
J. Niehren & D. Sabel (eds.): Rewriting Techniques

for Program Transformations and Evaluation (WPTE 2018)

EPTCS 289, 2019, pp. 17–33, doi:10.4204/EPTCS.289.2

c© D. Sabel

This work is licensed under the

Creative Commons Attribution License.

Automating the Diagram Method

to Prove Correctness of Program Transformations

David Sabel

Goethe-University
Frankfurt am Main, Germany

sabel@ki.informatik.uni-frankfurt.de
∗

We report on the automation of a technique to prove the correctness of program transformations in

higher-order program calculi which may permit recursive let-bindings as they occur in functional

programming languages. A program transformation is correct if it preserves the observational se-

mantics of programs. In our LRSX Tool the so-called diagram method is automated by combining

unification, matching, and reasoning on alpha-renamings on the higher-order meta-language, and au-

tomating induction proofs via an encoding into termination problems of term rewrite systems. We

explain the techniques, we illustrate the usage of the tool, and we report on experiments.

1 Introduction

Program transformations replace program fragments by program fragments. They are applied as opti-

mizations in compilers, in code refactoring to increase maintainability of the source code, and in ver-

ification for equational reasoning on programs. In all cases correctness of the transformations is an

indispensable requirement. We focus on program calculi with a small-step operational semantics (in

form of a reduction semantics with evaluation contexts, see e.g. [23]) and a notion of successfully evalu-

ated programs. Convergence of programs holds, if the program can be evaluated to a successful program.

As program equivalence we use contextual equivalence [9, 10], which holds for program fragments P1

and P2 if interchanging P1 by P2 in any program (i.e. context) is not observable w.r.t. convergence. We are

particularly interested in extended lambda-calculi with call-by-need evaluation modeling the (untyped)

core languages of lazy functional programming languages like Haskell (see [2, 1, 20]).

The LRSX Tool1 supports correctness proofs of program transformations in those calculi by au-

tomating the “diagram method” (see e.g. [20, 15] and also [7, 22]) which was used in earlier work in

non-automated pen-and-paper proofs. The diagram method is a syntactic approach that can roughly be

outlined as follows. First all overlaps between standard reduction steps and transformation steps are com-

puted, then the overlaps have to be joined resulting in a complete set of diagrams. This step is related to

computing and joining critical pairs in term rewrite systems (see e.g. [3]), however, with two rewrite rela-

tions and where for one rewrite relation a strategy (defined by the standard reduction) has to be respected.

Finally, the diagrams are used in an inductive proof to show correctness of the transformation.

The automation of the method is schematically depicted in Fig. 1. The input consists of a calculus

description and a set of program transformations. First the diagram calculator computes the overlaps and

then tries to join them. If a complete set of diagrams is obtained, it is translated into a term rewrite system

such that termination of the system implies correctness of the program transformations. The automated

termination prover AProVE [5] and the certifier CeTA [21] are used to automate these steps.

∗This research is supported by the Deutsche Forschungsgemeinschaft (DFG) under grant SA2908/3-1
1available from http://goethe.link/LRSXTOOL61

http://dx.doi.org/10.4204/EPTCS.289.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://goethe.link/LRSXTOOL61

18 Automating the Diagram Method to Prove Correctness of Program Transformations

calculus description

program transformations

Input

compute overlaps

overlaps

join overlaps

Diagram calculator

complete

sets of

diagrams

translate diagrams

(I)TRS

prove termination and certify

(AProVE/CeTA)

Automated induction

Figure 1: The overall structure of the automated diagram method

Expressions e ::= ⊥ | ⊤ | (¬e) | (e∧ e)

Evaluation contexts A ::= [·] | ¬A | A∧ e

General contexts C ::= [·] | ¬C |C∧ e | e∧C

Successful programs ⊤

Program transformation (top) C[⊤∧ e]→C[e]

Standard reduction
sr
−→

(sr,bot) A[⊥∧ e]−→ A[⊥]

(sr, top) A[⊤∧ e]−→ A[e]

(sr,neg,1) A[¬⊤]−→ A[⊥]

(sr,neg,2) A[¬⊥]−→ A[⊤]

