing other classes, linking the session classes to them.

view.N controller model

RolelViewN| [| < RolelController ‘1 1 Role1Model ’1—
-methodN(..): .. |~~~ 7 +taskN(..): .. 1| *
| .
. I Resourcel
«interface» <1 onN()-
RoleController +actionN(): ..
' -auxN(): ..
1.* I
|
Role2ViewN FHA — — = Role2Controller | = == — Role2Model 1%
-methodN(..): .. [@ +taskN(..): .. [@——
1 1 1
session
| L other |
. << SessionController
SessionModel 1 <l> o x| LOtherClass

activeRole <1> +activateRole(..): ..

+selectRole(..): .. 1 e SessionView

Figure 4: UML Class Diagram of RBAC Model, RBAC Controller, RBAC View and RBAC Session
patterns. Note that NV represents any valid identifier in Java.

6 Static Verification

Our source-level static verifier takes as input a well-formed program, which is defined as follows:

Definition 14 (Well-formed program). A well-formed program consists of a (syntactically correct) JPol
policy file and a Java program that implements the RBAC MVC patterns defined in Section [5] Imple-
menting the patterns means: there is a set of session classes (one model, one controller and multiple
views associated to the session), a set of resource classes, a set of role classes (sets of one role model,
one role controller and multiple role view classes) and a set of classes which do not fit into the other
groups. In particular for session classes, they: correctly authenticate users, activate the correct role(s)
allowed for the user, switch roles correctly for the retrieved and selected roles.

A well-formed program might contain unauthorised calls to actions on resources. The static verifier
should reject a program if an access violation is found, else accept it. In other words, it should only

44 Static Enforcement of RBAC

accept programs that satisfy the policy (see Definition[I3). In this section, we describe high-level details
of the static verifier, which is composed of a parser that generates abstract syntax representations of the
policy and program, and populates tables, and a checker that uses the abstract syntax tree and tables to
check that the program satisfies the policy.

6.1 Parsing

Section described the AST and tables generated by parsing the policy. We now describe the process
of parsing the program.

The parser generates an AST for each class using standard parsing rules for Java. Figure 2] (right)
shows a simplified AST of a class; note that for the node called class, if it is an object, our parser resolves
the object to obtain the name of its class. In addition, the parser groups classes into Resource classes,
Role Model classes, Role Controller classes, Role View classes, Session classes and Other classes (the
latter are any that do not fit into other groups).

In order to group each class, we use naming restrictions on the package and class names, described
informally as follows. Names of resource classes must be the same as the name of a resource given in the
policy, names of session classes must begin with string ‘Session’ and can then be followed by any valid
identifier in Java - this applies to session model, session view and session controller classes which are
grouped together into one group. Names of role model and role controller classes must begin with the
name of a role given in the policy followed by the string ‘Model’ and ‘Controller’ respectively. Names
of role view classes must begin with the name of the role followed by the string ‘View’ and can then be
followed by any valid identifier in Java.

This phase also generates tables containing the names of all classes in each group except Other
classes. We call these tables ResourceClasses, RoleModelClasses, RoleControllerClasses, RoleView-
Classes and SessionClasses. This is to simplify the process of looking up called classes in the checks
made by the verifier (discussed below).

6.2 Static Verifier Checks

The checks performed on each group of classes are described informally at a high level as follows.

6.2.1 Resource Class Checks

The checks on resource classes, performed by a subprogram of the verifier called ResourceClassChecks,
are described below.

1. For each method (each element of the node methods, see Figure @), we search the actions sub-table
(generated when parsing the policy, see Figures |2/ and [3) for Class.name (which is the name of a
resource) then:

(a) If the method name is in this sub-table, then the value of the node modifier (see Figure [2)
must be ‘public’.

(b) Else the value of the node modifier must be ‘private’.
2. For each call (each element of the node calls, see Figure 2) we check that:

(a) The called class (the node called class) is not the name of a role model class. This is done
by searching the names of classes in the table RoleModelClasses generated by the parser.

