
S. Escobar (Ed.): Workshop on Reduction Strategies
in Rewriting and Programming (WRS2011)
EPTCS 82, 2012, pp. 1–16, doi:10.4204/EPTCS.82.1

c© D. Plump

The Design of GP 2

Detlef Plump
Department of Computer Science

The University of York, UK

This papers defines the syntax and semantics of GP 2, a revisedversion of the graph programming
language GP. New concepts are illustrated and explained with example programs. Changes to the first
version of GP include an improved type system for labels, a built-in marking mechanism for nodes
and edges, a more powerfuledge predicate for conditional rule schemata, and functions returning
the indegree and outdegree of matched nodes. Moreover, the semantics of the branching and loop
statement have been simplified to allow their efficient implementation.

1 Introduction

GP is an experimental nondeterministic programming language for high-level problem solving in the
domain of graphs. The language is based on conditional rule schemata for graph transformation and has
a simple syntax and semantics, to facilitate both understanding by programmers and formal reasoning on
programs. The original version of GP (also referred to as GP 1from now on) is defined in [7, 8] and its
protoype implementation is described in [4].

Motivated by case studies in GP programming, the following changes and extensions feature in GP 2:

• There are new typesatom andlist, the former representing the union of integers and character
strings, the latter lists of atoms. Variables of these typescan be declared in rule schemata.

• Rule schemata canmarknodes and edges graphically.

• Conditional rule schemata can check, by means of theedge predicate, whether there exists an edge
with a particular label between two matched nodes.

• The indegree or outdegree of a matched node can be accessed and used in the labels or in the
condition of a rule schema.

• The if-then-else statement of GP 1 is complemented by a try-then-else command whose then-part
is executed on the graph resulting from the try-part. Also, anewor command provides explicit
nondeterministic choice between subprograms.

• Failure in evaluating the condition of a branching statement or the body of a loop does no longer
enforce backtracking, in order to allow an efficient implementation of branching and looping.

The rest of this paper is organised as follows. In Section 2, the graph transformation approach
underlying GP is briefly reviewed, viz. the double-pushout approach with relabelling. Section 3 intro-
duces conditional rule schemata, the building blocks of GP programs. The semantics of conditional rule
schemata is defined in Section 4. In Section 5, new features ofGP 2 are demonstrated and explained
by example programs. A formal operational semantics for GP 2is presented and discussed in Section 6.
Section 7 concludes by summarising GP’s revision and addressing topics for future work. The Appendix
lists the inference rules of the semantics of Section 6.

http://dx.doi.org/10.4204/EPTCS.82.1

2 The Design of GP 2

2 Graphs and Graph Transformation

Graph transformation in GP is based on the double-pushout approach with relabelling [3]. This frame-
work deals with partially labelled graphs whose definition is recalled below. In this section, we treat the
label alphabet as a parameter because in subsequent sections we need different alphabets: graphs in rule
schemata are labelled with expressions while graphs on which GP programs operate (also referred to as
host graphs) are labelled with lists composed of integers and strings.

A graphover a label alphabetC is a systemG= (VG,EG,sG, tG, lG,mG), whereVG andEG are finite
sets ofnodes(or vertices) andedges, sG, tG : EG→ VG are thesourceand target functions for edges,
lG : VG→C is the partial node labelling function andmG : EG→ C is the (total) edge labelling function.
Given a nodev, we writelG(v) =⊥ to express thatlG(v) is undefined. GraphG is totally labelledif lG is
a total function. We writeG (C⊥) andG (C) for the class of graphs resp. totally labelled graphs overC .

Unlabelled nodes will occur only in the interfaces of rules and are necessary in the double-pushout
approach to relabel nodes. There is no need to relabel edges as they can always be deleted and reinserted
with different labels.

A graph morphism g: G→H between graphsG,H in G (C⊥) consists of two functionsgV : VG→VH

andgE : EG→ EH that preserve sources, targets and labels; that is,sH ◦gE = gV ◦sG, tH ◦gE = gV ◦ tG,
mH ◦gE = mG, andlH(g(v)) = lG(v) for all v such thatlG(v) 6=⊥. Morphismg is aninclusionif g(x) = x
for all nodes and edgesx. It is injective (surjective) if gV and gE are injective (surjective). It is an
isomorphismif it is injective, surjective and satisfieslH(gV(v)) = ⊥ for all nodesv with lG(v) = ⊥. In
this caseG andH areisomorphic, which is denoted byG∼= H.

A rule r = 〈L← K → R〉 consists of two inclusionsK → L andK → R such thatL,R are graphs
in G (C) andK, the interfaceof r, is a graph inG (C⊥). Intuitively, an application ofr to a graph will
remove the items inL−K, preserveK, add the items inR−K, and relabel the unlabelled nodes inK.