Figure 2: Syntax and Operational Semantics of the Calculus Simple

In previous work, we published results on core algorithms that are used in the tool. In [18] the under-

lying unification-algorithm was defined and analysed, in [13, 14] a matching algorithm was developed,

in [12] a procedure to alpha-rename meta-expressions was presented, and in the work [11] the encoding

of the diagrams as term rewrite systems for automating the induction step was developed. However,

none of these works presents the full automation of the method. Thus, in this paper, we explain core

components of the automated method and illustrate the use of the LRSX Tool. In particular, we provide a

formal formulation of the rewrite rules (together with some conditions) which ensure that i) the diagram

method is correct and ii) the previously developed algorithms are applicable. We also illustrate how the

syntax and rules of a correctness problem are represented in our tool.

Outline. In Sect. 2 we illustrate the diagram method for a simple example and thereafter briefly

recall the call-by-need lambda calculus Lneed which will be our running example throughout the paper.

In Sect. 3 we explain the meta language and the representation of the input of the diagram method.

In Sect. 4 we describe the automated correctness proof for the standard cases. In Sect. 5 we discuss

extensions of the automated correctness proof which are also built in the tool. Also cases which cannot

be handled by the tool are discussed. In Sect. 6 we report on some experiments. We conclude in Sect. 7.

2 Illustration of the Diagram Method – Examples

We illustrate the concept of observational semantics, correctness of program transformations, and the

diagram method (and its automation) using a quite simple example. In Fig. 2 we define a program

calculus Simple. The syntax of Simple-expressions consists of two constants, ⊥ to represent a failing

computation, and ⊤ to represent success, a unary operator ¬ for negation, and a binary operator ∧ which

computes the conjunction of ⊤ and ⊥, i.e. evaluation of e1∧ e2 results in ⊤ iff e1 and e2 both evaluate

to ⊤ and otherwise the evaluation ends with ⊥. The reduction strategy which evaluates the ∧-operator

from left to right is defined by using evaluation contexts A (defined in Fig. 2 where [·] denotes the context

hole). The standard reduction
sr
−→ is the union of the rules (sr,bot), (sr, top), (sr,neg1), and (sr,neg2).

D. Sabel 19

·
top

//

sr,bot

��

·

sr,bot
���
�
�
�

·

·
top

//

sr,a

��

·

sr,a

��✤
✤
✤

·
top

//❴❴❴ ·

a ∈ {bot, top,neg}

·
top

//

sr,top

>> ·

Figure 3: Forking diagrams for (top)

·

sr,bot

��

·
top

oo

sr,bot
��✁
✁
✁
✁

·

·

sr,a

��

·

sr,top��✂
✂

top
oo

·

sr,a��✂
✂

·
a ∈ {bot, top,neg}

·

sr,a

��

·
top

oo

sr,a

��
✤
✤
✤

· ·
top

oo❴ ❴ ❴

a ∈ {bot, top,neg}

·

answer

��

·
top

oo

sr,top

��
✤
✤
✤

· ·
answer
oo❴ ❴ ❴

Figure 4: Commuting diagrams for (top)

Evaluation contexts A uniquely determine the position where the next standard reduction has to be

applied. Hence, thus standard reduction is deterministic. Let
sr,∗
−−→ denote the reflexive-transitive closure

of
sr
−→. A Simple-expression e converges (written e↓) iff it evaluates to⊤, i.e. e↓ iff e

sr,∗
−−→⊤. For instance,

((¬⊥)∧⊤)∧ (¬(⊤∧⊥))
sr
−→ (⊤∧⊤)∧ (¬(⊤∧⊥))

sr
−→⊤∧ (¬(⊤∧⊥))

sr
−→¬(⊤∧⊥)

sr
−→¬⊥

sr
−→⊤.

With C we denote arbitrary contexts. Expressions e1,e2 are contextually equivalent, written e1 ∼c e2

iff ∀C : C[e1]↓ ⇐⇒ C[e2]↓. A program transformation P is a binary relation on Simple-expressions and

it is correct if for all (e1,e2) ∈ P, e1 ∼c e2 holds.

