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This papers defines the syntax and semantics of GP 2, a rexéssidn of the graph programming
language GP. New concepts are illustrated and explainédew@mple programs. Changes to the first
version of GP include an improved type system for labels,i#-toumarking mechanism for nodes
and edges, a more powerfedge predicate for conditional rule schemata, and functiongrréng
the indegree and outdegree of matched nodes. Moreoverethangics of the branching and loop
statement have been simplified to allow their efficient immatation.

1 Introduction

GP is an experimental nondeterministic programming lagguar high-level problem solving in the
domain of graphs. The language is based on conditional chiensata for graph transformation and has
a simple syntax and semantics, to facilitate both undedstgrby programmers and formal reasoning on
programs. The original version of GP (also referred to as @Brih now on) is defined ir_[7,18] and its
protoype implementation is described|in [4].

Motivated by case studies in GP programming, the followingnges and extensions feature in GP 2:

e There are new typestom andlist, the former representing the union of integers and characte
strings, the latter lists of atoms. Variables of these tyq@sbe declared in rule schemata.

e Rule schemata camarknodes and edges graphically.

e Conditional rule schemata can check, by means oédlge predicate, whether there exists an edge
with a particular label between two matched nodes.

e The indegree or outdegree of a matched node can be accestedeahin the labels or in the
condition of a rule schema.

e The if-then-else statement of GP 1 is complemented by aheg-else command whose then-part
is executed on the graph resulting from the try-part. Alsog& or command provides explicit
nondeterministic choice between subprograms.

e Failure in evaluating the condition of a branching statenoerthe body of a loop does no longer
enforce backtracking, in order to allow an efficient impletagéion of branching and looping.

The rest of this paper is organised as follows. In Sedfilorh&,draph transformation approach
underlying GP is briefly reviewed, viz. the double-pushoppraach with relabelling. Sectidd 3 intro-
duces conditional rule schemata, the building blocks of @ggams. The semantics of conditional rule
schemata is defined in Sectibh 4. In Secfibn 5, new featur€&Po®? are demonstrated and explained
by example programs. A formal operational semantics for &Pp2esented and discussed in Sedfibn 6.
SectiorL¥ concludes by summarising GP’s revision and aslithg@sopics for future work. The Appendix
lists the inference rules of the semantics of Sedtion 6.
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2 The Design of GP 2

2 Graphs and Graph Transformation

Graph transformation in GP is based on the double-pushqubaph with relabelling [3]. This frame-
work deals with partially labelled graphs whose definitismacalled below. In this section, we treat the
label alphabet as a parameter because in subsequent seedareed different alphabets: graphs in rule
schemata are labelled with expressions while graphs onhwhig programs operate (also referred to as
host graphs) are labelled with lists composed of integetssaings.

A graphover a label alphabéft’ is a systenG = (g, Eg, Se, s, s, Mg), whereVg andEg are finite
sets ofnodes(or verticed and edges sg,ig: Ec — Vg are thesourceandtarget functions for edges,
Ig: Vg — % is the partial node labelling function ang; : Eg — % is the (total) edge labelling function.
Given a nodey, we writelg(v) = L to express thdi(v) is undefined. Grapl® is totally labelledif Ig is
a total function. We write/ (%, ) and¥ (%) for the class of graphs resp. totally labelled graphs @er

Unlabelled nodes will occur only in the interfaces of rulesl @re necessary in the double-pushout
approach to relabel nodes. There is no need to relabel edglesyacan always be deleted and reinserted
with different labels.

A graph morphism g G — H between graph&,H in 4(%¢’, ) consists of two functiongy : Ve — Vn
andge : Eg — Ey that preserve sources, targets and labels; that isge = gv 0 Sg, tH ©ge = gv olg,
my oge = Mg, andly (g(v)) = Ig(v) for all v such thatg(v) # L. Morphismg is aninclusionif g(x) = x
for all nodes and edges It is injective (surjectivg if gy and ge are injective (surjective). It is an
isomorphismif it is injective, surjective and satisfidg (gyv(v)) = L for all nodesv with Ig(v) = L. In
this caseG andH areisomorphic which is denoted b = H.