Definition 1 (Rule application). Let r = 〈L← K → R〉 be a rule,G a graph inG (C), andg: L→ G
an injective graph morphism satisfying thedangling condition: no node ing(L)− g(K) is incident to
an edge inG−g(L). We writeG⇒r,g H if H is isomorphic to the graph that is constructed fromG as
follows:

1. Remove all nodes and edges ing(L)−g(K), obtaining a graphD.

2. Add disjointly toD all nodes and edges fromR−K, keeping their labels. Fore∈ ER−EK , sH(e)
is sR(e) if sR(e) ∈VR−VK, otherwisegV(sR(e)). Targets are defined analogously.

3. For each unlabelled nodev in K, lH(gV(v)) becomeslR(v).

Figure 1 shows an example of a rule application. The rule in the upper row is applied to the left
graph of the lower row, resulting in the right graph of the lower row. (For simplicity, we assume that
all edge labels are the same and hence omit them.) The node identifiers 1 and 2 in the rule specify the
inclusions of the interface. The middle graph of the lower row is obtained from graphD of Definition 1
by making all nodes unlabelled that are images of unlabellednodes inK. Then the diagram represents a
double-pushout in the category of graphs overC⊥ (see [3]).

3 Syntax of Rule Schemata

Conditional rule schemata are the principal programming construct in GP. Figure 2 shows an (artificial)
example for the declaration of a rule schema containing someof the new features of GP 2.

D. Plump 3

1
1

1 1
2

←

1 2

→ 2
1

3
2

↓ ↓ ↓

1

1

1

1

←

1

→ 2 3

1

Figure 1: A rule application

bridge(s,t : string; a : atom; n : int; x,y : list)

a:x

1

n

2

y

3

s t
⇒ a

1

x:n

2 3

n∗n

3

s.t

s t

where (a = 0 or a= ”?”) and notedge(1, 3, s.t) and outdeg(1) = indeg(3)

Figure 2: Declaration of a conditional rule schema

Besides the typesint andstring of GP 1, there are the new typesatom andlist. Typeatom is the
union ofint andstring, andlist is the type of a (possibly empty) list of atoms. Given listsx andy,
we writex:y for the concatenation ofx andy. The colon replaces the underscore ’’ of GP 1 for better
readability. Also, the empty listempty is now allowed (not to be confused with the empty character
string ””). When drawing graphs, we represent the empty listby omitting the wordempty. (Confusion
with unlabelled nodes is not possible as long as we consider graphs on the left or right of a rule schema,
or host graphs. This is because these graphs are totally labelled.)

We identify lists of length one with their contents and henceget the syntactic and semanticsubtype
relationships shown in Figure 3. This is why we can form list expressions such asa:x andx:n in Figure
2, wherex is a list,a an atom andn an integer. For the same reason, equations in the condition such as
a= 0 or a= ”?” can compare expressions of arbitrary list subtypes.

Expressions in the left-hand side of a rule schema need no longer be constants or variables. Com-
posite expressions such asa:x in Figure 2 are allowed if there is no ambiguity in matching individual
variables with values in host graph labels. Similarly, the new dot operator ’.’ for string concatenation
can be used in left-hand labels. (The exact condition for left-hand expressions is given in Definition 2.)

The new functionsindeg andoutdeg access the indegree resp. outdegree of a left-hand node in the
host graph. These operators may occur in the labels and the condition of a rule schema. Moreover, the
binaryedge predicate of GP 1 has now an optional third argument specifying the label of a possible edge

4 The Design of GP 2

list

atom

int string

⊆

⊆
⊇

(Z∪Char∗)∗

Z∪Char∗

Z Char∗

⊆

⊆
⊇

Figure 3: Subtype hierarchy for lists

between the given nodes. For example, the subconditionnotedge(1, 3, s.t) in Figure 2 demands that
there must not be an edge from node1 to node3 with labels.t (where the strings denoted bys andt
are determined by matching the left-hand graph).

Finally, GP 2 allows to mark nodes and edges graphically. Forexample, the outermost nodes in
Figure 2 are marked by a grey shading, and the dashed arrow between nodes 1 and 3 in the right graph
represents a marked edge. Marking is formalised below by defining labels as pairs of lists and boolean
values, where a boolean value indicates whether a node or edge is marked or not.

Figure 4 and Figure 5 give grammars in Extended Backus-Naur Form defining the abstract syntax
of the labels and the condition of a rule schema. These grammars are ambiguous; in examples we use
parentheses to disambiguate expressions if necessary. In the next section, the abstract syntax is used in
defining the semantics of rule schemata.

Integer ::= Digit{Digit} | IVariable | ’−’ Integer | Integer ArithOp Integer|

(indeg | outdeg) ’(’ Node ’)’

ArithOp ::= ’+’ | ’-’ | ’∗’ | ’/’

String ::= ’ ” ’ {Char} ’ ” ’ | SVariable| String ’.’ String

Atom ::= Integer| String | AVariable

List ::= empty | Atom | LVariable | List ’:’ List

Label ::= List Mark

Mark ::= true | false

Figure 4: Abstract syntax of rule schema labels

The grammar in Figure 4 defines four syntactic categories of expressions which can occur in a rule
schema: Integer, String, Atom and List, where Integer and String are subsets of Atom which in turn is
a subset of List. We assume that Node is the set of node identifiers occurring in the rule schema, which
must be the same for the left and the right graph ({1,2,3} in Figure 2). Moreover, IVariable, SVariable,
AVariable and LVariable are the sets of variables of typeint, string, atom andlist that occur in the
rule schema. These categories are disjoint since each variable must be declared with a unique type (see
Figure 2). The mark components of labels are represented graphically rather than textually.

