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In mutation testing the question whether a mutant is equivalent to its program is important in order
to compute the correct mutation score. Unfortunately, answering this question is not always possible
and can hardly be obtained just by having a look at the program’s structure. In this paper we introduce
a method for solving the equivalent mutant problem using a constraint representation of the program
and its mutant. In particularly the approach is based on distinguishing test cases, i.e., test inputs
that force the program and its mutant to behave in a different way. Beside the foundations of the
approach, in this paper we also present the algorithms and first empirical results.

1 Introduction

Mutation testing is a technique used to assess the quality of test suites and is more efficient than other
approaches like coverage based metrics [1]. It is a fault based technique that uses a well defined set of
faults. The considered faults can be introduced as slight changes of the original program that lead to a
variant of the program which is called mutant. The basic idea behind mutation testing is now to check
whether the available test suite is able to detect the mutant. For this purpose the available test suite is
executed on these mutated versions of the original program. If there is at least one test run that fails, we
say that the mutant is detected or killed. Otherwise, the mutant is alive. A test suite is more efficient than
another test suite if it is able to detect more mutants. We measure the efficiency using the mutation score.
The mutation score is defined as the ratio between the number of mutants detected and the total number
of mutants minus the equivalent ones (a mutant is said to be equivalent if syntacticly differs from the
original program, but semantically the mutation can not be detected). The ideal mutation score is 1, i.e.,
all mutants are successfully detected. For more information on mutation testing we refer the interested
reader to [9].

One major problem of mutation testing is the equivalent mutant problem. A mutant is said to be
equivalent if there is not such a test case, able to differentiate between the output of the mutant and
the output of the original program. When considering the definition of the mutation score, we see that
detecting all equivalent mutants is very important. In literature several techniques for equivalent mutant
detection exist, e.g., [12, 15]. In this paper we also focus on the equivalent mutant problem and describe
the underlying techniques of a tool, EqMutDetect , serving our purpose. The tool uses constraint solving
for proving the equivalence.

Other approaches are included in [8], where the authors use program slicing for solving the equiv-
alent mutant problem. In order to show whether a mutant is equivalent or not, the described technique
compares the effect of a program and its mutant on certain variables. [13] introduces a solution most
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2 Equivalent Mutant Detection

closely to ours, which is also based on constraints. The authors developed a tool that implements a
mathematical constraint algorithm. For determining the equivalent mutants, the authors use constraints
to recognize infeasible constraints that produce equivalent mutants. The used constraint will describe
the circumstances under which a mutant must be detected, i.e. if a test case can detect the mutant, then
the constraint system will be true. Otherwise, no test case is able to kill the mutants, and, therefore, an
equivalent mutant is detected. The authors state that a mutation is detected only when it satisfies three
conditions: reachability, necessity and sufficiency. Unlike in our approach, where we make use of the
distinguishing test case concept, the authors propose three strategies to detect equivalent mutants: nega-
tion, constraint splitting and constants comparison. For negation, the authors use constraint negation and
partial negation of two constraints, e.g., C1 and C2, rewrite one of the two constraints and then compare
them. If they are syntactically equal, then the constraint system is infeasible and a mutant with this
infeasible constraint system is equivalent. But constraint negation does not help in determining if the
necessity constraint conflicts with the path expression. Therefore, in order to detect conflicts, constraint
splitting is introduced. Constant comparison is based on a property common in constraints generated
for test cases: both constraints should have the format (V RelOp K), where V is a variable, RelOp is a
relational operator, and K is a constant. Also the variables in both constraints are required to be the same.

[15] uses the impact on executions and also on the return values. The approach examines the impact
of mutations at the coverage level. In particular the approach makes use of observations about the lines of
code executed. The coverage from the original execution is compared with the coverage of the mutants.
Regarding the impact over the return values, the authors established two types of non-equivalent muta-
tions, which do not affect the coverage level: mutations which affect only the data, but not the output
values of a program, and mutations reflected in the return values.

In this paper we introduce an approach that makes use of the constraint representations of a program
and its mutant. The idea is to use the constraints for computing distinguishing test cases, i.e., test cases
that allow for differentiating two program runs using the same input. We also discuss challenges and
give some initial results when applying our approach to smaller programs.