A ruler = (L + K — R) consists of two inclusion& — L andK — R such thatL,R are graphs
in 4(%¢) andK, theinterfaceof r, is a graph ing(%,). Intuitively, an application of to a graph will
remove the items ih — K, preserveK, add the items ilR— K, and relabel the unlabelled nodesin

Definition 1 (Rule application) Letr = (L + K — R) be a rule,G a graph in¢ (%), andg: L — G
an injective graph morphism satisfying tdangling condition no node ing(L) — g(K) is incident to
an edge inG—g(L). We writeG =4 H if H is isomorphic to the graph that is constructed frGnas
follows:

1. Remove all nodes and edgegyiih) — g(K), obtaining a grapiD.

2. Add disjointly toD all nodes and edges froR— K, keeping their labels. Fac Egr— Ek, s1(€)
is sp(e) if sr(e) € VR —Vk, otherwisegy (sz(e)). Targets are defined analogously.

3. For each unlabelled noden K, I (gv (v)) becomedg(v).

Figure[1 shows an example of a rule application. The rule énupper row is applied to the left
graph of the lower row, resulting in the right graph of the dowow. (For simplicity, we assume that
all edge labels are the same and hence omit them.) The nodtfiets 1 and 2 in the rule specify the
inclusions of the interface. The middle graph of the lowev i® obtained from grap® of Definition[1
by making all nodes unlabelled that are images of unlabeltetks inkK. Then the diagram represents a
double-pushout in the category of graphs dgger(see[3]).

3 Syntax of Rule Schemata

Conditional rule schemata are the principal programmingstract in GP. Figurgl2 shows an (artificial)
example for the declaration of a rule schema containing sufrttee new features of GP 2.
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Figure 1: A rule application

bridge(s,t: string; a: atom; n! int; x,y: list)  _
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where (a =0 or a="7") and notedge(1, 3, s.t) and outdeg(1) = indeg(3)

Figure 2: Declaration of a conditional rule schema

Besides the typesnt andstring of GP 1, there are the new typesom andlist. Typeatom is the
union of int andstring, andlist is the type of a (possibly empty) list of atoms. Given listandy,
we writex :y for the concatenation of andy. The colon replaces the underscoreof GP 1 for better
readability. Also, the empty listmpty is now allowed (not to be confused with the empty character
string ™). When drawing graphs, we represent the emptybisbmitting the wordempty. (Confusion
with unlabelled nodes is not possible as long as we considghg on the left or right of a rule schema,
or host graphs. This is because these graphs are totalleldbe

We identify lists of length one with their contents and hegeethe syntactic and semansiobtype
relationships shown in Figufé 3. This is why we can form ligiressions such as x andx:n in Figure
[2, wherex is a list,a an atom anch an integer. For the same reason, equations in the condiicin as
a=0o0ra="7"can compare expressions of arbitrary list subtypes.

Expressions in the left-hand side of a rule schema need myetdre constants or variables. Com-
posite expressions such asx in Figure[2 are allowed if there is no ambiguity in matchindiudual
variables with values in host graph labels. Similarly, tleevrdot operator.” for string concatenation
can be used in left-hand labels. (The exact condition farHahd expressions is given in Definitigh 2.)

The new functionaindeg andoutdeg access the indegree resp. outdegree of a left-hand node in th
host graph. These operators may occur in the labels and tiaitiom of a rule schema. Moreover, the
binaryedge predicate of GP 1 has now an optional third argument spegjfthe label of a possible edge
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list (ZJChar)*
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int string Z Char*

Figure 3: Subtype hierarchy for lists

between the given nodes. For example, the subconditiaredge(1, 3, s.t) in Figure[2 demands that
there must not be an edge from nadé& node3 with labels. t (where the strings denoted kyandt
are determined by matching the left-hand graph).

Finally, GP 2 allows to mark nodes and edges graphically. éxample, the outermost nodes in
Figure[2 are marked by a grey shading, and the dashed arravedreinodes 1 and 3 in the right graph
represents a marked edge. Marking is formalised below byidgfiabels as pairs of lists and boolean
values, where a boolean value indicates whether a node erigdgarked or not.

