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We present a rigorous framework for the composition of Web Services within a higher order logic
theorem prover. Our approach is based on the proofs-as-processes paradigm that enables inference
rules of Classical Linear Logic (CLL) to be translated into π-calculus processes. In this setting,
composition is achieved by representing available web services as CLL sentences, proving the re-
quested composite service as a conjecture, and then extracting the constructed π-calculus term from
the proof. Our framework, implemented in HOL Light, not only uses an expressive logic that allows
us to incorporate multiple Web Services properties in the composition process, but also provides
guarantees of soundness and correctness for the composition.

1 Introduction

The general aim of the current research is to design and implement a rigorous framework for the compo-
sition and formal verification of Web Services based on higher order logic. Our approach is motivated by
recent work on the automated composition of Semantic Web Services using Intuitionistic Linear Logic
that has shown promising results [22, 23].

We focus mainly on the complex task of quality-driven Web Services composition. This involves
the appropriate collection and combination of multiple Web Services in order to achieve a composite
service that can perform a complex task. The composition needs to take into consideration non-functional
restrictions, including location, cost, and time, and be quality-driven because the system should ensure a
user-specified Quality of Service based on the quality provided in each of the participating Web Services
descriptions. The complexity of the task is compounded by the dramatic increase in available Web
Services, as well as the great variety of conceptual models used for the descriptions of the services.

1.1 Overview

Our aim is to deploy our system as an automated, offline (as opposed to on-the-fly) Web services com-
poser. Using an expressive logic allows the system to incorporate all of the aforementioned information
when composing the services. However, this also means a need to maintain a balance in the tradeoff
between expressiveness and decidability. We believe the latter to be important since decidability directly
affects the degree of automation and, therefore, the user-friendliness of the system.

The compositions are accomplished using the proofs-as-processes paradigm as introduced by Abram-
sky [1] and Bellin and Scott [3]. Abramsky showed the relevance between a Classical Linear Logic (CLL)
[8] proof and the π-calculus [17] by modifying the Curry-Howard isomorphism and using the formulae-
as-types paradigm [12]. Proofs are viewed as π-calculus processes (instead of λ -calculus functions).
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2 A theorem proving framework for the formal verification of web services composition

Bellin and Scott formalised Abramsky’s translation of a fragment of CLL to π-calculus and provided
proofs of soundness and correctness of the translation.

We exploit this translation by producing Web Services compositions as CLL proofs, with the re-
quested service set as a conjecture in each case. The π-calculus representation of the composite service
is then extracted by translating the proof based on the proofs-as-processes paradigm.

Our implementation is being developed within the higher order proof assistant HOL Light [10]. The
system has equality as the only primitive concept and a few primitive inference rules that form the basis of
more complex rules and tactics. Built on top of these, HOL Light has automated methods for proofs such
as model elimination [9] and decision procedures. Additionally, it has an array of conversion methods
that allow for very efficient and fine-grained manipulation (such as rewriting or numerical reduction) and
automatic proofs of formulas. The system is based on the LCF approach [19], which, guarantees that
any proved theorem is a logical consequence of the primitive axioms.

1.2 Motivating Example

We consider the case of ordering a ski set, as presented by Rao et al. [23]. In this, we compose a
core service with value-adding services, ie. services that have minor, independent functionality, such as
currency or measurement conversion, that can be used as addons to the core functionality. The core
service “selectSki”, returns the price in US dollars of a ski set using the ski length, brand, and model as
input parameters. There are also various value-adding services whose functionality is demonstrated in
the diagram provided in Figure 1. The requested composite service must return the price of a ski set in

Figure 1: Diagrams of the available services for the Ski example.

Norwegian Crowns (NOK) given the user’s height, weight, and skill level as well as a price limit. The
diagram of the requested service can be found in Figure 2. Some non-functional attributes have been

Figure 2: Diagram of the requested service for the Ski example.

attached to the services. A cost of 10 NOK is attached to “selectBrand” and 20 NOK for “selectModel”,
the “USD2NOK” service only replies to requests that are certified by Microsoft and the “selectSki”
service is located in Norway (note that this information is not apparent in the diagrams).

In Section 2, we will describe the theoretical background of our work by briefly explaining the main
concepts of CLL and the π-calculus. Then, in Section 3, we introduce the CLL to π-calculus translations
of the original proofs-as-processes paradigm and give an intuitive interpretation for some of the rules.
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In Section 4 we present the results we obtained from our system for the Ski example, followed by an
overview of the related work in Section 5. We conclude in Section 6 with our plans for future work.

2 Background

In this section, we discuss some of the theoretical background of the proofs-as-processes paradigm. In
particular, we briefly explain the main concepts of Classical Linear Logic in Section 2.1 and π-calculus
in Section 2.2. We focus on how these two languages can be used to describe Web Services, which is the
first step towards achieving Web services composition using the proofs-as-processes paradigm.