The paper is organized as follows. In Section II we present the basic definitions followed by an intro-
duction of the program’s constraint representation in Section III. We describe the underlying algorithms
in Section IV. In Section V we give an overview of our tool, and present the first empirical results. In
Section VI we conclude the paper.

2 Basic definitions

We start by stating the basic definitions we will use along this paper. For this purpose we explain mutants
and state the equivalent mutant problem. For illustration purposes we make use of the small program
that is depicted in Figure 1 (a). The program implements the multiplication of two natural numbers. We
do not define the underlying programming language formally. We assume a sequential programming
language without object-oriented constructs. Also, in our first algorithm implementation, we do not
consider procedure calls, neither recursion. However, the general idea of detecting equivalent mutants
can be applied to other languages requiring specialized constraint solver.

We start with the definition of a test case that specifies the expected output behavior given an input.
In sequential languages the input and the output can be specified as variable environments. A variable
environment is a mapping from a variable to its value. Note that in the following definition it is not
necessary that the values of all output variables are given.

Definition 1 [Test Case] We define a test case for a program Π as a set (I,O) where I is the input
variable environment specifying the values of all input variables used in Π, and O the output variable
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environment. If no output variable environment is specified, we set O to /0.

A failing test case is a test case for which the output environment computed from the program P,
executed over input I, is not consistent with the expected output. Otherwise, the test case is said to be a
passing test case. The test case ({(a,1),(b,2)},{(res,2)}) is a passing test case for the multiplication
program from Fig. 1 (a).

A test suite T S for a program Π is a set of test cases for Π.
Moreover, we introduce the concept of distinguishing test cases.

Definition 2 [Distinguishing Test Case] Given programs Π1 and Π2. We say that a test case (I,O) is
a distinguishing test case, if the output variable environments computed by Π1 and Π2 using the same
input I are different.

We now briefly introduce mutants and state the equivalent mutant problem.

Definition 3 [Mutant] Given a program Π and a statement SΠ ∈ Π. Let S′
Π

be a statement that results
from SΠ when applying changes like modifying an operator or a variable. Then program M is the mutant
of program Π with respect to statement SΠ, obtained when replacing SΠ with S′

Π
.

A mutant of program mult (Fig. 1 (a)) would be a program where Line 5 is changed to i = i + 2;.
Other mutants can also be generated by changing constants, variables, or other operators in the

program. From here on we assume that there exists a function that generates mutants by applying small
changes to the original program. Such a function delivers a set of mutants that are syntactically different
to the original program. Unfortunately, syntactical difference does not guarantee that the mutant behaves
differently to the original program.

Definition 4 [Equivalent Mutant] Given a program Π, and one of its mutants M. We say that M is an
equivalent mutant if semantically M behaves exactly like Π. If we consider the distinguishing test case
definition, for the equivalent mutant we will not detect a test case, able to point out the difference between
the original program Π and its corresponding mutant, M.

The equivalent mutant problem is a decision problem that allows to determine whether a program
is behavioral equivalent to its mutant. This problem is obviously equivalent to the program equivalence
problem that is well known to be undecidable in general.

3 Representing programs as constraints

In order to be self-contained we briefly recall the conversion of sequential programs into their equivalent
constraint representation under certain assumptions. For the conversion of programs to their constraint
representation we make use of previous work, conducted in the constraint based testing research area
[3, 4, 6, 7]. We refer the interested reader to [10] for a more detailed introduction of the conversion
where the constraint representation is used for fault localization. We take again the small program from
Figure 1 (a) as an example to demonstrate the conversion.