Figure[4 and Figurk]5 give grammars in Extended Backus-NatmElefining the abstract syntax
of the labels and the condition of a rule schema. These grasnama ambiguous; in examples we use
parentheses to disambiguate expressions if necessatye lekt section, the abstract syntax is used in
defining the semantics of rule schemata.

Integer = Digit{Digit} | IVariable|’'—’ Integer| Integer ArithOp Integef
(indeg | outdeg) (" Node )’

ArithOp == '+ |'=" "% |/

String = """ {Chan '"" | SVariable| String .’ String

Atom = Integer| String| AVariable

List = empty | Atom | LVariable| List ;" List

Label = List Mark

Mark = true|false

Figure 4: Abstract syntax of rule schema labels

The grammar in Figurel 4 defines four syntactic categoriexpfessions which can occur in a rule
schema: Integer, String, Atom and List, where Integer amoh@are subsets of Atom which in turn is
a subset of List. We assume that Node is the set of node iggatdcurring in the rule schema, which
must be the same for the left and the right grafih 2, 3} in Figure[2). Moreover, IVariable, SVariable,
AVariable and LVariable are the sets of variables of type, string, atom andlist that occur in the
rule schema. These categories are disjoint since eactblaraust be declared with a unique type (see
Figure[2). The mark components of labels are representgdhigedly rather than textually.

The values of variables at execution time are determinedrégtgmatching, hence we require that
expressions in the left graph of a rule schema must have desshppe.
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Definition 2 (Simple list) An expressiore € List is simpleif
(1) econtains no arithmetic operators,
(2) econtains at most one occurrence of a list variable, and
(3) each occurrence of a string expressior aontains at most one occurrence of a string variable.

For example, given the variable declarations of Fifliee: 2,and mo” . s : y : t are simple expressions
whereas:y ands .t are not simple.

The syntax of a rule schema condition is defined by the granmmfaigure[5. New features are the
predicatesint, string andatom, which allow to check whether an expression belongs to aypabt
of 1ist, and equations between arbitrary list expressions. Als®edge predicate can have a third
parameter specifying the list component of an edge label.

Condition ::= Type’( List’)’ | List (=" |'!=") List |

Integer RelOp Integer

edge '(' Node ') Node [, List] ')’ |

not Condition| Condition @nd | or) Condition
Type = int|string|atom
RelOp = ST <

Figure 5: Abstract syntax of rule-schema condition

Definition 3 (Conditional rule schema)A rule schemgL < K — R) consists of two inclusionk — L
andK — Rsuch that_,R are graphs ir¢ (Label) andK consists of unlabelled nodes only. We require
that all list expressions ib are simple and that all variables occurringRalso occur irL.. A conditional
rule schemdL < K — R, ¢) consists of a rule schenih «<— K — R) and a conditiort € Condition such
that all variables occurring ioalso occur irL.

When a conditional rule schema is declared, as in Figureaphd¢ is implicitly represented by the
node identifiers il andR (which much coincide). Hence nodes without identifierk are to be deleted
and nodes without identifiers R are to be created.

The requirement that all variables Rimust also occur il ensures that for a given matchloin a
host graph, applying produces a unique graph (up to isomorphism). Similarlyetreduation ofc has a
unique result if all its variables occur In

4 Semantics of Rule Schemata

While the left and right graph of a rule schema are labelleith wiements from the syntactic category
Label, host graphs are labelled with values from the folimysemantic domairy’:

% =(ZUChat)* x B

where B = {true false}. Hence semantic labels are sequences consisting of isteger character
string, paired with boolean values. As in the case of syntacticléalibe individual elements of a

1we assume that Char is a fixed set of characters.
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sequence are separated by colons, the empty sequenceeisared by “white space”, and the boolean
value true is represented graphically by shading resp edblafes.
The application of a rule schenrawith conditionc to a graphG in 4(.¢) proceeds roughly as

follows:
1. Match the left graph. of r with a subgraph of5, ignoring labels, by means of a premorphism
g:L—G.
2. Check whether there is an assignmendf values to variables such that after evaluating the ex-
pressions irL, g is label-preserving.
3. Check whether the conditianevaluates to true.
4. Apply the ruler%?, obtained front by evaluating all expressions in the left and right graptGto

For example, Figure]6 shows an application of the rule schemage of Figure[2. The upper half
of the diagram represents the instantiationopidge according to premorphisrg and the following
assignmenti: a— 0, x+—1:2, n+— 3, y— 4, s+— "0", t — "k". The lower half of the diagram
represents the application of the instabeedge?? according tog. Note that the application condition
of bridge (see Figur€l2) is satisfied with respecgtanda.