We consider the correctness proof of transformation (top) which is defined in Fig. 2. Since transfor-

mation (top) is already closed by all contexts (i.e. e1
top
−−→ e2 implies C[e1]

top
−−→C[e2] for all contexts C),

it suffices to show “convergence equivalence” of the transformation, i.e.:

(1) for all e1
top
−−→ e2: e1↓ =⇒ e2↓ and (2) for all e1

top
−−→ e2: e2↓ =⇒ e1↓.

For part (1), we have to find all the cases where e1↓ and e1
top
−−→ e2. A first case distinction is whether (i)

e1 is already successful (i.e. e1 = ⊤) or (ii) e1 is reducible by the standard reduction. To systematically

compute a finite representation of all cases for e1 and e2, we use unification and thus unify all left hand

sides of rule (top) with⊤ (for case (i)) and also with all left hand sides of all standard reductions (for case

(ii)). Let us consider one of those unifications: we unify the left hand sides of (top) and (sr,bot). The

unification problem consists of the equation C[⊤∧S1]
.
= A[⊥∧S2], where C and A are meta-variables for

C- and A-contexts and S1,S2 are meta-variables for Simple-expressions. It has two most general unifiers:

either (⊤∧S1) is a subexpression of S2, or (⊤∧S1) and (⊥∧S2) are at parallel positions.

We only illustrate the former case. The unifier is σ = {S2 7→ C1[⊤∩ S1],C 7→ A[⊥∩C1]} and the

instantiated expression is σ(C[⊤∧ S1]) = A[⊥∩C1[⊤∧ S1]] = σ(A[⊥∧ S2]). After instantiating the

right hand sides of the rules with the unfier, we get σ(C[S1]) = A[⊥∩C1[S1]] and σ(A[⊥]) = A[⊥]. The

sequence A[⊥]
sr,bot
←−−−A[⊥∩C1[⊤∧S1]]

top
−−→A[⊥∩C1[S1]] is called a forking overlap. It has to be joined by

applying standard reductions for the right and transformation steps for the left meta-expression to find a

common successor of both. If we apply a standard reduction to A[⊥∩C1[S1]], i.e. A[⊥∩C1[S1]]
sr
−→ A[⊥],

we have already found a join. Note that this “application” of rules is done on meta-expressions which

contain meta-variables for contexts and expressions and thus it can be done by matching the expressions

against the left hand side of the transformation or standard reduction, resp.

The fork together with its join is called a forking diagram. Usually, forking diagrams are represented

abstractly by removing the concrete expressions. Computing all unifiers and joins leads to the set of

(abstract) diagrams shown in Fig. 3. These diagrams can be used in an inductive proof to show that if

e1
top
−−→ e2 then e1↓ =⇒ e2↓. We use induction on the length of the reduction sequence from e1 to ⊤.

If e1 is successful, then the claim holds. For the induction step, let e1
sr
−→ e′1 such that e′1↓. Applying a

diagram to the fork e′1
sr
←− e1

top
−−→ e2 either shows that e′1 = e2, or that there exists e′2 with e2

sr
−→ e′2 and

either e′2 = e′1 or e′1
top
−−→ e′2. The induction hypothesis applied to e′1 shows that e′2↓ and thus e2↓.

20 Automating the Diagram Method to Prove Correctness of Program Transformations

Expressions e and environments Env where v,vi,w,wi are variables,

e ::= w | λw.e | (e1 e2) | letrec Env in e Env ::= w1=e1, . . . ,wn=en

Application contexts A and reduction contexts R

A ::= [·] | (A e) R ::= A | letrec Env in A | letrec {wi=Ai[wi+1]}
m−1
i=1 ,wm=Am,Env in A0[w1]

Standard reduction
sr
−→

(sr,lbeta) R[((λw.e1) e2)]→ R[letrec w=e2 in e1]
(sr,lapp) R[(letrec Env in e1) e2]→ R[letrec Env in (e1 e2)]

(sr,cp-in) letrec {wi=wi+1}
m−1
i=1 ,wm=λw.e,Env in A0[w1]

→ letrec {wi=wi+1}
m−1
i=1 ,wm=λw.e,Env in A0[λw.e]