A. Ali & M. Fernandez 45

(b) The called class is not the name of a role controller class. This is done by searching the
names of classes in the table RoleControllerClasses generated by the parser.

(c) The called class is not the name of a role view class. This is done by searching the names of
classes in the table RoleViewClasses generated by the parser.

(d) The called class is not the name of a session class. This is done by searching the names of
classes in the table SessionClasses

6.2.2 Role Model Class Checks

The checks on role model classes, performed by a subprogram called RoleModelClassChecks, are de-
scribed below. The role name the class belongs to is obtained by removing the substring ‘Model’ from
Class.name.

1. For each call, we check that:

(a) If the called class is a resource class, then
i. If the called method (the node called method) is an action, which is done by searching
the actions sub-table for that resource in the table Resources generated when parsing
the policy, see Figures [2| and [3| then the pair of values [called class, called _method]
must appear in the permissions for the associated role of the class (done by searching
the permissions sub-table of the matching role in table Roles)

(b) The called class is not the name of a different role model class. This is done by checking if
the called class contains the substring ‘Model’, then the name of the class must be the same
as the value in the node Class.name.

(c) The subsequent checks are equivalent to Section [6.2.1| Checks [2b] [2c| and [2d]

6.2.3 Role Controller Class Checks

The checks on role controller classes, performed by a subprogram called RoleControllerClassChecks,
are described below. The role name that the class belongs to is obtained by removing the substring
‘Controller’ from Class.name.

1. For each call we check:

(a) If the method called is an action, we do the same check as Section[6.2.2] Check [Tal

(b) The called class is not the name of a different role’s role model class. This is done by check-
ing if the value of called _class contains the substring ‘Model’, then remove this substring
and check that this called role matches the role that this role controller class belongs to.

(c) The called class is not the name of a different role’s role controller class. This is done by
checking if the value of called class contains the substring ‘Controller’, then this value must
be the same as the value in Class.name.

(d) The called class is not the name of a different role’s role view class. This is done by finding
the suffix of the value in called class which begins with the string ‘View’ and ends at the
end of the value, then removing this entire suffix. The remaining value must match the role
name of this role view class.

(e) The called class is not the name of a session class.

46 Static Enforcement of RBAC

6.2.4 Role View Class Checks

The checks on role view classes, performed by a subprogram called RoleViewClassChecks, are described
below. The role name the class belongs to is obtained by finding the suffix of the value in Class.name
which begins with the string ‘View’ and ends at the end of the value, then removing this entire suffix.

1. For each call we check:

(a) If the method called is an action, we do the same check as Section[6.2.2] Check [Tal

(b) The remaining checks are equivalent to Section Checks [2a] and 2d] and Section
Checks [Idand[1d

6.2.5 Session Class and Other Class Checks

For each method invocation within a session class, we check that the method called does not belong to a
resource class or role model class (due to Definitions[I0]and [I2). For each method invocation in an other
class, we check that it is not calling a method belonging to resource classes, or to role or session classes.
We omit details of these checks due to space restrictions.

6.3 Properties

The static verification checks described in the previous sections ensure that programs that pass the checks
do not perform invalid access requests. More precisely, the source code of programs satisfies the propo-
sitions stated below, for which we first define the notion of OK-program.

Definition 15 (OK-program). A program P is OK, written OK (P), if its actions are ‘public’ and auxiliary
methods are “private’; resource classes do not invoke methods of a role model, role controller, role view
or session class; role model methods do not invoke session classes, role controller classes, role view
classes or an action that is not allowed by the policy for the associated role; role controller classes do
not invoke session classes or an action that is not allowed by the policy for the associated role; role view
methods do not invoke role model or session classes or an action that is not allowed by the policy for the
associated role; role classes do not call classes belonging to other roles; session classes do not invoke
resource classes or role classes except for role controllers and role views; other class methods do not call
role, resource, or session classes.