2.1 Classical Linear Logic

Girard proposed linear logic (LL) as a refinement to classical logic [8]. In LL, the emphasis is not merely
on the truth of a statement as in the classical logic but also on formulas that represent resources. The
classical rules of contraction and weakening are not allowed in LL and therefore assumptions cannot be
ignored or copied. For example, if a constant A is assumed twice, it is considered a distinct case than
when it is assumed once. In order to achieve a proof, all assumptions must be “consumed” as resources.
Contraction and weakening rules are only used on assumptions with additional modal connectives called
exponentials, such as the “of-course” operator “!”. The use of these connectives allows for classical logic
to be encoded within LL. In computer science, LL has been used as a direct and declarative approach to
reasoning about various computational models related to services such as Petri Nets [18].

2.1.1 Description

For the purposes of Web Services representation and composition, we aim to use propositional Classical
Linear Logic (CLL). This version of LL includes multiplicative conjunction and disjunction, additive
conjunction and disjunction, linear negation and the of-course and why-not operators (also referred to
as exponentials). All these operators can be intuitively interpreted in the context of resources for Web
services and we informally discuss the semantics for some of them next:

• Multiplicative conjunction or the “tensor” operator (A⊗ B) indicates a simultaneous operation
which, in the context of resources, refers to the simultaneous production of A and B. In order to
prove A⊗B, the set of available resources must be split in two subsets, one that can achieve A and
one that can achieve B. Multiplicative conjunction can be seen as the counterpart of conjunction
in classical logic. In the context of Web Services, multiplicative conjunction can also be used to
represent quantities of consumable resources such (most typically) money and time.

In our Ski example, the selectModel service outputs the selected brand and a particular model
simultaneously. If we represent these outputs as resources in CLL, the selectModel service
output would be (BRAND⊗MODEL).

• Additive disjunction or the “plus” operator (A⊕B) can be viewed as the equivalent of exclusive
disjunction in classical logic and indicates that either of A or B are produced but not both. When
representing Web Services, additive disjunction can be used to indicate alternative results. Most
typically it is used to express the possibility of a Web Service throwing an exception instead of
producing the expected result. It is worth mentioning that most web services composition method-
ologies do not take exceptions into consideration.
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In our example, the selectSki service may fail to return the price of the selected ski if, for
example, the particular model is out of stock or is not available for the given length. In this
case, selectSki will output an exception. In CLL we can represent the output of selectSki as
(PRICE USD⊕EXCEPT ION).

• Linear negation (·⊥) in CLL obeys similar laws to those of classical negation. The symmetry of
CLL becomes evident in the connection of the dual operators through linear negation. For example,
negating the tensor operator ((A⊗B)⊥) results in a “par” operator (A⊥`B⊥).
In general, we use negated CLL terms to represent input (as opposed to output for non-negated
terms). For example, the input of the Cm2Inch process can be represented as (LENGT H CM⊥).

• The of-course (!A) and why-not (?A) operators (also refered to as “exponentials”) are used to
represent unlimited resources. They allow controlled versions of the weakening and contraction
rules. Essentially, these correspond to the replication of a resource as many times as necessary.
For example, in the context of Web Services, functional parameters such as input and output are
reusable in contrast to states which, once “consumed” through a state transition, are no longer
applicable.

Generally, a two-sided sequent calculus is used for the representation of the CLL inference rules.
The left and right versions of each inference rule serve the purpose of handling a connective on the left
or right hand side of the turnstyle respectively. However, given the observation that Γ ` ∆ is equivalent
to ` Γ⊥, ∆ we can eliminate half of the rules by using a one-sided sequent calculus representation. This
has an important impact in the automation of CLL proofs, as the number of available inference rules in
the proof search is effectively halved. We note that Bellin and Scott also use a one-sided sequent calculus
representation for CLL in their work.

The one-sided sequent calculus versions of the inference rules for the multiplicative-additive frag-
ment (MALL) of CLL (ie. without the exponentials) are presented in Figure 5. We note that, in this
particular figure, the rules are annotated using process calculus channel names (see Section 3 for more
details). From here on in this paper, unless otherwise stated, every reference to CLL corresponds to
MALL as this is the fragment we are currently focused on. In the future, we plan to increase the expre-
siveness of our system by extending the logic to the full CLL, although the latter is undecidable [13].

2.1.2 Describing Web Services using CLL

Inspired by the translation of Web Services to Intuitionistic Linear Logic (ILL) proposed by Rao [22], we
utilise a similar approach for CLL. The CLL syntax has significant differences from ILL though; the most
important being the lack of linear implication. As already mentioned, we have chosen to interpret negated
terms as input and normal terms as output since this appears somewhat more intuitive1. The resulting
formula is shown in Figure 3. Note that we have only kept functional properties of web services, ie.
input (~I), output (~O), preconditions (~P) and effects (~F). This formula can be expanded to incorporate
non-functional properties, such as cost and time.

Following this formula, the translation of the available services and the request service of the Ski
example (see Figures 1 and 2) in CLL are shown in Figure 4. We note that these translations are annotated
with process calculus terms using the “: : ” and “:” operators. These are explained in Section 3.1.