(sr,cp-e) letrec{wi=Ai[wi+1]}
m−1
i=1 ,wm=Am[v1],{v j=v j+1}

n−1
j=1 ,vn=λw.e,Env inA[w1]

→ letrec {wi=Ai[wi+1]}
m−1
i=1 ,wm=Am[λw.e],{v j=v j+1}

n−1
j=1 ,vn=λw.e,Env inA[w1]

where Am 6=[·],m≥1,n≥1

(sr,llet-in)letrec Env1 in letrec Env2 in e→ letrec Env1,Env2 in e

(sr,llet-e) letrec {wi=Ai[wi+1]}
m−1
i=1 ,wm=(letrec Env1 in e),Env2 in A0[w1]

→ letrec {wi=Ai[wi+1]}
m−1
i=1 ,wm=e,Env1,Env2 in A0[w1]

Successful programs are λw.e or letrec Env in λw.e called weak head normal forms (WHNFs)

Garbage Collection

(gc1)letrec w1=e1, . . . ,wn=en,Env in e→ letrec Env in e, if all wi do not occur in Env,e
(gc2)letrec w1=e1, . . . ,wn=en in e→ e, if all wi do not occur in e

Copy Transformation

(cp-in)letrec w=λv.e,Env in C[w]→ letrec w=λv.e,Env inC[λv.e]
(cp-e) letrec w1=λv.e,w2=C[w1],Env in e′→ letrec w1=λv.e,w2=C[λv.e],Env in e′

Figure 5: The calculus Lneed

Part (2) of the correctness proof of transformation (top) is analogous, but we have to overlap (and

also unify) the right hand side of (top) of against the successful result ⊤ and against any left hand side

of a standard reduction. The obtained set of diagrams is shown in Fig. 4. The last diagram is for the

case that e
top
−−→ ⊤. Then also e

sr,top
−−−→ ⊤. This is expressed by the diagram where we added the rule

⊤
answer
−−−−→ ans for a new constant ans (representing answers, i.e. successful results).

By induction and using the diagrams we can show that e1
top
−−→ e2 and e2↓ also implies e1↓. This

completes the diagram-based correctness proof for (top) and the program calculus Simple. As we explain

later in Sect. 4, the induction can be automated by interpreting the diagrams as rewrite rules on their

sequences of labels (where sequences of solid arrows are replaced by the sequences with dashed arrows).

In Appendix B we provide the full input for the LRSX Tool that is necessary to describe the calculus

Simple, the transformation (top), and to perform the automatized correctness proof of (top).

As illustrated before, the diagram computation can be done by algorithms for unification and match-

ing, where for the Simple calculus we require them for first-order terms extended by meta-variables

for contexts. For such a language, all these parts can be implemented by known algorithms and tech-

niques (by using some occurrence restrictions on the context variables, also efficiently, while the general

problem is known to be in PSPACE [6]). However, we are interested in languages with more com-

plicated syntactic constructs, i.e. program calculi with expressions with binders (i.e. higher-order con-

structs, like lambda-abstraction) and with recursive bindings (called letrec-expressions). This means,

that we have to use an extended meta-language which, for instance, is capable to represent binders and

D. Sabel 21

letrec-expressions. That is why we from now on switch to a more complex running example, the call-

by-need lambda calculus with letrec Lneed (see e.g. [19] for the calculus Lneed and e.g. [2, 1] for similar

calculi). Its syntax, small-step operational semantics (called standard reduction), and the program trans-

formations (gc1) and (gc2) to perform garbage collection, and (cp-in) and (cp-e) to copy abstractions,

are shown in Fig. 5. Syntactically, Lneed extends the untyped lambda calculus by letrec-expressions

letrec w1 = e1, . . . ,wn = en in e where the letrec-environment w1 = e1, . . . ,wn = en represents a set

of unordered bindings which have a recursive scope, i.e. the scope of wi are all expressions e1, . . . ,en as

well as the in-expression e. Standard reduction implements the lazy evaluation strategy with sharing by

applying small-step reduction rules at needed positions which are determined by application contexts A,

reduction contexts R, and chains of letrec-bindings that occur as variable-to-variable bindings and also

as chains {wi = A[wi+1]}
m
i=1. The rule (sr,lbeta) implements β -reduction with sharing, the rules (sr,lapp),

(sr,llet-in), and (sr,llet-e) reorder and join letrec-environments , the rules (sr,cp-in) and (sr,cp-e) copy

abstractions into needed positions. Reduction is meant modulo (extended) α-renaming, i.e. α-equivalent

expressions where letrec-bindings are treated like a set are not distinguished.