Proposition 1. Let P be a well-formed program. P is accepted by the static verifier if and only if OK(P).
Proposition 2. A well-formed program P accepted by the verifier satisfies the policy (see Definition[T3).

We provide an intuitive explanation of the propositions as follows. According to Definition [13] we
need to show that only authorised users with active role r having permission [Res,m] can invoke the
action m of an instance of Res. Let res.m be a call to m in the program P, for which the parser has
identified the called class to be Res and the called method to be an action m. Since P is well-formed, by
Definition [T4] it implements the RBAC MVC patterns. Therefore, the user u executing res.m has been
authenticated and is in a session, where by Definition |10} one of u’s roles, say r, has been activated.

By Definition [I2] this implies that r’s role controller has been invoked. Moreover, since P has been
accepted by the verifier, by Proposition I, OK(P). Once the role controller for r has been invoked, by
Definition[I5]the Java code executed from the role classes associated to r contains only invocations res.m
that are authorised by the policy, there are no calls to methods in role classes belonging to other roles,
and any call to a method in a class which is not one of r’s role classes (except for a call to a session
class) will not contain invocations to actions or to role classes. Note that the only classes outside role

A. Ali & M. Fernandez 47

classes which could call a role class are session classes, which, since the program is well-formed, must
satisfy the requirements of the RBAC-MVC pattern. In particular, we trust the calls to role classes made
in session classes.

To provide flexibility to programmers, we have allowed actions to be freely invoked within resource
classes. We assume that actions are not restricted in their behaviour (i.e., the policy specifies the actions
that a role is allowed to call, and it does not restrict the invocations within those actions). The session
classes are the critical part of the program in our approach, in which role class invocations are trusted
and not verified. The minimal Trusted Computing Base in our approach is therefore the action methods
and the session classes. In future work, we will extend the verifier to include checks within actions, to
alert programmers if an action calls another action not allowed by the policy.

7 Implementation and Evaluation

Implementation Our implementation consists of a JPol policy parser, produced using the ANTLR-
Works tool [3]], and a static analysis program which are both part of a plug-in we have produced for
the Eclipse Integrated Development Environment (IDE) [9] ﬂ Eclipse plugins are able to use the Java
Development Tools (JDT) Application Programming Interface (API) provided by Eclipse, whose ben-
efits include simplifying static code analysis. In Java, there are three ways to invoke a method; either
invoking a (‘static’) method on a class e.g. ‘ClassName.methodOne()’, invoking a method on a vari-
able e.g. ‘x.methodOne()’ or invoking a method on the object returned by another method call e.g.
‘x.methodOne().methodTwo()’. Using JDT we can get the type binding for variables and method invo-
cation expressions, and so we can check if a resource’s actions are being called or if one role’s compo-
nents invoke another role’s components. This is sufficient to implement all the static checks discussed
in Section[6] We have tested our plug-in on a simple doctor’s surgery web database application imple-
mented in Java Enterprise Edition (JEE) (refer to [11]] for an overview of JEE). The tool outputs helpful
error messages in Eclipse’s editor window, consisting of the class name and line number where the error
occurs, the kind of error that has occurred (e.g. ‘Invocation not permitted’) and a description of why that
error could have occurred.

See Figure [5|for an example of the verifier catching an error, utilising the policy fragment described
in Listing

public class PrivateDoctorModel {

& Static Verifier View 2 = 0
public PrivateDoctorModel() { ERRORS FOUND IN ROLE MODEL CLASSES: ~
#*% POLICY VIOLATION LINES BELOW ***/ ERROR: in Class PrivateDoctorModel.iava
Mhspatient nhspatient = new Nhspatient(); line21 INVOCATION NOT PERMITTED:

nhspatient.setFirstname("Sauron™); The role ["PrivateDoctor"] IS NOT permitted to call
%* END OF POLICY VIOLATION LINES *=/ this action [Nhspatient.setFirstname]