This formula also forms the basis for the translation of Web Services described in a variety of lan-
guages, including WSDL [6], BPEL4WS [2] or, in the case of Semantic Web Services, OWL-S [15],

1The duality of the CLL connectives allows this arbitrary choice [3].
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` ~P,~I,((⊗
i
~F)⊗ (⊗

i
~O))⊕E)

Where: ⊗
i
(a1,a2, ...,an) = a1⊗a2⊗ ...⊗an

Figure 3: The CLL representation of a Web Service.

Available services:
` SelectModel : : smp :PRICE LIMIT⊥, sms :SKILL LEV EL⊥, sso :(BRAND⊗MODEL)
` SelectLength : : slh :HEIGHT CM⊥, slw :WEIGHT KG⊥, sll :LENGT H CM
`Cm2Inch : : cic :LENGT H CM⊥, cii :LENGT H IN
`Usd2Nok : : unu :PRICE USD⊥, unn :PRICE NOK
` SelectSki : : ssl :LENGT H IN⊥, ssb :BRAND⊥, ssm :MODEL⊥, sso :(PRICE USD⊕EXCEPT ION)

Request:
` P : : x :PRICE LIMIT⊥, y :SKILL LEV EL⊥, z :HEIGHT CM⊥, w :WEIGHT KG⊥, t :(PRICE NOK⊕EXCEPT ION)

Figure 4: The available services and the request for the Ski example translated into CLL with process
annotations.

the follow-up of DAML-S [7] (used by Rao et al. as part of their work), into CLL. The details of these
translations are beyond the scope of the current paper though.

2.2 The π-calculus

The π-calculus is a formalism aimed at the description of concurrent processes [17]. The name is used to
show the connection to the λ -calculus as a minimal, abstract representation. In the π-calculus, processes
are described atomically as independent entities. They are attached to channels that use variables to
denote the input or output of the process.

2.2.1 Description

The syntax of the polyadic π-calculus is presented by the following grammar:

P ::= x(~y).P | x〈~y〉.P | P||P | P+P | (ν~x)P | !P | 0

A channel x attached to process P that allows it to receive a message that will be bound to the vector of
names~y is represented as x(~y).P. Similarly, x〈~y〉.P depicts a process with channel x that can send a mes-
sage through name~y as output. It is worth noting that the infix dots in these two cases are often omitted
for simplicity. The expression P||P describes the parallel composition of two processes whereas (ν~x)P
describes a vector of names ~x that is local to P. Finally, !P describes a process P that can be replicated
and 0 represents the “nil” process that has no functionality. Note that in some more minimal versions, the
non-deterministic choice P + Q between two processes P and Q is excluded from the syntax. It is worth
remarking also, that there is no explicit representation of sequential processes. Interactions between par-
allel processes are represented as reductions of the π-calculus terms (similar in form to the reductions of
λ -calculus). There are other extensions to the π-calculus syntax and other important concepts such as
bisimulation equivalence (or bisimilarity) [26] which go beyond the scope of the current work.
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Reductions of π-calculus terms are defined formally using a set of rules. We will only present the
most significant reduction rule that describes the interaction between two parallel processes:

(...+ x(~a).F)||(...+ x〈~b〉.C)→ F [~b/~a]||C (1)

The communication described here happens between process C with output ~b over channel x and
process F with input ~a over the same channel x. The processes run in parallel (denoted by the “||”
symbol) and for their interaction C sends~b to F over x yielding F ||C where each free occurence of the
names in~a in F is replaced by the names in~b. It must be noted that the above interaction is only allowed
if the two involved vectors~a and~b have the same size.

Moreover, in addition to the reduction rule, a set of rules is defined that allow us to express structural
congruence (≡) relations between processes. For example, P+ 0 ≡ 0+P ≡ P, P||0 ≡ 0||P ≡ P and
!P ≡ P||!P are all defined as structural congruence rules. This concludes a general overview of the
π-calculus, its reductions, and its intuitive interpretation.

The π-calculus has formed the basis for a variety of process algebras used to describe the communi-
cation between agents, including LCC [24] and BPEL4WS [2]. Additionally, there are multiple available
tools that perform a variety of tasks involving π-calculus terms. For example, the Mobility Workbench
(MWB) [29] performs checks for open bisimulation equivalences [26] (which roughly corresponds to
checking agents for equivalent behaviour) and the PiVizTool [4] is a tool written in Java that can graph-
ically represent agents described in π-calculus and allows a step by step, user-controlled monitoring of
the interactions in a multi-agent environment.

3 The proofs-as-processes paradigm

In the proofs-as-processes paradigm, Bellin and Scott [3] give a corresponding π-calculus term for each
of the CLL inference rules. As the inference rules are applied within a proof, these correspondences
allow the construction of a π-calculus term that corresponds to the entire proof. At the end of the proof,
it is guaranteed that applying the possible reductions at the resulting π-calculus term corresponds to the
process of cut-elimination in the proof. This means that the cut-free version of the proof corresponds to
an equivalent π-calculus term that cannot be reduced further.