The values of variables at execution time are determined by graph matching, hence we require that
expressions in the left graph of a rule schema must have a simple shape.

D. Plump 5

Definition 2 (Simple list). An expressione∈ List is simpleif

(1) econtains no arithmetic operators,

(2) econtains at most one occurrence of a list variable, and

(3) each occurrence of a string expression inecontains at most one occurrence of a string variable.

For example, given the variable declarations of Figure 2,a:x and ”no”.s:y:t are simple expressions
whereasx:y ands.t are not simple.

The syntax of a rule schema condition is defined by the grammarin Figure 5. New features are the
predicatesint, string andatom, which allow to check whether an expression belongs to a subtype
of list, and equations between arbitrary list expressions. Also, the edge predicate can have a third
parameter specifying the list component of an edge label.

Condition ::= Type ’(’ List ’)’ | List (’=’ | ’!=’) List |

Integer RelOp Integer|

edge ’(’ Node ’,’ Node [’,’ List] ’)’ |

not Condition| Condition (and | or) Condition

Type ::= int | string | atom

RelOp ::= ’>’ | ’>=’ | ’<’ | ’<=’

Figure 5: Abstract syntax of rule-schema condition

Definition 3 (Conditional rule schema). A rule schema〈L← K→ R〉 consists of two inclusionsK→ L
andK → R such thatL,R are graphs inG (Label) andK consists of unlabelled nodes only. We require
that all list expressions inL are simple and that all variables occurring inRalso occur inL. A conditional
rule schema〈L← K→R, c〉 consists of a rule schema〈L← K→R〉 and a conditionc∈Condition such
that all variables occurring inc also occur inL.

When a conditional rule schema is declared, as in Figure 2, graphK is implicitly represented by the
node identifiers inL andR (which much coincide). Hence nodes without identifiers inL are to be deleted
and nodes without identifiers inR are to be created.

The requirement that all variables inR must also occur inL ensures that for a given match ofL in a
host graph, applyingr produces a unique graph (up to isomorphism). Similarly, theevaluation ofc has a
unique result if all its variables occur inL.

4 Semantics of Rule Schemata

While the left and right graph of a rule schema are labelled with elements from the syntactic category
Label, host graphs are labelled with values from the following semantic domainL :

L = (Z∪Char∗)∗×B

whereB = {true, false}. Hence semantic labels are sequences consisting of integers and character
strings1, paired with boolean values. As in the case of syntactic labels, the individual elements of a

1We assume that Char is a fixed set of characters.

6 The Design of GP 2

sequence are separated by colons, the empty sequence is represented by “white space”, and the boolean
value true is represented graphically by shading resp. dashed lines.

The application of a rule schemar with condition c to a graphG in G (L) proceeds roughly as
follows:

1. Match the left graphL of r with a subgraph ofG, ignoring labels, by means of a premorphism
g: L→G.

2. Check whether there is an assignmentα of values to variables such that after evaluating the ex-
pressions inL, g is label-preserving.

3. Check whether the conditionc evaluates to true.

4. Apply the rulerg,α , obtained fromr by evaluating all expressions in the left and right graph, toG.

For example, Figure 6 shows an application of the rule schemabridge of Figure 2. The upper half
of the diagram represents the instantiation ofbridge according to premorphismg and the following
assignmentα : a 7→ 0, x 7→ 1 : 2, n 7→ 3, y 7→ 4, s 7→ ”o”, t 7→ ”k”. The lower half of the diagram
represents the application of the instancebridgeg,α according tog. Note that the application condition
of bridge (see Figure 2) is satisfied with respect tog andα .

a:x

1

n

2

y

3

s t
⇒ a

1

x:n

2 3

n∗n

3

s.t

s t

7→

α,g

7→

α,g

0:1:2

1

3

2

4

3

”o” ”k”
⇒ 0

1

1:2:3

2

9

3

”ok”

”o” ”k”

↓ g ↓

0:1:2 3 4

2

”o” ”k”

0−1

⇒ 0 1:2:3 9

2

”ok”

”o” ”k”

0−1

Figure 6: An application of the rule schemabridge of Figure 2

In the remainder of this section, we make the above four stepsprecise. Consider a conditional rule
schemar = 〈L← K → R, c〉. Given graphsG in G (Label) andH in G (L), a premorphism g: G→ H

D. Plump 7

consists of two functionsgV : VG→VH andgE : EG→ EH that preserve sources and targets:sH ◦gE =
gV ◦sG andtH ◦gE = gV ◦ tG.