Figure 6: An application of the rule schersaidge of Figure[2

In the remainder of this section, we make the above four giegdse. Consider a conditional rule
schema = (L + K — R, ¢). Given graphss in ¢(Label) andH in 4(.¢), apremorphism gG — H
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consists of two functiongy : Vg — V4 andge: Eg — Ey that preserve sources and targefso g =
Ov oSg andty oge = gv otg.

An assignmenis a family of mappingsr = (ax)xc(i,sa,L} Wherea, : IVariable— Z, as: SVariable
— Char’, aa: Avariable — Z U Chai* anda : LVariable — .. We sometimes omit the subscripts of
these mappings as exactly one of them is applicable to a gaeaable.

Given a premorphisng: L — G, an assignmentr and a labell = em with e € List andm €
{true,false}, the valud9? ¢ £ is the pair(e9?, true) if m= true and(e%“, false otherwise.

The valuee®? € (Z U Char)* is inductively defined. 1&= empty, thene®? is the empty sequence.
If ehas the fornd; ...d, (n > 1) with digitsds,...,dy, or has the form¢; ...c,” (n > 0) with characters
Ci1,...,Cn, thene®? is the unique integer i resp. character string in Charepresented bg. (Note
that the empty character string aasgpty%“ are different values.) Iéis a variable, them%? = a(e).
Otherwise,e” is obtained from the values @&fs components. Ie= —e; with e € Integer, therng??
is the integer opposite te‘f‘“. If e has the forme; @ & with @ € ArithOp andey, e, € Integer, then
9% = e} @z 65" wheredy, is the integer operation representedadf If e has the formindeg(n) or
outdeg(n), with n € Node, there?? is the indegree resp. outdegree of the ngde) in G. Finally, if
e = e1.& With e, e; € String ore = e;:e, with ey, e; € List, thened? is the concatenation & and
4.

The valuec®® € B of the conditionc is also inductively defined. I€ has the formint(e;) with
e € List, thenc®? = true if and only ife}” € Z. Similarly, if ¢ has the formstring(e;) or atom(ey),
thenc®“ = true if and only ife}” € Char resp.e}® € ZUChar. If c has the forme; =&, ore;! =e;
with e, e, € List, thenc®? = true if and only ife]” = & resp.e} # €. If ¢ has the forne;, = e;
with > € RelOp andky, & in Integer, thered® = true if and only ife}* iz €3 wherexy, is the integer
relation represented by.

If ¢ has the formedge(m,n) with m,n € Node, thenc®® = true if and only if there is an edge
from gy (m) to gy(n). Similarly, if c has the formedge(m,n,e) with m,n € Node ande € List , then
c%? =true if and only if there is an edge frogy (m) to gy (n) with a label whose list componentég?.

If ¢ has the formot ¢; with ¢; € Condition, therc®® = true if and only ifc}® = false. Finally, ifc
has the fornt; and ¢, with ¢y, ¢, € Condition, thenc®® = true if and only ifc}® = true=c3“, and ifc
has the fornt; or c;, thenc® = true if and onlyc?” = true orc3” = true.

We callr$® = (L9 +— K — R%9) theinstanceof r with respect tay anda, whereL%® andR%“ are
obtained fromL andR by replacing each labélwith 199, Note thatr%? is a graph transformation rule
over.Z, in the sense of Sectidd 2. We can now define the applicatimomditional rule schemata to
graphs ing(.%).

Definition 4 (Rule-schema applicationfsiven a conditional rule schema= (L < K — R, ¢) and graphs
G,H in 9(Z), we write G =g H (or just G = H) if there are a premorphismg: L — G and an
assignmentr such that

(1) gis a graph morphisrh%® — G,
(2) c%9 = true, and
(3) G jrga’g H .