3 Representation of Program Calculi and Transformations

The input of the diagram technique is a program calculus – with definitions of contexts, standard reduc-

tion rules, answers representing successfully evaluated programs – and a set of program transformations.

3.1 Meta-Syntax to Represent Expressions

We represent rules and answers in the meta-language LRSX (see also [18]). To cover several program

calculi the representation is parametrized over a set F of (higher-order) function symbols and a finite set

K of context classes2. A context class describes a set of contexts (usually defined by a grammar), like

A- and C-contexts in Simple or in Lneed. We define the syntax of LRSX-expressions Exp, the syntax of

variables of a countably-infinite set of variables Var, the syntax of higher-order expressions of order n

HExpn (i.e. syntactic constructs that bind / abstract over n variables, in particular HExp0 = Exp), and

the syntax of environments Env and bindings Bind. We we assume that every f ∈F has a syntactic

type of the form f : τ1→ . . .→ τar(f)→ Exp, where τi may be Var or HExpki , i.e. the syntactic type of

f defines the arity of f , but also the syntactic category of which each argument has to be part of. If not

otherwise stated, we always assume {var,λ} ⊆F where function symbol var of type Var→ Exp lifts

variables to expressions, and λ has type HExp1→ Exp. To distinguish term variables, meta-variables,

and meta-symbols, we use different fonts and lower- or upper-case letters: concrete term-variables of

type Var are denoted by x, y, and x,y are used as meta-symbols to denote a concrete term variable or

a meta-variable. Similarly, s, t denote expressions, env denotes environments, and b denotes bindings.

Meta-variables are written in upper-case letters, where X ,Y are of type Var, S is of type Exp, E is of

type Env, D is a context variable, and Ch is a two-hole environment-context variable (chain variable, for

short). Each context variable D has a class cl(D) and each Ch-variable has a class cl(Ch). The grammars

for the different syntactic categories are:

x,y,z ∈Var ::=X |x

s, t ∈HExp0 ::=S | D[s] | letrec env in s | f r1 . . . rar(f) such that ri ∈ τi if f : τ1→ . . .→ τn→ Exp

s ∈HExpn ::=x.s1 if s1 ∈HExpn−1 and n≥ 1

b ∈ Bind ::=x=s where s ∈HExp0 env ∈ Env ::= /0 |E;env |Ch[x,s];env |b;env

2In the LRSX Tool the set K has to be defined explicitly while the set F is extracted from the used symbols in the input.

22 Automating the Diagram Method to Prove Correctness of Program Transformations

define A ::= [.] | (app A S)

define T ::= [.] | (app T S) | (app S T)

| letrec X=T;E in S

| letrec E in T where E /= {}

declare prefix A A = (A,A)

declare prefix A T = (A,T)

declare prefix T A = (A,A)

declare prefix T T = (T,T)

declare fork A T = (A,A,T,(app [.1] [.2]))

declare fork T T = (T,T,T,(app [.1] [.2]))

declare fork T T = (T,T,T,(app [.2] [.1]))

declare fork T T = (T,T,T,(letrec X=[.1];E in [.2]))

declare fork T T = (T,T,T,(letrec X=[.2];E in [.1]))

declare fork T T =

(T,T,T,(letrec X=[.1];Y=[.2];E in S))

declare fork T A = (A,T,A,(app [.2] [.1]))

Figure 6: Definition of application and top-contexts as input for the LRSX Tool

An LRSX-expression s is ground (written as s) iff it does not contain any meta-variable, d denotes a

ground context and d denotes contexts, that may contain meta-variables. Filling the hole of d with s is

written as d[s]. Multi-contexts with k > 1 holes are written with several hole symbols [·1], . . . , [·k].