3.1 Description

Bellin and Scott attach free variables as proof annotations to every CLL sequent. Each of these variables
corresponds to a π-calculus communication port. Moreover, the process calculus term attached to the
rule is dependent on the processes attached to each of the premises of the rule and the process annotations
of the involved sequents. For example, let us consider the “tensor” rule for CLL including the process
annotations as shown below:

.... F
` ~w :Γ, x :A

.... G
`~u :∆, y :B

` ~w :Γ, ~u :∆, z :A⊗B
⊗

(2)

Processes F and G are attached to the two premises of the rule based on any previous proof steps. The
process calculus term attached to the rule, also refered as the “translation” of the rule to the π-calculus
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is given by the following term:
x,y⊗
z
(F,G)~w~uz≡ νxy(z〈xy〉(F~wx||G~uy)) (3)

We note that term (3) is dependent on processes F and G and also on the channel names x, y, ~w
and ~u attached to the involved sequents. The free variables found in the annotations of the sequents of a
conclusion of an inference rule are ensured to be exactly the same as the free names of the corresponding
π-calculus term for that rule, in this case z, ~w, and ~u. Following a syntax closer to the one used in type
theory, we can also represent the same annotated rule and corresponding translation using the : : operator
as follows:

` F : : ~w :Γ, x :A ` G : : ~u :∆, y :B

`
x,y⊗
z
(F,G)~w~uz : : ~w :Γ, ~u :∆, z :A⊗B

⊗
(4)

The seven basic CLL inference rules and their process correspondences are shown in Figure 5. Before
analyzing and giving a practical, intuitive explanation for some of these correspondences, we should note
the two choices made in them. The symmetry of CLL allows for two equivalent, symmetric π-calculus
translations for the identity axiom and the⊗ and` operators. We have chosen to translate positive atoms
and the ⊗ operator as senders while we translate negative atoms and the ` operator as receivers. We
examine some of these rules from Figure 5 and their translations more closely next:

The identity axiom The identity axiom ` x :A, y :A⊥ can be intuitively translated given the aforemen-
tioned choices to y(a)x〈a〉. The resulting process receives a message a through the channel y of the
negative literal and sends the same message a through the channel of the positive atom x. Such a process
is refered to as an axiom buffer.

The⊗ rule The “tensor” rule must intuitively correspond to a channel z that sends two messages x and
y corresponding to the literals A and B (that are involved in F and G respectively) simultaneously. The
given translation satisfies our intuition. It sends both x and y through channel z followed by the parallel
execution of F and G.

The ⊕ rules The ⊕ operator provides the means to ignore an argument or, consequently, a channel. In
the first rule, for example, we expect to receive two names u and v corresponding to the channels for A
and B respectively through a common channel z. The process ignores the second name v and uses the
first one u to send x before invoking P. The process for the second rule is symmetric as it ignores the first
name u and sends y through v.

The Cut rule The Cut rule is perhaps the most significant rule as far as process interactions are con-
cerned. We already discussed that applying cut-elimination to the proof corresponds to performing re-
ductions in its π-calculus translation. Therefore, the Cut rule corresponds to a reduction/interaction
between processes F and G. Additionally, the interaction will take place through the ports corresponding
to the literal being cut, namely C. Thus, port x will be connected to port y to form a common channel z.
The two processes are expected to interact through this common channel z when invoked in parallel. It
is worth noting that there are no assumptions made whatsoever about which of the two services will be
the receiver and which will be the sender.
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CLL inference rule π-calculus translation

` x :A, y :A⊥ Ixy≡ y(a)x〈a〉
.... F

` ~w :Γ, x :A

.... G
`~u :∆, y :B

` ~w :Γ, ~u :∆, z :A⊗B
⊗

x,y⊗
z
(F,G)~w~uz≡ νxy(z〈xy〉(F~wx||G~uy))

.... F
` ~w :Γ, x :A, y :B
` ~w :Γ, z :A`B `

x,ẏ

z
(F)~wz≡ z(xy)F~wxy

.... P
` ~w :Γ, x :A
` ~w :Γ, z :A⊕B

⊕ x
L
z
(P)~wz≡ νx(z(uv)u〈x〉P~wx)

.... Q
` ~w :Γ, y :B
` ~w :Γ, z :A⊕B

⊕ y
R
z
(Q)~wy≡ νy(z(uv)v〈y〉Q~wy)

.... P
` ~w :Γ, x :A

.... Q
` ~w :Γ, y :B

` ~w :Γ, z :A & B
&

x,y̆

z
(P,Q)~wz≡ νuv(z〈uv〉[u(x)P~wx + v(y)Q~wy])

.... F
`~u :Γ, x :C

.... G

`~v :∆, y :C⊥

`~u :Γ, ~v :∆
Cut Cutz(F,G)~u~v≡ νz(F~u[z/x]||G~v[z/y])

Figure 5: The CLL inference rules annotated with channel names and the corresponding π-calculus
processes.

Similar informal justifications can be given for rules involving` and &, but will be omitted here due
to space limitations. We should also note that π-calculus replication (!P) is only used in the translations
of the of-course and why-not rules which, as mentioned previously, are not currently part of our system.
Despite that fact, our language is sufficiently expressive to describe useful Web Services compositions,
as demonstrated in Section 4.