HereG =140 g H denotes the application o+ with matchgto G, as defined in Sectidd 2. Note that
we use=- for the application of both rule schemata and rules, to aaoithflation of symbols. Given a
set% of conditional rule schemata, we wri@=-4 H if G = H for some conditional rule schennan
X.

2The effect of dividing by zero is undefined, that is, left te tmplementation.
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The following proposition shows that given a rule schamepremorphism from the left-hand graph
of r to G induces at most one instancerahat can be applied with match

Proposition. Given a conditional rule schema= (L + K — R, ¢) and a premorphism gL — G, there
exists at most one assignmensuch that g is a graph morphisn¥£ — G.

The proof of this property relies on the fact that the leftthgraphL contains only simple expres-
sions.

5 Programs

The syntax of graph programs is the same as in GP 1, excepigfalyntax of rule schemata and the new
constructstry_then_else andor. Figure[T shows the abstract syntax of GP 2 programs. Asdyedor
program consists of a number of declarations of conditiounl®l schemata and macros, and exactly one
declaration of a main command sequence. The identifierste§oey Ruleld occurring in a RuleSetCall
refer to declarations of conditional rule schemata in aate@uleDecl (see previous sections).

Prog ::= DecHl{Decl}

Decl = RuleDecl MacroDecl| MainDecl
MacroDecl ::= Macrold '=" ComSeq

MainDecl = main’'="ComSeq

ComSeq = Comr{’; Com}

Com := RuleSetCall MacroCall

| if ComSegthen ComSeq ¢lse ComSeq]
| try ComSeqthen ComSeq ¢1se ComSeq]

| ComSeq !

| ComSeqpr ComSeq

| skip | fail
RuleSetCall := Ruleld’{’ [Ruleld {"; Ruleld}]"}’
MacroCall  := Macrold

Figure 7: Abstract syntax of programs

In the next section it is shown that the commaras skip andfail can be expressed through
the other commands. Hence the core of GP includes only thefcalset of conditional rule schemata
(RuleSetCall), sequential composition (’;’), the if-thelse statement, the try-then-else statement and
as-long-as-possible iteration ('!"). Before formally defig the semantics of programs, we discuss some
example programs to illustrate the use of the new featur&do2.

Examplel (Checking connectedness) graph isconnectedf there is an undirected path between each
two nodes, that is, a sequence of consecutive edges wheséatis don’t matter. The program in Figure
checks whether an arbitrary input gra@ghs connected and, depending on the result, executes either
programP or programQ on G.

Connectedness is checked by picking some node, markingdtpeopagating node marks along
edges as long as possible. Then an application of the rumsinmarked tests whether any unmarked
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nodes are left. If this is the case, then the matisconnected succeeds and progra@is executed,
otherwisedisconnected fails and progrant is executed.

It is important to note thalP or Q is executedn the input graptwhereas the graph resulting from
the test is discarded. The precise semantics of the brajcbimmand is given in Sectidn 6. O

main = if disconnected then Q else P
disconnected = pick; {growl, grow2}!; unmarked

pick(x: list)

ORN

growl(a,x,y: list)

&0 - &0

grow2(a,x,y: list)

- - &0

unmarked x llst

Figure 8: A program for checking connectedness

Example2 (Recognising acyclic graphsi graph isacyclicif it does not contain a directed cycle. The
program in Figur€l9 checks whether an unmarked input g@&jshacyclic and, depending on the result,
executes either prografor programQ on G.