An assignmentis a family of mappingsα = (αX)X∈{I,S,A,L} whereαI : IVariable→Z, αS : SVariable
→ Char∗, αA : AVariable→ Z∪Char∗ andαL : LVariable→L . We sometimes omit the subscripts of
these mappings as exactly one of them is applicable to a givenvariable.

Given a premorphismg: L → G, an assignmentα and a labell = em with e ∈ List and m ∈
{true,false}, the valuelg,α ∈L is the pair〈eg,α

, true〉 if m= true and〈eg,α
, false〉 otherwise.

The valueeg,α ∈ (Z∪Char∗)∗ is inductively defined. Ife= empty, theneg,α is the empty sequence.
If ehas the formd1 . . .dn (n≥ 1) with digitsd1, . . . ,dn, or has the form ”c1 . . .cn” (n≥ 0) with characters
c1, . . . ,cn, theneg,α is the unique integer inZ resp. character string in Char∗ represented bye. (Note
that the empty character string andemptyg,α are different values.) Ife is a variable, theneg,α = α(e).
Otherwise,eα is obtained from the values ofe’s components. Ife= −e1 with e1 ∈ Integer, theneg,α

is the integer opposite toeg,α
1 . If e has the forme1⊕ e2 with ⊕ ∈ ArithOp ande1,e2 ∈ Integer, then

eg,α = eg,α
1 ⊕Z eg,α

2 where⊕Z is the integer operation represented by⊕.2 If e has the formindeg(n) or
outdeg(n), with n∈ Node, theneg,α is the indegree resp. outdegree of the nodegV(n) in G. Finally, if
e= e1.e2 with e1,e2 ∈ String ore= e1:e2 with e1,e2 ∈ List, theneg,α is the concatenation ofeg,α

1 and
eg,α

2 .
The valuecg,α ∈ B of the conditionc is also inductively defined. Ifc has the formint(e1) with

e1 ∈ List, thencg,α = true if and only ifeg,α
1 ∈ Z. Similarly, if c has the formstring(e1) or atom(e1),

thencg,α = true if and only ifeg,α
1 ∈ Char∗ resp.eg,α

1 ∈ Z∪Char∗. If c has the forme1=e2 or e1 ! =e2

with e1,e2 ∈ List, thencg,α = true if and only ifeg,α
1 = eg,α

2 resp.eg,α
1 6= eg,α

2 . If c has the forme1 ⊲⊳ e2

with ⊲⊳ ∈RelOp ande1,e2 in Integer, thencg,α = true if and only ifeg,α
1 ⊲⊳Z eg,α

2 where⊲⊳Z is the integer
relation represented by⊲⊳.

If c has the formedge(m,n) with m,n∈ Node, thencg,α = true if and only if there is an edge inG
from gV(m) to gV(n). Similarly, if c has the formedge(m,n,e) with m,n ∈ Node ande∈ List , then
cg,α = true if and only if there is an edge fromgV(m) to gV(n) with a label whose list component iseg,α .

If c has the formnotc1 with c1 ∈ Condition, thencg,α = true if and only ifcg,α
1 = false. Finally, ifc

has the formc1andc2 with c1,c2 ∈ Condition, thencg,α = true if and only ifcg,α
1 = true= cg,α

2 , and ifc
has the formc1orc2, thencg,α = true if and onlycg,α

1 = true orcg,α
2 = true.

We callrg,α = 〈Lg,α ← K→Rg,α〉 the instanceof r with respect tog andα , whereLg,α andRg,α are
obtained fromL andR by replacing each labell with lg,α . Note thatrg,α is a graph transformation rule
over L , in the sense of Section 2. We can now define the application ofconditional rule schemata to
graphs inG (L).

Definition 4 (Rule-schema application). Given a conditional rule schemar = 〈L←K→R, c〉 and graphs
G,H in G (L), we write G⇒r,g H (or just G⇒r H) if there are a premorphismg: L → G and an
assignmentα such that

(1) g is a graph morphismLg,α →G,

(2) cg,α = true, and

(3) G⇒rg,α ,g H.

HereG⇒rg,α ,g H denotes the application ofrg,α with matchg to G, as defined in Section 2. Note that
we use⇒ for the application of both rule schemata and rules, to avoidan inflation of symbols. Given a
setR of conditional rule schemata, we writeG⇒R H if G⇒r H for some conditional rule schemar in
R.

2The effect of dividing by zero is undefined, that is, left to the implementation.

8 The Design of GP 2

The following proposition shows that given a rule schemar, a premorphism from the left-hand graph
of r to G induces at most one instance ofr that can be applied with matchg.

Proposition. Given a conditional rule schema r= 〈L← K→R, c〉 and a premorphism g: L→G, there
exists at most one assignmentα such that g is a graph morphism Lg,α →G.

The proof of this property relies on the fact that the left-hand graphL contains only simple expres-
sions.