The first step of the conversion process is to eliminate all loop statements. The idea here is to replace
a while statement with a nested conditional statement of a pre-defined nesting depth nd. Obviously the
value of nd determines whether the original program behaves equivalent to its corresponding loop-free
variant. If we choose a value for nd that is too small for a given test case, then the programs behave in a
different way. On the other hand when choosing a very large value for nd the resulting loop-free program
becomes unnecessarily large. Therefore in practice a trade-off for nd is necessary, together with means
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1. int i = 0;

2. int res = 0;

3. while (i < a) {
4. res = res + b;

5. i = i + 1; }

(a) The original program mult

1. bool loop 4 = false;

2. int i = 0;

3. int res = 0;

4. if (i < a) {
5. res = res + b;

6. i = i + 1;

7. if (i < a) {
8. loop 4 = true; } }

(b) mult after eliminating loops using a
nesting depth of 1

1. bool loop 4 1 = false;

2. int i 1 = 0;

3. int res 1 = 0;

4. res 2 = res 1 + b 0;

5. i 2 = i 1 + 1;

6. res 3 = Phi((i 1 < a 0), res 2, res 1);

7. i 3 = Phi((i 1 < a 0), i 2, i 1);

8. loop 4 2 = true;

9. loop 4 3 = Phi(((i 1 < a 0) and

(i 2 < a 0)),loop 4 2, loop 4 1);

(c) The loop-free variant of mult after SSA
conversion

loop 4 1 = f alse;
i 1 = 0;
res 1 = 0;
res 2 = res 1+b 0;
i 2 = i 1+1;
res 3 = Φ((i 1 < a 0),res 2,res 1);
i 3 = Φ((i 1 < a 0), i 2, i 1);
loop 4 2 = true;
loop 4 3 = Φ(((i 1 < a 0)∧(i 2 < a 0)), loop 4 2, loop 4 1);

(d) The constraint representation of mult

Figure 1: A program mult for computing a∗b and its conversion to a set of constraint. Note that a and
b are positive integers including zero and are used as input variables, and variable res denotes the result.

for detecting situations where nd is too small. We ensure this by introducing a fresh boolean variable
loopi for each loop, that is initialized with false and set to true whenever nesting depth nd is not large
enough.

In the second step the loop-free program is converted to its static single assignment form (SSA) [2].
In the SSA every variable is defined only once. This can be ensured by mapping each variable x occurring
in a program to a variable x i where i represents an index variable starting from 0. Every time x is defined,
the index i is increased by 1 and added to the variable. If the variable is referenced after the current index,
i is used until a new re-definition of x occurs. Beside adding indices there is one additional conversion
rule for conditional statements. Let us assume the following program fragment: if (x > 4) { y = 0;

} else { y = 1; } . After adding indices to the variable let us assume the following situation: if (x 0

> 4) { y 1 = 0; } else { y 2 = 1; } . In this case whether to use y 1 or y 2 after the conditional,
when referring to y, is not defined. In order to overcome this problem, conditional statements are replaced
with a Φ function. The purpose of the Φ function is to map the variables defined in either of the branches
of a conditional statement to the same variable but with a new index that can be referenced after the
statement. For our program fragment this additional rule leads to the following program:

y 1 = 0;

y 2 = 1;

y 3 = Phi((x 0 > 4),y 1,y 2);

Note that we assume a function Phi available in the programming language representing the function

Φ, which is defined as follows: Φ(C,x1,x2) =

{
x1 if C evaluates to true

x2 otherwise
It is also worth noting that after the second step, the program comprises assignment statements only.
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Therefore in the final step of conversion we only need to map the assignment statements to equations
(or constraints). This step has to take care of the underlying constraint solver. In our case we use
MINION [5]. Because of space restrictions we do not discuss the mapping to MINION programs. Instead
we use mathematical equations written in italics for representing the arrays, and we assume a constraint
solver that is able to compute a solution for a set of equations. From here on we also assume that a
function convert(Π,nd) implements the conversion taking a program Π and a maximum nesting depth
nd as inputs. Figure 1 (b)-(d) depicts the conversion results step-by-step when applying convert to the
multiplication program from Figure 1 (a) and using nd = 1 as maximum nesting depth.

4 The equivalent mutant detection algorithm

The basic idea behind the equivalent mutant detection algorithm is motivated by the concept of distin-
guishing test cases introduced for program debugging in [10]. In this paper the authors describe how
distinguishing test cases can help to further improve fault localization via extending the available test
suite. The equivalent mutant problem can be solved as a byproduct of computing distinguishing tests. If
there is no test case that distinguishes the program from its mutant, then the program and its mutant have
to be equivalent. Otherwise, it is not possible to state that both programs must be different with respect
to their behavior.