The absence of cycles is checked by deleting, as long adbpmssilges whose source nodes have no
incoming edges, and testing subsequently whether any eeligesn. This method relies on the following
invariant of the rule schemielete: for every stefc =-4e16te H, G is acyclic if and only ifH is acyclic.
Moreover, a graph to whiclielete is not applicable is acyclic if and only if it does not contaidges.
Note that the condition afelete uses the new indegree function. O

Example3 (Recognising series-parallel graph§eries-parallelgraphs are inductively defined as fol-
lows. Every graphG consisting of two nodes connected by an edge is serieslglamahere the edge’s
source and target are the source and targ&.oGiven series-parallel grapt@d andH, the graphs ob-
tained from the disjoint unioi + H by the following two operations are also series-paralletri&d
composition: merge the target Gfwith the source oH; the source ofc becomes the new source and
the target oH becomes the new target. Parallel composition: merge thesafG with the source of
H, and the target o& with the target oH; sources and targets are preserved.
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main = if acyclic then P else Q
acyclic = delete!; if {edge, loop} then fail

delete(a,x,y: list)

OaORBONCO

where indeg(1) =0

edge(a,x,y: list)

a a
OO0
1 2 1 2

loop(a,x: list)

OsL N Ost

Figure 9: A program for recognising acyclic graphs

It is known [1,[2] that a graph is series-parallel if and oriytireduces to a graph consisting of
two nodes connected by an edgeése graphby repeated application of the following operations: (a)
Given a node with one incoming edgand one outgoing edgesuch thats(i) # t(o), replacei, o and
the node by an edge frosti) to t(o). (b) Replace a pair of parallel edges by an edge from theircsou
to their target.

Figure[10 shows a macro which reduces every unmarked gmiefiel graph to the empty graph,
and fails on every other unmarked graph. The subprogratuce! applies as long as possible the
operations (a) and (b) to the input gra@hthen the rule schem#elete-base checks if the result is a
base graph whose nodes are not incident to other edges.afféreis ensured by the dangling condition.)
If delete-base is not applicable, then the input graph was not reduced tea geaph. In this case the
input graph is not series-parallel because every execuofiarduce! yields the same graph. (This is
because the critical pairs of the rule schemaiaial andparallel are strongly joinable [6].)

Finally, afterdelete-base has been applied, the rule schefimmempty checks whether the graph
resulting fromreduce! contains nodes other than those of the base graph. The irgqit @5 series-
parallel if and only if this is not the case. O

Example4 (Computing Euler cycles)An Euler cycleis a directed cycle of distinct edges that contains
all edges and nodes of a graph. A grapkugerianif it contains an Euler cycle. It is known that a graph
is eulerian if and only if it is connected and each node hasénee indegree as outdegree [1]. Based on
this characterisation, the macsalerian of Figure[1l checks whether an unmarked graph is eulerian
or not. It does this by using the mact@sconnected of Figure[8 and the new indegree and outdegree
functions.

Given an unmarked eulerian input graph with atomic labéls,grogram in Figure_12 computes an
Euler cycle and numbers its edges. An execution of this armgs shown in Figure_13. In the resulting
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series—-parallel = reduce!; delete-base; if nonempty then fail
reduce = {serial, parallel}

serial(a,b,x,y,z: list)

O-O~@ = O—E

parallel(a,b,x,y: list)

= - O—O

b 2 1 2

delete-base(a,x,y: list)
Oan©
nonempty(x: list)

Q-

Figure 10: A macro for recognising series-parallel graphs

graph, the computed Euler cycle is given by the edges withatbeds1:1, 1:1:1,1:1:2,1:1:3,1:2,
1:3 and1:4. The graph in the middle of Figufe113 is an intermediate tasyresenting the point in
time when the macroycle has been executed for the first time.

The program uses the commatly_then to check if the input graph is nonempty. If the input graph
is empty, then the empty sequence of edges is an Euler cydlaencte the program returns the empty
graph. If the input graph is nonempty, the rule schemat picks some node, addsto its label, and
marks the node. Then the rule schenmeap numbers all loops with atomic labels that are incident to the
node. Next the rule schemacle numbers a proper (that is, non-loop) cycle starting at thiden by
repeatedly applying the rule schegwow. Also, at each visited nod&pop is applied as long as possible
to number all incident loops.