5 Programs

The syntax of graph programs is the same as in GP 1, except for the syntax of rule schemata and the new
constructstry then else andor. Figure 7 shows the abstract syntax of GP 2 programs. As before, a
program consists of a number of declarations of conditionalrule schemata and macros, and exactly one
declaration of a main command sequence. The identifiers of category RuleId occurring in a RuleSetCall
refer to declarations of conditional rule schemata in category RuleDecl (see previous sections).

Prog ::= Decl{Decl}

Decl ::= RuleDecl| MacroDecl|MainDecl

MacroDecl ::= MacroId ’=’ ComSeq

MainDecl ::= main ’=’ ComSeq

ComSeq ::= Com{’;’ Com}

Com ::= RuleSetCall| MacroCall

| if ComSeqthen ComSeq [else ComSeq]

| try ComSeqthen ComSeq [else ComSeq]

| ComSeq ’!’

| ComSeqor ComSeq

| skip | fail

RuleSetCall ::= RuleId| ’{’ [RuleId {’,’ RuleId}] ’ }’

MacroCall ::= MacroId

Figure 7: Abstract syntax of programs

In the next section it is shown that the commandsor, skip andfail can be expressed through
the other commands. Hence the core of GP includes only the call of a set of conditional rule schemata
(RuleSetCall), sequential composition (’;’), the if-then-else statement, the try-then-else statement and
as-long-as-possible iteration (’!’). Before formally defining the semantics of programs, we discuss some
example programs to illustrate the use of the new features ofGP 2.

Example1 (Checking connectedness). A graph isconnectedif there is an undirected path between each
two nodes, that is, a sequence of consecutive edges whose directions don’t matter. The program in Figure
8 checks whether an arbitrary input graphG is connected and, depending on the result, executes either
programP or programQ onG.

Connectedness is checked by picking some node, marking it, and propagating node marks along
edges as long as possible. Then an application of the rule schemaunmarked tests whether any unmarked

D. Plump 9

nodes are left. If this is the case, then the macrodisconnected succeeds and programQ is executed,
otherwisedisconnected fails and programP is executed.

It is important to note thatP or Q is executedon the input graphwhereas the graph resulting from
the test is discarded. The precise semantics of the branching command is given in Section 6.

main = if disconnected then Q else P
disconnected = pick; {grow1, grow2}!; unmarked

pick(x : list)

x

1

⇒ x

1

grow1(a,x,y : list)

x y

1 2

a
⇒ x y

1 2

a

grow2(a,x,y : list)

x y

1 2

a
⇒ x y

1 2

a

unmarked(x : list)

x

1

⇒ x

1

Figure 8: A program for checking connectedness

Example2 (Recognising acyclic graphs). A graph isacyclic if it does not contain a directed cycle. The
program in Figure 9 checks whether an unmarked input graphG is acyclic and, depending on the result,
executes either programP or programQ on G.

The absence of cycles is checked by deleting, as long as possible, edges whose source nodes have no
incoming edges, and testing subsequently whether any edgesremain. This method relies on the following
invariant of the rule schemadelete: for every stepG⇒delete H, G is acyclic if and only ifH is acyclic.
Moreover, a graph to whichdelete is not applicable is acyclic if and only if it does not containedges.
Note that the condition ofdelete uses the new indegree function.

Example3 (Recognising series-parallel graphs). Series-parallelgraphs are inductively defined as fol-
lows. Every graphG consisting of two nodes connected by an edge is series-parallel, where the edge’s
source and target are the source and target ofG. Given series-parallel graphsG andH, the graphs ob-
tained from the disjoint unionG+H by the following two operations are also series-parallel. Serial
composition: merge the target ofG with the source ofH; the source ofG becomes the new source and
the target ofH becomes the new target. Parallel composition: merge the source ofG with the source of
H, and the target ofG with the target ofH; sources and targets are preserved.

10 The Design of GP 2

main = if acyclic then P else Q
acyclic = delete!; if {edge, loop} then fail

delete(a,x,y : list)

x y

1 2

a
⇒ x y

1 2

where indeg(1) = 0

edge(a,x,y : list)

x y

1 2

a
⇒ x y

1 2

a

loop(a,x : list)

x

1

a ⇒ x

1

a

Figure 9: A program for recognising acyclic graphs

It is known [1, 2] that a graph is series-parallel if and only if it reduces to a graph consisting of
two nodes connected by an edge (abase graph) by repeated application of the following operations: (a)
Given a node with one incoming edgei and one outgoing edgeo such thats(i) 6= t(o), replacei, o and
the node by an edge froms(i) to t(o). (b) Replace a pair of parallel edges by an edge from their source
to their target.

Figure 10 shows a macro which reduces every unmarked series-parallel graph to the empty graph,
and fails on every other unmarked graph. The subprogramreduce! applies as long as possible the
operations (a) and (b) to the input graphG, then the rule schemadelete-base checks if the result is a
base graph whose nodes are not incident to other edges. (The latter is ensured by the dangling condition.)
If delete-base is not applicable, then the input graph was not reduced to a base graph. In this case the
input graph is not series-parallel because every executionof reduce! yields the same graph. (This is
because the critical pairs of the rule schemataserial andparallel are strongly joinable [6].)