3.2 Achieving Web Services composition

The proofs-as-processes paradigm allows us to create Web Services compositions described using the
π-calculus by performing CLL proofs. In short, the available Web Services descriptions are specified as
CLL sentences as we discussed in Section 2.1.2. Then we construct a CLL description of the requested
composite service and attempt to prove it as a conjecture. Using our defined logic, proving the requested
service R from the available services Ai corresponds to proving the following goal:

A1 A2 ... An
R
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Assuming the proof (ie. the composition) can be accomplished, the resulting lemma will correspond
to a valid logical representation of the requested service. We will have, therefore, proven that such a
service exists and can be constructed using the set of available Web Services. Moreover, the π-calculus
translation of the proof will provide a full description of the structure of the composite service.

4 Results

We begin the result analysis by explaining the setup of our implementation for the ski example in Section
4.1. This is followed by a brief description of the obtained results in Section 4.2 and by a description of
the execution of the resulting π-calculus process as an empirical verification in Section 4.3.

4.1 Setup

Our system is built within the higher order logic (HOL) proof assistant HOL Light. More specifically,
we have embedded MALL and the π-calculus syntax within HOL Light, while making sure proof anno-
tations and process calculus term construction are supported.

The embedding of the π-calculus is based on the work of Melham in HOL88 [16]. It includes the
basic, polyadic π-calculus syntax, a few simple functions about names, and substitution. Formalising re-
ductions, structural congruence rules, and bisimulation rules may prove useful for further meta-theoretic
reasoning, but is currently beyond the scope of our project.

For the MALL embedding we followed the work of Power et al. [21] and Sadrzadeh [25] in Coq. We
follow a similar methodology, although we use multisets instead of lists of sequents, and thus have no
need for an Exchange rule to swap the order of sequents in a sentence.

Supporting π-calculus proof annotations and enabling process calculus term construction in the style
of type theory was a fairly challenging task. We achieved this by including the channel names and the
proofs-as-processes translations as logical terms within the embedding of each MALL inference rules.
Our custom tactics allow us to accomplish CLL proofs of CLL statements with π-calculus annotations
using these combined rules while constructing the π-calculus translation simultaneously. Their function-
ality is based on the use of metavariables as we further explain in the next section.

Having implemented this system as an embedded logic within HOL Light guarantees the correctness
of the involved proofs. Given the soundness and correctness proofs of Bellin and Scott for the proofs-as-
processes paradigm, this also guarantees the correctness of the composite service, ie. that the resulting
π-calculus service will indeed have the expected behaviour.

We will use the Ski example to demonstrate the functionality of our system. In Section 2.1.2 we
presented the CLL translations of the available services as well as the translation of the requested service.
Based on the scheme described in Section 3.2, achieving the desired services composition is equivalent
to proving the requested service as a conjecture. We, therefore, need to prove the following lemma:

∃P. ` P : : x :PRICE LIMIT⊥, y :SKILL LEV EL⊥, z :HEIGHT CM⊥,

w :WEIGHT KG⊥, t :(PRICE NOK⊕EXCEPT ION)
(5)

We note that the existential quantification of P is not at the embedded level of CLL but rather at the
HOL (meta) level. It allows us to find the process P for which this sentence holds, ie. the composite
service that satisfies this specification.
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4.2 Proof and obtained results

The proof of (5) is shown in Figure 6. Note that the CLL propositions are abbreviated, eg. HC stands
for HEIGHT CM, and the process calculus annotations have been omitted for a cleaner presentation.
Moreover, the neg eq step in the proof is an abbreviation of the usage of the Cut rule with a lemma
involving negation. As each of the CLL inference rules is applied in the proof, the composite process
P is gradually constructed based on the corresponding process calculus translations of the proofs-as-
processes paradigm (see Figure 5).

` PL⊥, SL⊥, BR⊗MO
SelMod

` HC⊥, WK⊥, LC
SelLen

` LC⊥, LI
Cm2Inch

` HC⊥, WK⊥, LI
Cut

` PL⊥, SL⊥, HC⊥, WK⊥, (BR⊗MO)⊗LI
⊗

(6)

` BR⊥, MO⊥, LI⊥, PU⊕EXE
SelSki

` BR⊥`MO⊥, LI⊥, PU⊕EXE
`

` (BR⊥`MO⊥)`LI⊥, PU⊕EXE
`

` PU⊥, PN
Usd2Nok

` PU⊥, PN⊕EXE
⊕

` EXE⊥, EXE
Id

` EXE⊥, PN⊕EXE
⊕

` PU⊥& EXE⊥, PN⊕EXE
&

` (PU⊕EXE)⊥, PN⊕EXE
neg eq

` (BR⊥`MO⊥)`LI⊥, PN⊕EXE
Cut

` ((BR⊗MO)⊗LI)⊥, PN⊕EXE
neg eq

` PL⊥, SL⊥, HC⊥, WK⊥, PN⊕EXE
Cut with (6)

(7)

Figure 6: The proof of the requested service of the Ski example in CLL.

Without delving into too many technical details, we accomplish this by introducing P as a metavari-
able that is matched to the translation of the first rule being applied to the goal (assuming we are following
the proof backwards), ie. the Cut rule. This turns P into an instantiation of νz(F~u[z/x]||G~v[z/y]) where
any matched variables have also been instantiated.