Figure 5: An example error caught by the static verifier

Evaluation The static approach to access control enforcement has limitations. Firstly, the policy can-
not change after compilation, which prevents administrative changes in policies such as changing role
permissions. Secondly, permissions cannot be based on any information that changes at run-time. For

'The plugin and a sample program can be found at www.inf.kcl.ac.uk/pg/aliasad

48 Static Enforcement of RBAC

flat or hierarchical RBAC policies, this is sufficient. For more general versions of RBAC, these two re-
strictions can be relaxed by combining the static approach with a dynamic one, which will be the subject
of future work. User-to-role assignments can change in our approach and these tend to change more
often than permission-to-role assignments. Thirdly, the program code must be available at compile-time
in order to analyse it statically.

As aresult of the analysis, policy enforcement is done exclusively at compile-time, aiding debugging
since the program requires no run-time checks for policy enforcement.

The limitations of the static approach do not mean that it is not useful. A policy commonly contains
some static and some dynamic parts (even though these may not be clearly separated). For example, just
after log-in, usually some static part of the policy will be in effect. Therefore, the static approach can be
used in combination with dynamic checks within a hybrid checker.

Using our design pattern, it takes an initial effort for an architect/programmer to design/implement
an initial set of resource classes and one set of Role MVC classes. After this initial stage, designing/im-
plementing the program becomes easier than without using the patterns. Our patterns help to relate the
functionality of the program with the roles that can access that functionality. Adding this related func-
tionality becomes easier - achieved just by adding more sets of Role MVC classes. Our pattern also
helps in the design of resources because it helps to clearly separate the resources from the rest of the
program. Current limitations of our patterns are that roles that have many similar operations will require
completely separate Role MVC classes, possibly duplicating code. Moreover, role hierarchies are de-
clared in the policy but not reflected in the design of the program; the permissions of a subordinate role
are copied to the senior one and this data is used in the static analysis only. Reflecting role hierarchies in
the program would reduce code duplication, which we intend to address in future work.

Lastly, it is difficult to compare the performance of a program designed using a pattern and the same
program designed without using it. Performance is not usually taken into consideration when designing
a pattern, especially in the case where performance gains are not the main goal of a pattern - as in our
approach. We can be sure that in our approach, policy enforcement will have no impact on run-time
resources, since no access-checks will be made at run-time.

8 Related Work

Formal approaches for the verification of properties of access control policies usually rely on purpose-
built logics or rewrite-based techniques [4} (16} 15, 2]. In this paper, we have focused on verifying
that a program enforces a policy, rather than on proving properties of the policies. Bodden et al. [3]]
enforce security properties in programs using a hybrid approach. They generate code for run-time checks,
then perform compile-time analysis to eliminate some of these. In their approach, the access control
enforcement of (static) roles would not be possible at compile-time, because they cannot determine, at
compile-time, the access requests that each role can make. Our design pattern solves this. Therefore, in
their approach, a static RBAC policy would be enforced dynamically.

In Java Web security, there are two types of access control using roles: declarative and programmatic
security. Both of these use dynamic checks to restrict access to methods, the former uses XML based
permission declarations whilst the latter uses provided Java methods such as isUserInRole () [10], [1].
Our approach requires no dynamic checks.

In design-level security, generally, security restrictions are specified at the design stage of a pro-
gram’s lifecycle. An example is Model Driven Security [1]]. In this work, code to perform access checks
is generated from access control specified in the UML model of the application. The security code gen-

A. Ali & M. Fernandez 49

erated for Java utilises Java Web security mechanisms which are dynamic (as discussed above), whereas
our approach uses static checks.

There exists a body of work on security patterns. In [14], the authors describe access control, specif-
ically RBAC and Metadata-based Access Control, using patterns and run time checks. Steel, Nagappan
and Lai [17] propose several security patterns that are specifically targeted towards securing Java (En-
terprise) applications. Their work takes a dynamic approach to enforcement; in fact, all patterns that
we have seen that aid in the implementation of a policy rely on dynamic mechanisms. Many patterns in
[[L7] can and should be used in conjunction with our patterns to secure the overall application aside from
enforcing RBAC statically.