Finally, afterdelete-base has been applied, the rule schemanonempty checks whether the graph
resulting fromreduce! contains nodes other than those of the base graph. The input graph is series-
parallel if and only if this is not the case.

Example4 (Computing Euler cycles). An Euler cycleis a directed cycle of distinct edges that contains
all edges and nodes of a graph. A graph iseulerianif it contains an Euler cycle. It is known that a graph
is eulerian if and only if it is connected and each node has thesame indegree as outdegree [1]. Based on
this characterisation, the macroeulerian of Figure 11 checks whether an unmarked graph is eulerian
or not. It does this by using the macrodisconnected of Figure 8 and the new indegree and outdegree
functions.

Given an unmarked eulerian input graph with atomic labels, the program in Figure 12 computes an
Euler cycle and numbers its edges. An execution of this program is shown in Figure 13. In the resulting

D. Plump 11

series-parallel = reduce!; delete-base; if nonempty then fail

reduce= {serial, parallel}

serial(a,b,x,y,z : list)

x y z

1 2

a b
⇒ x z

1 2

parallel(a,b,x,y : list)

x y

1 2

a

b

⇒ x y

1 2

delete-base(a,x,y : list)

x y
a

⇒ /0

nonempty(x : list)

x

1

⇒ x

1

Figure 10: A macro for recognising series-parallel graphs

graph, the computed Euler cycle is given by the edges with thelabels1:1, 1:1:1, 1:1:2, 1:1:3, 1:2,
1:3 and1:4. The graph in the middle of Figure 13 is an intermediate result representing the point in
time when the macrocycle has been executed for the first time.

The program uses the commandtry then to check if the input graph is nonempty. If the input graph
is empty, then the empty sequence of edges is an Euler cycle and hence the program returns the empty
graph. If the input graph is nonempty, the rule schemainit picks some node, adds0 to its label, and
marks the node. Then the rule schemaloop numbers all loops with atomic labels that are incident to the
node. Next the rule schemacycle numbers a proper (that is, non-loop) cycle starting at this node, by
repeatedly applying the rule schemagrow. Also, at each visited node,loop is applied as long as possible
to number all incident loops.

When the first proper cycle has been numbered, the subprogram(next; cycle)! repeatedly com-
putes a new cycle starting at a node that has already been visited. This cycle is inserted into the current
cycle by numbering the new edges with lists that add one position to the list of the edge preceding the new
edges. Finally, when all edges of the graph have been numbered, the rule schemaclean-up removes all
auxiliary information in node labels.

6 Operational Semantics

This section presents a formal semantics for GP 2 in the styleof Plotkin’s structural operational semantics
[5]. As usual for this approach, inference rules inductively define a small-step transition relation→ on

12 The Design of GP 2

eulerian = if disconnected then fail; if unbalanced then fail

disconnected = ...

unbalanced(x : list)

x

1

⇒ x

1

where indeg(1) != outdeg(1)

Figure 11: A macro for recognising eulerian graphs

configurations. In our setting, a configuration is either a command sequencetogether with a graph, just
a graph or the special element fail:

→ ⊆ (ComSeq×G (L))× ((ComSeq×G (L))∪G (L)∪{fail}).

Configurations in ComSeq×G (L), given by a rest program and a state in the form of a graph, represent
states of unfinished computations while graphs inG (L) are proper results. In addition, the element fail
represents a failure state. A configurationγ is said to beterminal if there is no configurationδ such that
γ → δ .

Figure 14 in the Appendix shows the inference rules for the core commands of GP 2. Each rule
consists of a premise and a conclusion separated by a horizontal bar. Both parts contain meta-variables
for command sequences and graphs, whereR stands for a call in category RuleSetCall,C,P,P′,Q stand
for command sequences in category ComSeq, andG,H stand for graphs inG (L). Meta-variables are
considered to be universally quantified. For example, the rule [call1] reads: “For allR in RuleSetCall and
all G,H in G (L), G⇒R H implies 〈R, G〉 → H.” The transitive and reflexive-transitive closures of→
are written→+ and→∗, respectively. The notationG 6⇒R expresses that for graphG in G (L) there is
no graphH such thatG⇒R H.

The if-then-else command has been designed to “hide” destructive tests. In Example 1, for instance,
the test of the if-then-else command produces a graph with marked nodes. By the inference rules[if1] and
[if2], this graph is discarded and programP or Q is executed on the input graph. In contrast, a program
tryC then P else Q passes any graph resulting from its test toP. If testC fails, however,Q is executed
on the input graph.

The semantics of the if-then-else command and the as-long-as-possible loop in GP 1 have been
modified to allow an efficient implementation. Previously, the conditions of branching commands and
the bodies of loops were tested, in the worst case, by trying all possible executions starting from the
current graph. This made branching and loop commands impractical for complex tests or large input
graphs. In GP 2, the semantics ofif C then P else Q, try C then P else Q, andB! do not enforce
backtracking whenC or B fails. Instead, control is passed to programQ or the loop is terminated,
respectively. Note that this change increases the nondeterminism of evaluation in cases whereC or B can
both succeed and fail on the input graph.