When the first proper cycle has been numbered, the subpro@iast; cycle)! repeatedly com-
putes a new cycle starting at a node that has already bededvidihis cycle is inserted into the current
cycle by numbering the new edges with lists that add oneipaosib the list of the edge preceding the new
edges. Finally, when all edges of the graph have been nuchiteeerule schemalean-up removes all
auxiliary information in node labels. O

6 Operational Semantics

This section presents a formal semantics for GP 2 in the sfydotkin’s structural operational semantics
[5]. As usual for this approach, inference rules inductiveéfine a small-step transition relatiesm on
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eulerian = if disconnected then fail; if unbalanced then fail
disconnected = ...

unbalanced(x: list)

» = ©®

1 1

where indeg(1) !=outdeg(1)

Figure 11: A macro for recognising eulerian graphs

configurations In our setting, a configuration is either a command sequ&gesther with a graph, just
a graph or the special element fail:

— C (ComSex 9(.Z)) x ((ComSex ¢4(£)) U4 (L) U {fail}).

Configurations in ComSeg¥ (.¥), given by a rest program and a state in the form of a graphesept
states of unfinished computations while graph®{¥’) are proper results. In addition, the element fail
represents a failure state. A configuratipis said to beerminalif there is no configuratio® such that
y— 0.

Figure[14 in the Appendix shows the inference rules for th& @@mmands of GP 2. Each rule
consists of a premise and a conclusion separated by a ht@izzar. Both parts contain meta-variables
for command sequences and graphs, wireseands for a call in category RuleSetCallP,P’,Q stand
for command sequences in category ComSeq,&yidl stand for graphs i/ (.¢’). Meta-variables are
considered to be universally quantified. For example, thee[call;| reads: “For alRin RuleSetCall and
all G,H in 9(Z), G=rH implies (R, G) — H.” The transitive and reflexive-transitive closures-of
are written—* and—*, respectively. The notatio® #r expresses that for graghin ¢(.¢) there is
no graphH such thatG =r H.

The if-then-else command has been designed to “hide” dasteuests. In Examplée 1, for instance,
the test of the if-then-else command produces a graph witkedanodes. By the inference rulgfg ] and
[if 2], this graph is discarded and progr&hor Q is executed on the input graph. In contrast, a program
try C then P else Q passes any graph resulting from its tedPtdf testC fails, howeverQ is executed
on the input graph.

The semantics of the if-then-else command and the as-lsqapssible loop in GP 1 have been
modified to allow an efficient implementation. Previoushe ttonditions of branching commands and
the bodies of loops were tested, in the worst case, by trjiingoasible executions starting from the
current graph. This made branching and loop commands irgeiléor complex tests or large input
graphs. In GP 2, the semanticsidf C then P else Q, try C then P else Q, andB! do not enforce
backtracking wherC or B fails. Instead, control is passed to progr&nor the loop is terminated,
respectively. Note that this change increases the nomdigtism of evaluation in cases wheteor B can
both succeed and fail on the input graph.

The inference rules for the remaining GP commands are givéigure 15 of the Appendix. These
commands are referred to derivedcommands because they can be defined by the core commands, as
shown below.

The meaning of GP 2 programs is summarised by the semantitidarf_] which assigns to each
programP the function[P] mapping an input grapt to the set of all possible results of executiRg
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main = try init; loop! then (cycle; (next; cycle)!; clean-up!)
cycle = (grow; loop!)!; unmark

next = first; loop!

init(x:atom)

1 1

loop(a,x:atom; u:list; i:int)

‘lllll'll’a = ‘lllll".’a:u:i+1

1 1

grow(a,x,y:atom; i:int; u,v:1list)

@ -«
=

1 2 1

unmark(u:1list)

-0

first(a,x,y:atom; u,v:1list)

( ::: }_____. = ( ::: }_____>
1 2 1 2

where u = empty

2

clean-up(x:atom; u:list)

& - &)

where u = empty

Figure 12: A program for computing an Euler cycle

13
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Figure 13: An execution of the program of Figlré 12

on G. The application of[P] to G is written [P]G. The result set may contain, besides proper results
in the form of graphs, the special values fail ahdThe value fail indicates a failed program run while
L indicates a run that does not terminate or gets stuck. Progra&an diverge from Gf there is an
infinite sequenceéP, G) — (Pi, G1) — (P2, G2) — ... Also, P can get stuck from @ there is a terminal
configuration(Q, H) such thatP, G) —* (Q, H).