Any unmatched variables in this new form are also introduced as metavariables that are in turn
instantiated in the next proof steps. For example, G eventually becomes the process corresponding to part
(6) of the proof (see Figure 6). It is first introduced as a new metavariable that is gradually instantiated
as the proof progresses.

If one of the available services’ CLL statements (see Figure 4) is used to match one of the CLL
sentences at the top of the proof tree, this will instantiate one of the metavariables and the service will
then be introduced as a component in the π-calculus representation of the composite service.

Any unmatched metavariables at the end of the proof are left as fresh, free variables in the π-calculus
result. In the above example of νz(F~u[z/x]||G~v[z/y]), z is the variable representing the channel connecting
F and G and will never be matched as it never appears in the proof. It is in fact kept as a fresh variable
and renamed to z1 to avoid variable clashes in our result.

The π-calculus term that was constructed following this methodology by our proof for the Ski
example (denoted as Composition(smp,sms,slh,slw, t, puc,exc)) is presented in Figure 7. It is im-
mediately apparent that the complexity of this term prohibits any attempt to fully analyse its func-
tionality on paper. Only some of its parts are clear and can be analysed. For example, the subterm
(ν z3)(SelLen[z3/sll] || Cm2Inch[z3/cic]) represents the interaction between port sll of the SelLen ser-
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Composition(smp,sms,slh,slw, t, puc,exc) ≡
(ν z1)

((ν smo,cii)
(z1〈smo,cii〉.
(SelMod || (ν z3)(SelLen[z3/sll] ||Cm2Inch[z3/cic]))

) || (ν z4)
(((z1(x5,ssl).x5(ssb,ssm).SelSki[z4/sso]) ||
(ν u7,v7)

((z4〈(u7,v7)〉.
((u7(unu).(ν unn)(t(u8,v8).u8〈unn〉.Usd2Nok))+

(v7(y7).(ν y9)(t(u9,v9).v9〈y9〉.y7(a10).y9〈a10).0)))
))

)
)

Figure 7: The resulting π-calculus formula from the Ski proof.

vice and port cic of the Cm2Inch service2. Essentially, this is a composite subprocess that selects the ski
length in inches (rather than in centimeters). It resulted from the application of the Cut rule using lemma
(6) in the proof.

It is worth noting that the resulting services composition makes no assumptions about the form
of the component services. In our example from Figure 7, the π-calculus term includes component
processes such as SelLen, SelMod, SelSki, etc. as “black boxes” with hidden functionality. The only
known properties of the component services are the input and output ports as defined in their CLL
representation. For example, SelLen is defined as follows (see Figure 4):

` SelLen : : slh :HC⊥, slw :WK⊥, sll :LC

Therefore, it is only assumed that it has input ports slh and slw and output port sll.

4.3 Execution

Once the π-calculus composition is extracted, the next step is to execute the composed service. This can
be accomplished by translating the π-calculus representation in a more commonly used, executable Web
Services description language such as the previously mentioned WSDL, BPEL4WS, or OWL-S.

In our project so far, before undertaking the formal translation of π-calculus to any other model, we
are focusing on visualising and checking the results empirically. This is accomplished by introducing
concrete π-calculus representations for each of the available services and simulating their execution by
invoking the π-calculus reductions.

We have, therefore, constructed a set of mappings for a systematic interpretation of CLL judgements
to π-calculus processes. These mappings provide an intuitive interpretation that satisfies the correspond-
ing properties and follows the expected behaviour (as far as π-calculus reductions are concerned). We
present them in Figure 8.

Following these empirical translations, we introduce π-calculus terms for each of the available ser-
vices. We, therefore, instantiate the “black boxes” in our initial result with an executable π-calculus term.

2Note how both sll and cic are substituted by z3 in order to accomplish this interaction.
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A a〈...〉.0
A⊥ a(...).0

A⊗B (νa,b)(z〈a,b〉.(a〈...〉.0 || b〈...〉.0))
A⊥`B⊥ z(a,b).(a(...).0 || b(...).0)

A⊕B (νa,b)(z(u,v).(u〈x〉.x〈...〉.0+ v〈y〉.y〈...〉.0))
A⊥& B⊥ (νa,b)(z〈u,v〉.(u(x).x(...).0+ v(y).y(...).0))

Figure 8: Translations of CLL terms to π-calculus.

Moreover, we introduce a π-calculus term for a Request service. This service can be viewed as the client
for the requested composite service. It will interact with the π-calculus term of the latter to verify its
functionality. In this particular example, it will provide the expected input, ie. the price limit, skill level,
height and weight, and expect the desired output, namely the price in NOK or an exception. We present
the introduced π-calculus services in Figure 9. The parallel composition of the Request service and the
derived composite service Composition from Figure 7 is introduced as the Main service to complete our
model.