This is due to the fact that the constraint representation of a program, as introduced in the previous
section, is only behavioral equivalent to the corresponding program, for test cases not exceeding the
number of considered iterations in while statements. This fact is less problematic in pure fault local-
ization where no further test cases are generated, because the number of iterations to be considered for
generating the loop-free program is known in advance. This holds because fault localization requires at
least one failing test case, which determines the number of iterations assuming that the program halts.

As a consequence of this observation it is not always possible to determine equivalent mutants when
using distinguishing test cases. However, this is not a surprise because of the undecidability of the
equivalent mutant problem. So what are the consequences? In case a distinguishing test case can be
computed, we have to check whether this test case is a feasible test case or not. Feasible means that
the program and its mutant are able to execute the input of the test case and return the expected output,
which can be derived from the solution of the corresponding constraint representation. If the obtained
distinguishing test case is feasible, the programs are not equivalent. Otherwise, we have to search for a
different distinguishing test case. We can do this by adding the information that the previously computed
input is not allowed to be computed anymore. Moreover, there is a second problem due to the number
of iterations considered during conversion. If the constraint solver returns no solution, this might be due
to the chosen nesting depth. Therefore, we have to increase the nesting depth and start searching again.
Of course this cannot be done forever. Therefore in practice we limit the nesting depth to a pre-defined
maximum value.

The following algorithm implements the underlying basic idea of checking whether a mutant is equiv-
alent to its corresponding program or not.
Algorithm equalMutantDetection(Π,M,nd, ndmax)
Input: A program Π, its mutant M, the initial nesting depth nd, and the maximum nesting depth ndmax.
Output: true if Π is equivalent to M and false, otherwise.

1. Convert the program into its constraint representation: CONΠ = convert(Π,nd)

2. Let M′ be a program obtained from M by adding the postfix M to all variables.

3. Convert the mutant into a set of constraints:CONM = convert(M′,nd)
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Class LOC NoMut DetEqMut
tcas01 125 231 137
tcas02 125 231 139
tcas03 125 231 149
tcas04 125 231 142

. . . . . . . . . . . .
tcas25 125 - -

. . . . . . . . . . . .
tcas41 125 229 119

AVG 125 226 137

Class LOC NoMut DetEqMut
C432Order 382 2038 1341

ArrayOperations 101 496 11
BubbleSort 18 62 9

CalculateRectArea 14 18 2
CalculateRectPerimeter 13 21 4

CoffeeMachine 43 91 0
FindEvenOrOddNumber 15 34 3

FindLargestSmallestNumber 19 41 13
GcdATC 35 95 29

NumberFactorial 19 38 12

Table 1: EqMut Detection

4. Let CON be CONΠ∪CONM.

5. For all input variables x of Π, add the constraint x = x M to CON.

6. Let y1, . . . , yk be the k output variables of Π. Add the constraint y1 6= y1 M∨ . . . ∨yk 6= yk M to
CON.

7. Call a constraint solver on CON and let SOL be the set of solutions, e.g., mappings of variables to
values that satisfy all constraints in CON.

8. If there exists no solution SOL, i.e., SOL = /0, then Π and M are potentially equivalent. In this case
do the following:

(a) If nd ≥ ndmax, terminate the algorithm and return true.
(b) Otherwise, increase nd by 1 and go to 1.

9. Otherwise, there exists a (non-empty) solution SOL. If there is no variable loop j with an assigned
value of true in SOL, then return false. Otherwise, add the information that the inputs computed
in SOL are not valid to CON and go to 7.

In the equalMutantDetection algorithm lines 1–6 are for constructing the constraint system. In Line
5 constraints are added in order to force the input variables of the program and its mutant to be the same.
Line 6 is for stating that a distinguishing test case triggers at least one output variable to hold a different
value after execution. Note also that the mutant variables are changed before conversion. Line 7 calls
the constraint solver. In Line 8 it is handled the case where no distinguishing test case can be found.
This either leads to the result that the mutants are equivalent or to an increase of the considered nesting
depth and a re-computation. Line 9 is for handling the case where a distinguishing test case is found.
There feasibility is checked via testing whether the number of iterations for computing a solution has
been exceeded. If the computed test case is not feasible, search starts again using the information already
gathered.