Definition 5 (Semantic function) The semantic functiof_]: ComSeq— (¢4(.¢) — 27Vl L}y jg
defined by

[P]G = {X € (%(£) U{fail}) | (P, G) > X} U{_L | P can diverge or get stuck fro}.

In the current implementation of GP, reaching the failuestriggers backtracking which then
attempts to find a proper result [4]. However, backtrackiag loe switched off by the user.

A program can get stuck in two situations: (1) it contains eng@ndif C then P else Q or
try C then P else Q such thalC can diverge from some grapgh and can neither produce a proper
result fromG nor fail from G, or (2) it contains a looB! whose bodyB possesses the said property
of C. The evaluation of such commands gets stuck because nohe wff¢rence rules for if-then-else,
try-then-else or iteration is applicable.

The semantic function of Definitidd 5 suggests a straightfwd notion of program equivalence.

Definition 6 (Semantic equivalence)lwo programsP and Q aresemantically equivalentdenoted by
P=Q,if [P] =[Q].

For example, it is easy to see that the following equivalsriitween derived commands and core
commands hold (where 0 is the empty graph):

e skip =null, wherenull is the rule schema &> 0;

e fail ={}, where{} is the empty set of rule schemata;

e if Cthen P = if C then P else null, for all program<C andP;

e tryC then P = try C then P else null, for all program<C andP.

Less obvious is the following equivalence, showing thats a derived command:

PorQ = if remove!; {create,null}; zero then P else Q,

for all programsP andQ. Hereremove is a set of three rule schemata that delete arbitrary edoess |
and isolated nodesreate is the rule schema

0= (0
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andzero is the rule schema
0=.

The following non-equivalence may be surprising, too:
try C then Pelse Q # if C thenC;P else Q.

To witness, choos€ = skip or fail, P = skip andQ = skip. Then thetry-program is equivalent to
skip and hence cannot fail, but the-program can fail.

7 Conclusion

GP allows high-level problem solving in the domain of grapghs supporting rule-based programming

and freeing programmers from dealing with low-level datacttures for graphs. The language has a
simple syntax and semantics, to facilitate both undergtgnioy programmers and formal reasoning on
programs.

The revised language GP 2 has an improved type system, ingllisk variables and subtypes, a new
concept of marking nodes and edges graphically, new lufitiictions for accessing the indegree and
the outdegree of nodes, a more powesldige predicate for conditions, new commandsy-then-else
andor, and a simplified semantics of branching and looping to enablefficient implementation.

Topics for future work include the implementation of GP Zltsupport for Hoare-style program
verification [9], and static analyses for properties sucteasination and confluence.

Acknowledgements. Parts of this paper were written while visiting Annegret Hiib Oldenburg and
Berthold Hoffmann in Bremen in the autumn of 2011. | am gudtédr their hospitality. Thanks go also
to the Plasma research group in York for helpful commenis@&ally to Colin Runciman for proposing
the concept of shaded nodes.
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Appendix: Semantic Inference Rules

calh] et (call]) 7 o R
(P,G) = (P’ H) (PG)—~H
sl Fo6 PiQ A <o) 10,6 @ )
P, G) - fail
e 1510, 67
i (C,G) - H i (C,G) =™ fail
1] 77¥ C then Pe1se Q. G) 5 (P.G) "ol if Cthen Pelse Q.G) = (Q O]
C.G) 5 H C, G) - fail
trya) (tryC ther<1 P e1>s—e>Q, G) — (P.H) tryz] (tryC thegl P e>1s—e> Q7aIG> —{QG)
+ * fai
[alap] <P!< ,PE§>—>_>(P!|,_|H> [alap] W

Figure 14: Inference rules for core commands

or1] (Por Q, G) — (P, G) [ors] (Por Q, G) — (Q, G)

iskip] (skip, G) — G ffail] (fail, G) — fai

. C,G) >+ H . C,G) - fail

ifs] e éhen I>3,_G>> — (PG fa] 75 ﬁ: thczn_lé’, G{;“—> G
C,G) 5+ H C,G) - fail

rys] ey e ihen>P,—E-3> ~PH) [trya] (try<C th>e: P C;I -G

Figure 15: Inference rules for derived commands
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