Zarnett et al. [18]] enforce RBAC in Java using proxy objects in Remote Method Invocation. Their
work has the effect of removing the need for run-time access control checks, however their approach
relies on annotations. Understanding where a specific annotation should go can be a difficult task, espe-
cially in large programs. Moreover, specifying the policy via annotations leaves the policy fragmented
throughout the program. In our approach, we check that the policy has been implemented correctly, e.g.
that all the resources and roles have been implemented, however they have no such verification tech-
niques since there exists no central policy specification, which means that errors are discovered later (at
run time). Also, recalling the model in Figure I} their approach enforces access restrictions at the level
of the ‘Resources’, by creating proxy objects containing only those methods which are authorised for
the currently active role. Our approach enforces access control at the level of ‘Tasks’, where instead of
creating proxy objects of each resource for each role, all authorised methods for each role are provided
by a role-specific user-interface.

9 Conclusion and Future Work

We have described a new system to statically check that a target program respects its RBAC policy. If
the program successfully passes the static verifier’s checks, then when using the program, the logged
in user can only call those methods that have been authorised for the role currently activated for them.
Therefore, no run-time access checks are needed.

In future work, we will develop a hybrid approach for policies with dynamic conditions, inlining
code in the program to check these at run-time. This hybrid approach would utilise our concept of
implementing the groupings which access rights/users are assigned to in the policy (roles in this paper)
as a set of MVC components, and then statically verifying static groups whilst dynamically verifying
dynamic groups. The result would allow static parts of the policy to be enforced statically, whilst still
allowing dynamic policies to be expressed and then enforced dynamically.

Furthermore, we will consider systems where a policy is defined as a combination of existing policies,
extending the approach in order to allow programmers to combine validated RBAC implementations
without re-doing all the static checks.

References

[1] David Basin, Jirgen Doser & Torsten Lodderstedt (2006): Model Driven Security: From UML
Models to Access Control Infrastructures. ~ACM Trans. Softw. Eng. Methodol. 15(1), pp. 39-91,
doi:10.1145/1125808.1125810.

[2] Clara Bertolissi & Maribel Fernandez (2008): A Rewriting Framework for the Composition of Access
Control Policies. In: Proceedings of the 10th International ACM SIGPLAN Conference on Princi-

http://dx.doi.org/10.1145/1125808.1125810

50

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

Static Enforcement of RBAC

ples and Practice of Declarative Programming, PPDP 08, ACM, New York, NY, USA, pp. 217-225,
doi:10.1145/1389449.1389476.

Eric Bodden, Patrick Lam & Laurie Hendren (2012): Partially Evaluating Finite-State Runtime Monitors
Ahead of Time. ACM Trans. Program. Lang. Syst. 34(2), pp. 7:1-7:52, doi:10.1145/2220365.2220366.

Piero A. Bonatti & Pierangela Samarati (2004): Logics for Authorizations and Security. In Jan Chomicki,
Ron van der Meyden & Gunter Saake, editors: Logics for Emerging Applications of Databases, Springer
Berlin Heidelberg, pp. 277-323, doij10.1007/978-3-642-18690-5_8|

Jean Bovet & Terence Parr (2008): ANTLRWorks: An ANTLR Grammar Development Environment. Softw.
Pract. Exper. 38(12), pp. 1305-1332, doi:10.1002/spe.v38:12.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad & Michael Stal (1996): Pattern-
oriented Software Architecture: A System of Patterns. John Wiley & Sons, Inc., New York, NY, USA.

David Ferraiolo & Richard Kuhn (1992): Role-Based Access Control. In: In 15th NIST-NCSC National
Computer Security Conference, pp. 554-563.

David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn & Ramaswamy Chandramouli (2001):
Proposed NIST Standard for Role-based Access Control. ACM Trans. Inf. Syst. Secur. 4(3), pp. 224-274,
doii10.1145/501978.501980.