Example 3.1. The syntax of the calculus Simple can be represented by instantiating F = {⊥,⊤,¬}
where ⊥,⊤ : Exp, ∧ : Exp→ Exp→ Exp, ¬ : Exp→ Exp and using the context classes K := {A,C}
with corresponding descriptions of them (see below). Assuming that D is a context variable of class A, the

expression D[S1∧S2] describes all ground expressions of the form d[s1∧ s2] where d is a ground-context

of context class A and S1,S2 are arbitrary ground expressions of the calculus Simp.

Example 3.2. The syntax of the λ -calculus (and also of our running example Lneed, since letrec is

built-in in LRSX) can be expressed in LRSX, by the function symbols F = {var,λ ,app} where app is

a binary function symbol of type Exp→ Exp→ Exp. The application of the identity function to itself

can be written as the LRSX-expression app (λ (x.var x)) (λ (x.var x)). Lists can be represented by

function symbols nil :: Exp and cons :: Exp→ Exp→ Exp. A case-expression – usually written as

case l of (Nil→ e1) (Cons x xs→ e2) – to deconstruct lists can be represented as caselist l e1 x.xs.e2

where caselist is a function symbol of type Exp→ Exp→ HExp2→ Exp. For the context classes,

we may use K := {A,T,C} where C are general contexts, T are top-contexts (which do not have the hole

inside an abstraction). Reduction contexts R are not necessary since they can be expressed by A-contexts

and several variants of the same reduction rule, for the different kinds of R-contexts.

In addition to a description of the syntax (by a grammar that describes a set of contexts), we require

for each context class K ∈ K a prefix and a forking table. These tables are used in the matching and

unification algorithms to proceed with equations of the form D1[s1]
.
= D2[s2]: the prefix table is a partial

function that maps pairs of classes (K1, K2) to a pair of classes (K3, K4) such that for context variables

Di with cl(Di) = Ki an equation D1[s]
.
= D2[t] where D1 is a prefix of context D2, can be replaced by

the equation s
.
= D4[t] and the substitution {D1 7→ D3, D2 7→ D3[D4]}. Undefined cases express that

the prefix situation is impossible. The forking table is a partial function that maps pairs of classes (K1,

K2) to a set of tuples of the form (K3, K4,K5,d[·1, ·2]) such that for context variables Di of class Ki an

equation D1[s]
.
= D2[t] where the paths to the holes of D1 and D2 fork, the equation can be removed by

guessing one tuple in the set and substituting D1 7→ D3[d[D4[·],D5[t]]],D2 7→ D3[d[D4[s],D5[·]]].
We do not know whether the prefix and the forking table can be computed from given grammars

for the context classes. Thus, in the LRSX Tool, the user has to specify them as part of the input. For

calculus Simple, the definition of these tables is shown in the Appendix B. For calculus Lneed, we define

classes for application contexts A, top contexts T and arbitrary contexts C. The definition of the former

two classes as input for the LRSX Tool is shown in Fig. 6. We illustrate some exemplary entries of the

prefix and forking table: the prefix table maps (A,T) to (A,T), since for every application context D1

that is a prefix of a top-context D2, we can substitute D1 7→ D3 and D2 7→ D3[D4] where D3 must be an

application context (since D1 is one) and D4 must be a top context (since D2 is one). The prefix table

D. Sabel 23

maps (T,A) to (A,A), since for every top-context D1 that is a prefix of an application context D2, we can

substitute D1 7→ D3 and D2 7→ D3[D4] where D3 and D4 must be application contexts to ensure that D2

is an application context. The forking table for (A,T) has only one entry (A,A,T,app [·1] [·2]), since an

application context D1 and a top context D2 can only have different hole pathes, if there is an application

where the hole path of D1 goes through the first argument, while the hole path of D2 goes through the

second argument, the expression above this application must belong to application contexts (to ensure

that D1 is an application context) the context inside the first argument of the application must be an

application context (again to ensure that D1 is an application context), and the context inside the second

argument must be a top context (to ensure that D2 is a top context). For (T,T) there are more entries,

since the forking of two top-contexts may happen in an application or in a letrec-expression: there are

two cases for the application depending on whether the hole path of the first context goes through the first

or the second argument, and there are three cases for letrec: the hole path of the first context may go

through the in-expression while the other goes through the letrec-environment, or vice versa, or both

hole paths go through the environment, but through different bindings. In any case the context above the

two parallel holes is a top-context and the contexts below must both be top-contexts.