SelLen(slh,slw,sll, lc)≡ slh(hc).slw(wk).sll〈lc〉.0

Cm2In(cic,cli, li)≡ cic(lc).cli〈li〉.0

Usd2Nok(unu,unn, pn)≡ unu(pu).unn〈pn〉.0

SelMod(smp,sms,smm,br,mo)≡ smp(pl).sms(sl).(ν smb,smo)(smm〈smb,smo〉.smb〈br〉.smo〈mo〉.0)

SelSki(ssb,ssm,ssl,sso, pu,ex)≡ (ν ssp,sse)(ssb(br).ssm(mo).ssl(li).sso(u,v).(u〈ssp〉.ssp〈pu〉.0+ v〈sse〉.sse〈ex〉.0))

Request(smp, pl,sms,sl,slh,hc,slw,wk, t, puc,exc)≡
smp〈pl〉.sms〈sl〉.slh〈hc〉.slw〈wk〉.t〈puc,exc〉.(puc(x).x(pu).0+ exc(y).y(ex).0)

Main()≡ Request(smp, pl,sms,sl,slh,hc,slw,wk, t, puc,exc) ||Composition(smp,sms,slh,slw, t, puc,exc)

Figure 9: The available services and the Request service for the Ski example defined as π-calculus
processes.

It is important to note that these particular concrete representations are not unique in π-calculus.
However, they were designed to be as simple and straightforward as possible. Our aim is to empirically
confirm the correctness of the constructed composition and its associated information flow. Since the
composition makes no assumptions about the involved component services (apart from the names of
the channels through which the services can be interfaced), any valid π-calculus representation of these
services is acceptable.

Our complete set of services was given as input to the PiVizTool (see Section 2.2.1). This system
allows the visualisation of the various services and their interactions (corresponding to π-calculus reduc-
tions). Eight consecutive snapshots (out of a total of 17) from the resulting visualisation are shown in
Figure 10. Each edge represents a possible interaction between two agents. The grey edges represent
interactions that are currently blocked whereas the black edges represent interactions that can occur im-
mediately on the next execution step. Each snapshot is the result of applying one π-calculus reduction in
the previous state.

For example, in snapshot 6 of Figure 10, the SelLen service interacts with Cm2In through channel
z3 (automatically renamed to z3#8 by PiVizTool to avoid clashes). Essentially, this corresponds to the
conversion of the output of the SelLen service from centimeters to inches via the Cm2In service as we
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Figure 10: Consecutive snapshots of the Ski example π-calculus result taken from PiVizTool.

discussed in the previous section. The result after the interaction is shown in snapshot 7.
The PiVizTool simulation plays an important role towards empirically verifying that our result sat-

isfies the requested service without the initial need for a more concrete execution model. Our process
behaves as expected indicating that the available services have been succesfully composed.

Additionally, PiVizTool provides the definition and execution trees of the composed service. These
are tree visualisations of the definitions and execution sequence for each of available services respec-
tively. These trees are also helpful towards understanding and analysing the behaviour of the composite
service.

5 Related work

There are two main directions in the research over Web Services composition: one involves the use of
workflow techniques while the other relies on AI planning [11].

The workflow techniques rely on the requester building an abstract process model, including a set of
required tasks and their data dependencies. The aim is then to build a graph of atomic services that can
fulfill this role. An example of such a workflow-based system is EFlow [5].

In the AI planning approach, services are considered as actions with specified preconditions and
effects. A planner then attempts to discover the appropriate combination of actions that will lead to a
goal state starting from an initial state. An example of such system is SWORD [20] which uses rule-based
planning for the composition of services.

Theorem proving techniques, such as the one used in the current work, are considered part of the
planning approach to Web Services composition. There have been multiple attempts at using theorem
provers in this context. Waldinger, for instance, based his work on automated deduction and program
synthesis [30]. He used the theorem prover SNARK [27] to provide proofs for service composition
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problems described in classical first-order logic. Lammermann worked on structural synthesis of pro-
gram, a deductive approach that utilises intuitionistic propositional logic [14]. Finally, Rao et al. used
propositional Linear Logic theorem proving with DAML-S based proofs [22, 23].

The latter has been the main motivation for this work. However, after carefully analysing the work
of Rao et al., we detected a number of potential inconsistencies. For example, the process calculus
being used is an extension of the π-calculus. However, no guarantees are given that the two calculi are
equivalent or that the Bellin and Scott proofs are valid for the extended process calculus. Additionally,
they use Intuitionistic Linear Logic in a two-sided sequent calculus, which is also not guaranteed to
be equivalent to the one-sided CLL approach of Bellin and Scott. Moreover, a number of so-called
“structural congruence rules” that contain both CLL terms and channel names were introduced. These
rules were not formally derived and their syntax can easily result in an incorrect interpretation. Finally,
even though the system theoretically supports non-functional properties and exponentials, the proof of the
Ski example ignores them. Non-functional properties are crucial towards a quality-driven composition,
whereas adding the exponentials would make the logic undecidable.

Using our system and the higher order logic backround of HOL Light we were able to provide a
rational reconstruction of Rao’s work. This includes a formal interpretation (using CLL and the π-
calculus) of some of Rao’s introduced concepts such as composite and optional ports and channels and
the verification of some their properties and structural congruence rules. The lack of published code and
more examples made this a fairly challenging undertaking.