The Eclipse Foundation: Eclipse. Available at http://www.eclipse.org,

James Gosling, Bill Joy, Guy Steele & Gilad Bracha (2005): Java(TM) Language Specification, The (3rd
Edition) (Java (Addison-Wesley)). Addison-Wesley Professional.

Arun Gupta (2013): Java EE 7 Essentials. O’Reilly Media.

Kevin W. Hamlen, Greg Morrisett & Fred B. Schneider (2006): Computability Classes for Enforcement
Mechanisms. ACM Trans. Program. Lang. Syst. 28(1), pp. 175-205, doij10.1145/1111596.1111601.

Glenn E. Krasner & Stephen T. Pope (1988): A Cookbook for Using the Model-view Controller User Interface
Paradigm in Smalltalk-80. J. Object Oriented Program. 1(3), pp. 26-49. Available athttp://dl.acm.org/
citation.cfm?1d=50757.50759.

Torsten Priebe, Eduardo B. Fernandez, Jens 1. Mehlau & Giinther Pernul (2004): A pattern system for access
control. In: Research Directions In Data and Applications Security X VIII, Kluwer, pp. 25-28, doi:10.1007/1-
4020-8126-6 16,

A. Santana de Oliveira (2008): Réécriture et Modularité pour les Politiques de Sécurité. Ph.D. thesis, Uni-
versité Henri Poincare, Nancy, France.

Karsten Sohr, Michael Drouineaud, Gail-Joon Ahn & Martin Gogolla (2008): Analyzing and Managing Role-
Based Access Control Policies. IEEE Transactions on Knowledge and Data Engineering 20(7), pp. 924-939,
doi:10.1109/TKDE.2008.28l

Christopher Steel, Ramesh Nagappan & Ray Lai (2006): Core security patterns: Best practices and strategies
for J2EE, Web services, and identity management. Prentice Hall Core Series, Prentice-Hall. Available at
http://www.coresecuritypatterns.com/,

Jeff Zarnett, Mahesh Tripunitara & Patrick Lam (2010): Role-based Access Control (RBAC) in Java via

Proxy Objects Using Annotations. In: Proceedings of the 15th ACM Symposium on Access Control Models
and Technologies, SACMAT ’10, ACM, New York, NY, USA, pp. 79-88, do0ii10.1145/1809842.1809858.

http://dx.doi.org/10.1145/1389449.1389476
http://dx.doi.org/10.1145/2220365.2220366
http://dx.doi.org/10.1007/978-3-642-18690-5_8
http://dx.doi.org/10.1002/spe.v38:12
http://dx.doi.org/10.1145/501978.501980
http://www.eclipse.org
http://dx.doi.org/10.1145/1111596.1111601
http://dl.acm.org/citation.cfm?id=50757.50759
http://dl.acm.org/citation.cfm?id=50757.50759
http://dx.doi.org/10.1007/1-4020-8126-6_16
http://dx.doi.org/10.1007/1-4020-8126-6_16
http://dx.doi.org/10.1109/TKDE.2008.28
http://www.coresecuritypatterns.com/
http://dx.doi.org/10.1145/1809842.1809858

	1 Introduction
	2 Preliminaries
	3 Conceptual Overview of Approach
	4 Policy Language: JPol
	4.1 Syntax and Representation
	4.2 Semantics

	5 Program Design Patterns - RBAC MVC
	5.1 RBAC Model, Controller, View and Session Patterns

	6 Static Verification
	6.1 Parsing
	6.2 Static Verifier Checks
	6.2.1 Resource Class Checks
	6.2.2 Role Model Class Checks
	6.2.3 Role Controller Class Checks
	6.2.4 Role View Class Checks
	6.2.5 Session Class and Other Class Checks

	6.3 Properties

	7 Implementation and Evaluation
	8 Related Work
	9 Conclusion and Future Work