The semantics of meta-variables is straight-forward except for chain-variables: Ch[x,s] with cl(Ch)=
K stands for x.d[s] or chains x.d1[(var x1)];x1.d2[(var x2)];. . . ;xn.dn[s] with fresh xi and contexts d,di

of class K . For expression e, MV(e) denotes the meta-variables of e, FV(e) denotes the free variables,

BV(e) denotes the bound variables, and Var(e) := FV(e)∪BV(e). For a ground context d, CV(d) (the

captured variables) is the set of variables x which become bound if plugged into the hole of d. For

environment env, LV(env) are the let-bound variables in env. Let ∼let be the reflexive-transitive closure

of permuting bindings in a letrec-environment, and∼α be the reflexive-transitive closure of combining

∼let and α-equivalence. An LRSX-expression s satisfies the let variable convention (LVC) iff a let-bound

variable does not occur twice as a binder in the same letrec-environment; and s satisfies the distinct

variable convention (DVC) iff BV(s) and FV(s) are disjoint and all binders bind different variables.

3.2 Rewrite Rules

The left and the right hand side of a standard reduction rule or a program transformation can be rep-

resented by LRSX-expressions. However, the rules and the transformations come with additional con-

straints, for instance, for the garbage collection rules, we need to express that a (part of a) letrec-

environment is indeed unused and garbage. We thus constrain expressions by so-called constraint tuples:

Definition 3.3. A constrained expression (s,∆) consists of an LRSX-expression s and a constraint tuple

∆ = (∆1,∆2,∆3) such that ∆1 is a finite set of context variables, called non-empty context constraints; ∆2

is a finite set of environment variables, called non-empty environment constraints; and ∆3 is a finite set

of pairs (t,d) where t is an LRSX-expression and d is an LRSX-context, called non-capture constraints

(NCCs). A ground substitution ρ satisfies ∆ iff ρ(D) 6= [·] for all D ∈ ∆1; ρ(E) 6= /0 for all E ∈ ∆2; and

Var(ρ(t))∩CV(ρ(d)) = /0 for all (t,d) ∈ ∆3. The concretizations of (s,∆) are γ(s,∆) := {ρ(s) | ρ is a

ground substitution, ρ(s) fulfills the LVC, ρ satisfies ∆}3.

Example 3.4. The constrained expression (λX .S,(/0, /0,{(S,λX .[·])})) represents all abstractions that do

not use their argument, since the NCC (S,λX .[·]) ensures that (w.r.t. instances) the variable X does not

occur free in S. The constrained expression (letrec E in S,(/0,{E},{(S,letrec E in [·])})) represents

3In the LRSX Tool constrained expressions are written as “e where Constraints” such that Constraints is a list of constraints,

where non-empty context constraints are written as D /= [.], non-empty environment constraints are written as E /= {}, and

non-capture constraints can occur as (s,d), but also as [env,d] representing the NCC (letrec env in c,d) for some constant c.

24 Automating the Diagram Method to Prove Correctness of Program Transformations

all letrec-expressions with a non-empty environment which is garbage: the NCC forbids references

from S into the environment E . The constrained expression (C[var X],({C}, /0,{(var X ,C)})) represents

ground expressions of the form d[var x] where d is a non-empty context and the occurrence of x in the

context hole of d is guaranteed to be a free occurrence.

We have introduced the formalisms that are required to define our representation of standard re-

duction rules and program transformations. We now introduce the notion of letrec rewrite rules which

are rewrite rules on LRSX-expressions, constrained by a constraint tuple, and which have restrictions on

the occurrences of meta-variables. The restrictions make the corresponding unification and matching

problems easier to solve. Usually, the rules of a program calculus fulfill these restrictions.