6 Conclusion and Future work

We have described our efforts towards the implementation of a rigorous framework for Web services
composition using the higher order logic proof assistant HOL Light. Our approach is based on the
proofs-as-processes paradigm originally introduced by Abramsky, Bellin and Scott.

In contrast to the work of Rao et al., we have attempted to remain faithful to the original theory
of Bellin and Scott by using CLL in conjunction with the standard polyadic π-calculus syntax. Our
implementation has shown some promising results and there is sufficient room for improvements and
further work. In particular, interesting properties such as liveness, safety, and deadlock-freedom have
not been investigated in this work yet. These, along with the automation of our CLL proofs and further
evaluation of the system, are part of our next goals.

The Bellin and Scott translation has the interesting property of keeping the π-calculus annotations
and the CLL proof completely independent of each other. This means that the CLL proof is not affected
by the attached process calculus terms. In fact, if we completely remove the annotations, the proofs
are perfectly valid CLL proofs. We plan to exploit this property in our attempt to utilise external tools
to automate our proofs. Our effort will focus on finding and using tools (such as llprover [28]) that
can perform automated CLL proofs and return the entire proof script, which can then be integrated and
verified by our HOL Light framework.

We will also be focusing on further system evaluation. Our implementation test set is currently using
Rao’s Ski example as its main case. In the next stages of this work we will gather practical examples
from existing web services projects, such as the SENSORIA Project [31], where verified composition is
desirable. Moreover, we will compare our system with related systems in the field. We also note that it
is important to find examples of composable web services with non-functional properties. The potential
of our framework to incorporate such properties in the composition sets it apart from related work.

Another important part of our future work is to establish formal translations from the composite
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services produced by our system in π-calculus to more widely used and more concrete Web Services
description languages, including WSDL and OWL-S. This involves the proper translation of the com-
posite service’s control flow, including notions such as sequence that are not explicitly represented in
π-calculus.

In conclusion, we believe that our work contributes to both the Web Services and theorem prov-
ing/formal verification research areas. On the one hand, we are working towards a fully verified Web
services composer using theorem proving techniques while promoting theoretical research in this area.
On the other hand, the variety of tools and tactics that we have developed may provide a reusable and
extensible library, which may prove useful in other formal verification or theorem proving projects in the
area and beyond.

7 Acknowledgement

We would like to thank the anonymous reviewers for their helpful and constructive comments.

References

[1] S. Abramsky (1994): Proofs as processes. Theoretical Computer Science 135(1), pp. 5–9, doi:10.1016/0304-
3975(94)00103-0.

[2] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte
et al. (2003): Business process execution language for web services, version 1.1. Standards proposal by BEA
Systems, International Business Machines Corporation, and Microsoft Corporation .

[3] G. Bellin & PJ Scott (1994): On the π-calculus and linear logic. Theoretical Computer Science 135(1), pp.
11–65, doi:10.1016/0304-3975(94)00104-9.

[4] A. Bog & F. Puhlmann (2006): A Tool for the Simulation of π-Calculus Systems. Open. BPM .

[5] F. Casati, S. Ilnicki, L.J. Jin, V. Krishnamoorthy & M.C. Shan (2000): eFlow: a platform for developing and
managing composite e-services. HP Laboratories Technical Report HPL .

[6] E. Christensen, F. Curbera, G. Meredith & S. Weerawarana (2001): Web services description language
(WSDL) 1.1. http://www.w3.org/TR/wsdl.

[7] D.S. Coalition, A. Ankolekar, M. Burstein & J.R. Hobbs (2002): DAML-S: Web service description for the
semantic Web. In: First International Semantic Web Conference, Sardinia, Italy, Springer.

[8] J.Y. Girard (1995): Linear logic: its syntax and semantics. Advances in linear logic 222, pp. 1–42,
doi:10.1017/CBO9780511629150.002.

[9] J. Harrison (1996): Optimizing proof search in model elimination. Lecture Notes in Computer Science 1104,
pp. 313–327.

[10] John Harrison (1996): HOL Light: A tutorial introduction. In: Formal Methods in Computer-
Aided Design, Lecture Notes in Computer Science 1166, Springer Berlin / Heidelberg, pp. 265–269,
doi:10.1007/BFb0031814.

[11] J.A. Hendler, A. Tate & M. Drummond (1990): AI planning: Systems and techniques. AI magazine 11(2),
p. 61.

[12] W.A. Howard (1980): The formulae-as-types notion of construction. To HB Curry: essays on combinatory
logic, lambda calculus and formalism , pp. 479–490.

[13] P.L. John, J. Mitchell, A. Scedrov & N. Shankar (1992): Decision problems for propositional linear logic.
Annals of Pure and Applied Logic 56(1-3), pp. 239–311.

http://dx.doi.org/10.1016/0304-3975(94)00103-0
http://dx.doi.org/10.1016/0304-3975(94)00103-0
http://dx.doi.org/10.1016/0304-3975(94)00104-9
http://dx.doi.org/10.1017/CBO9780511629150.002
http://dx.doi.org/10.1007/BFb0031814


16 A theorem proving framework for the formal verification of web services composition
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