The inference rules for the remaining GP commands are given in Figure 15 of the Appendix. These
commands are referred to asderivedcommands because they can be defined by the core commands, as
shown below.

The meaning of GP 2 programs is summarised by the semantic function J K which assigns to each
programP the functionJPK mapping an input graphG to the set of all possible results of executingP

D. Plump 13

main = try init; loop! then (cycle; (next; cycle)!; clean-up!)

cycle = (grow; loop!)!; unmark

next = first; loop!

init(x:atom)

x

1

⇒ x:0

1

loop(a,x:atom; u:list; i:int)

x:u:i

1

a ⇒ x:u:i+1

1

a:u:i+1

grow(a,x,y:atom; i:int; u,v:list)

x:u:i y:v

1 2

a
⇒ x:u:i y:u:i+1

1 2

a:u:i+1

unmark(u:list)

u

1

⇒ u

1

first(a,x,y:atom; u,v:list)

x:u y:v

1 2

a
⇒ x:u y:u:1

1 2

a:u:1

where u != empty

clean-up(x:atom; u:list)

x:u

1

⇒ x

1

where u != empty

Figure 12: A program for computing an Euler cycle

14 The Design of GP 2

1

2

3

4

1

1 1

11

1 1
∗
⇒

1:4

2:1

3

4:3

1:3

1:1 1

11:4

1:2 1
∗
⇒

1

2

3

4

1:3

1:1 1:1:1

1:1:21:4

1:2 1:1:3

Figure 13: An execution of the program of Figure 12

on G. The application ofJPK to G is written JPKG. The result set may contain, besides proper results
in the form of graphs, the special values fail and⊥. The value fail indicates a failed program run while
⊥ indicates a run that does not terminate or gets stuck. Program P can diverge from Gif there is an
infinite sequence〈P, G〉 → 〈P1, G1〉 → 〈P2, G2〉 → . . . Also, P can get stuck from Gif there is a terminal
configuration〈Q, H〉 such that〈P, G〉 →∗ 〈Q, H〉.

Definition 5 (Semantic function). Thesemantic functionJ K : ComSeq→ (G (L)→ 2G (L)∪{fail ,⊥}) is
defined by

JPKG = {X ∈ (G (L)∪{fail}) | 〈P, G〉
+
→X}∪{⊥ | P can diverge or get stuck fromG}.

In the current implementation of GP, reaching the failure state triggers backtracking which then
attempts to find a proper result [4]. However, backtracking can be switched off by the user.

A program can get stuck in two situations: (1) it contains a commandif C then P else Q or
try C then P else Q such thatC can diverge from some graphG and can neither produce a proper
result fromG nor fail from G, or (2) it contains a loopB! whose bodyB possesses the said property
of C. The evaluation of such commands gets stuck because none of the inference rules for if-then-else,
try-then-else or iteration is applicable.

The semantic function of Definition 5 suggests a straightforward notion of program equivalence.

Definition 6 (Semantic equivalence). Two programsP andQ aresemantically equivalent, denoted by
P≡Q, if JPK = JQK.

For example, it is easy to see that the following equivalences between derived commands and core
commands hold (where /0 is the empty graph):

• skip≡ null, wherenull is the rule schema /0⇒ /0;

• fail≡ {}, where{} is the empty set of rule schemata;

• ifC then P ≡ ifC then P else null, for all programsC andP;

• tryC then P ≡ tryC then P else null, for all programsC andP.

Less obvious is the following equivalence, showing thator is a derived command:

PorQ ≡ if remove!; {create, null}; zero then P else Q,

for all programsP andQ. Hereremove is a set of three rule schemata that delete arbitrary edges, loops
and isolated nodes,create is the rule schema

/0⇒ 0

D. Plump 15

andzero is the rule schema

0 ⇒ 0 .

The following non-equivalence may be surprising, too:

tryC then P else Q 6≡ ifC thenC;P else Q.

To witness, chooseC= skip or fail, P= skip andQ= skip. Then thetry-program is equivalent to
skip and hence cannot fail, but theif-program can fail.

7 Conclusion

GP allows high-level problem solving in the domain of graphs, by supporting rule-based programming
and freeing programmers from dealing with low-level data structures for graphs. The language has a
simple syntax and semantics, to facilitate both understanding by programmers and formal reasoning on
programs.

The revised language GP 2 has an improved type system, including list variables and subtypes, a new
concept of marking nodes and edges graphically, new built-in functions for accessing the indegree and
the outdegree of nodes, a more powerfuledge predicate for conditions, new commandstry-then-else
andor, and a simplified semantics of branching and looping to enable an efficient implementation.

Topics for future work include the implementation of GP 2, tool support for Hoare-style program
verification [9], and static analyses for properties such astermination and confluence.