Note that the algorithm always terminates because of the introduced ndmax variable. However, it can
be the case that the algorithm returns true but there is a distinguishing test case requiring the programs
to be executed for a longer time. However, if the algorithm returns false, the program and its mutant
are definitely different with respect to their semantics. This restriction comes from the undecidability of
the underlying equivalent mutant problem.

5 Empirical results

In order to verify the practicability of our approach we have partially implemented the equalMutant-
Detection algorithm, ignoring increasing the bound of the nesting depth. This extension will be im-
plemented in the next version of our tool EqMutDetect which makes use of the MuJava [16] mutant
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generation tool and the MINION [5] constraint solver. We aim to offer a reliable mutation test case
generation tool that handles the equivalent mutant problem as good as possible. We developed EqMut-
Detect in Java. We also modified MuJava in order to be JDK 1.5 compliant (see [11]). EqMutDetect
comprises three main components: (1) Mutant generation using MuJava, (2) Equivalent mutants detec-
tion and reduction, and (3) Test case generation. The currently used mutation tool produces method level
and class level mutations. However, in our research experiments, we excluded object oriented programs
and generate only method level mutations, i.e., we make use of the method-level operators defined for
MuJava, and mutate statements by replacing, deleting and inserting primitive operators, e.g., arithmetic
operator, relational operator, etc.

Using the implemented tool EqMutDetect we conducted first experiments. For this purpose we
applied EqMutDetect on some smaller programs varying from 13 to more than 380 lines of code. The
used programs include the TCAS files [14], and programs that implement operations on arrays, and
mathematical operations. The TCAS files were converted to Java syntax, in order to produce mutations
with MuJava. In our experiments the nesting depth for representing loops vary from 2 to 5. For constraint
solving we have established a 5 minutes time bound. We executed EqMutDetect using the maximum
and minimum nesting depth, and observed no difference regarding the obtained solutions. Therefore, we
conclude that for the current experiments a small number of iterations is adequate.

In Table 1 we summarize the obtained results. LOC denotes the lines of code, NoMut represents the
total number of computed mutants, and DetEqMut is the number of equivalent mutants detected using
EqMutDetect. We observe from Table 1 that in some cases no equivalent mutants were generated, i.e.,
the constraint solver was always able to find a distinguishing test case. We also encountered the situation
where the constraint solver tried to find a solution within the predefined time limit, but it did not manage.
In this case we terminated search.

Regarding the quantitative results of our experiments, there are some interesting findings. About
40% of the mutants generated for the tcas files were found equivalent when using our approach. This
happens because we only take into account mutations, which are reachable and have an impact on the
return values. Also concerning the tcas files, we found situations when we could not apply our approach,
because the mutation engine failed to generate mutants, e.g., for tcas25. It is also interesting to note
that for the largest program C432Order the constraint solver was able to provide solutions within the 5
minutes bound.

6 Conclusion

Reducing the number of equivalent mutants plays a significant role in determining the efficiency of test
suites. The mutation score can be significantly improved when removing all equivalent mutants. Hence,
in this paper we discussed an approach for detecting equivalent mutants. In the presented approach we
combine constraint representations of programs with mutation testing. In particular we are searching for
a distinguishing test case in order to differentiate the program from its mutant. Because of the fact that
the underlying problem is undecidable the approach does not guarantee to find a solution. The influence
of certain parameters like the given nesting depth is left for future research. As a byproduct the approach
allows for adding new test cases to the test suite. Computed distinguishing test cases can be used to
increase the mutation score.

In our current experiments we consider smaller programs. Therefore, the efficiency and scalability
of the approach can be disputed. Hence, future research will include improving the experimental bases
and using more and larger programs. Moreover, we also want to extend the tool in order to handle
object-oriented programs.
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