Acknowledgements. Parts of this paper were written while visiting Annegret Habel in Oldenburg and
Berthold Hoffmann in Bremen in the autumn of 2011. I am grateful for their hospitality. Thanks go also
to the Plasma research group in York for helpful comments, especially to Colin Runciman for proposing
the concept of shaded nodes.

References

[1] Jørgen Bang-Jensen & Gregory Gutin (2009):Digraphs: Theory, Algorithms and Applications, second edition.
Springer-Verlag.

[2] R. J. Duffin (1965):Topology of Series-Parallel Networks. Journal of Mathematical Analysis and Applications
10(2), pp. 303–318, doi:10.1016/0022-247X(65)90125-3.

[3] Annegret Habel & Detlef Plump (2002):Relabelling in Graph Transformation. In: Proc. International Con-
ference on Graph Transformation (ICGT 2002), Lecture Notes in Computer Science2505, Springer-Verlag,
pp. 135–147, doi:10.1007/3-540-45832-812.

[4] Greg Manning & Detlef Plump (2008):The GP Programming System. In: Proc. Graph Transformation and
Visual Modelling Techniques (GT-VMT 2008), Electronic Communications of the EASST10.

[5] Gordon D. Plotkin (2004):A Structural Approach to Operational Semantics. Journal of Logic and Algebraic
Programming60–61, pp. 17–139, doi:10.1016/j.jlap.2004.05.001.

[6] Detlef Plump (2005):Confluence of Graph Transformation Revisited. In Aart Middeldorp, Vincent van Oost-
rom, Femke van Raamsdonk & Roel de Vrijer, editors:Processes, Terms and Cycles: Steps on the Road
to Infinity: Essays Dedicated to Jan Willem Klop on the Occasion of His 60th Birthday, Lecture Notes in
Computer Science3838, Springer-Verlag, pp. 280–308, doi:10.1007/11601548.

http://dx.doi.org/10.1016/0022-247X(65)90125-3
http://dx.doi.org/10.1007/3-540-45832-8_12
http://dx.doi.org/10.1016/j.jlap.2004.05.001
http://dx.doi.org/10.1007/11601548

16 The Design of GP 2

[7] Detlef Plump (2009):The Graph Programming Language GP. In: Proc. International Conference on Al-
gebraic Informatics (CAI 2009), Lecture Notes in Computer Science5725, Springer-Verlag, pp. 99–122,
doi:10.1007/978-3-642-03564-76.

[8] Detlef Plump & Sandra Steinert (2010):The Semantics of Graph Programs. In: Proc. Rule-Based
Programming (RULE 2009), Electronic Proceedings in Theoretical Computer Science21, pp. 27–38,
doi:10.4204/EPTCS.21.3.

[9] Christopher M. Poskitt & Detlef Plump (2012):Hoare-Style Verification of Graph Programs. Fundamenta
Informaticae. To appear.

Appendix: Semantic Inference Rules

[call1]
G⇒R H
〈R, G〉 → H [call2]

G 6⇒R
〈R, G〉 → fail

[seq1]
〈P, G〉 → 〈P′, H〉

〈P;Q, G〉 → 〈P′;Q, H〉
[seq2]

〈P, G〉 → H
〈P;Q, G〉 → 〈Q, H〉

[seq3]
〈P, G〉 → fail
〈P;Q, G〉 → fail

[if1]
〈C, G〉 →+ H

〈if C then P else Q, G〉 → 〈P, G〉 [if2]
〈C, G〉 →+ fail

〈if C then P else Q, G〉 → 〈Q, G〉

[try1]
〈C, G〉 →+ H

〈tryC then P else Q, G〉 → 〈P, H〉 [try2]
〈C, G〉 →+ fail

〈tryC then P else Q, G〉 → 〈Q, G〉

[alap1]
〈P, G〉 →+ H

〈P!, G〉 → 〈P!, H〉 [alap2]
〈P, G〉 →+ fail
〈P!, G〉 →G

Figure 14: Inference rules for core commands

[or1] 〈Por Q, G〉 → 〈P, G〉 [or2] 〈Por Q, G〉 → 〈Q, G〉

[skip] 〈skip, G〉 →G [fail] 〈fail, G〉 → fail

[if3]
〈C, G〉 →+ H

〈if C then P, G〉 → 〈P, G〉 [if4]
〈C, G〉 →+ fail

〈if C then P, G〉 →G

[try3]
〈C, G〉 →+ H

〈tryC then P, G〉 → 〈P, H〉 [try4]
〈C, G〉 →+ fail

〈tryC then P, G〉 →G

Figure 15: Inference rules for derived commands

http://dx.doi.org/10.1007/978-3-642-03564-7_6
http://dx.doi.org/10.4204/EPTCS.21.3

	1 Introduction
	2 Graphs and Graph Transformation
	3 Syntax of Rule Schemata
	4 Semantics of Rule Schemata
	5 Programs
	6 Operational Semantics
	7 Conclusion