Definition 3.5. For ℓ,r ∈ Exp, a constraint tuple ∆, κ ∈ {SR,T}, a name n, we say that ℓ
κ ,n
−−→∆ r is a

letrec rewrite rule, if the following conditions hold: (i) MV(∆) ⊆ MV(ℓ)∪MV(r); (ii) in each of the

expressions ℓ and r, every variable of type S occurs at most twice, and every variable of kind E,Ch, D

occurs at most once; and Ch-variables occurring in ℓ must occur in one letrec-environment only; (iii)

for any ground substitution ρ that satisfies ∆, ρ(ℓ) fulfills the LVC iff ρ(r) fulfills the LVC. A letrec

rewrite rule represents the set of ground rewrite rules

γ(ℓ
κ ,n
−−→∆ r) := {ρ(ℓ)→ ρ(r) | ρ is ground for ℓ,r, the LVC holds for ρ(ℓ),ρ(r), ρ satisfies ∆} .

For a set {ℓ
κ ,ni
−−→∆ r | i = 1, . . . ,m} of letrec rewrite rules, we write s

κ ,ni
−−→ t if (s→ t) ∈ γ(ℓ

κ ,ni
−−→∆ r) and

s
κ
−→ t if s

κ ,ni
−−→ t for some 1≤ i≤ m. We write s α

κ ,ni
−−→ s′ if there exists s′′ such that s∼α s′′

κ ,ni
−−→ s′.

Standard reductions are letrec rewrite rules that are always applicable to expressions which fulfill the

DVC. Answers are constrained expressions which represent successful programs:

Definition 3.6. A standard reduction is a letrec rewrite rule ℓ
κ ,n
−−→∆ r such that the following condition

holds: if for ground expressions s1,s2 with s1
SR,n
−−→ s2 ∈ γ(ℓ

κ ,n
−→∆ r), then for all ground expressions t1,

such that s1 ∼α t1 and t1 fulfills the DVC, there exists t2 ∼α s2, such that t1
SR,n
−−→ t2 ∈ γ(ℓ

κ ,n
−→∆ r). An

answer set Ans is a finite set of constrained expressions (t,∆) such that if s ∈ γ(t,∆), then for all s′ ∼α s

such that s′ fulfills the DVC we have s′ ∈ γ(t,∆). If s ∈ γ(t,∆) for some (t,∆) ∈ Ans and s′ ∼α s, then s′

is called an answer. A program calculus is a pair (SR,Ans) of a finite set of standard reductions SR and

an answer set Ans, such that whenever s
SR,n
−−→ s′ and s is an answer, then also s′ is answer.

Example 3.7. The calculus Simp is a program calculus by instantiation the set SR with the standard

reductions (sr,bot),(sr, top),(sr,neg1),(sr,neg2) and the answer set Ans by {(⊤,(/0, /0, /0))}. Also the

calculus Lneed is a program calculus where Ans := {(λX .S,(/0, /0, /0)),(letrec E in S,(/0,{E}, /0))} and

SR are all standard reduction rules (partly shown in Fig. 7).

In the LRSX Tool, standard reduction ℓ
SR,n
−−→∆ r is written “{SR,n,k} ℓ ==> r where Constraints”

such that k is a number (the variant of the rule4) and Constraints are the constraints in ∆ written as in

constrained expressions. Answers are defined in the LRSX Tool by “ANSWER e where Constraints.”

For the calculus Lneed, the conditions on standard reductions hold. An excerpt of the description

of Lneed as input of the LRSX Tool is in Fig. 7, where rules (sr,lbeta) and (sr,lapp) are expressed by

three rules each, since the reduction contexts R are unfolded into three cases: the reduction context

is an A-context, the reduction context has the hole in the in-part of the letrec, or the hole is in the

letrec-environment. Chain-variables are written as Ch^K where K is the context class of the chain. Side

conditions of the rules (see Fig. 5) are expressed by constraints. The last two lines define the answers in

Lneed, which are the weak head normal forms, i.e. abstractions perhaps with an outer letrec.

4In short representation of rule names, the LRSX Tool unions all variants of a rule of the same name.

D. Sabel 25

{SR,lbeta,1} A[app (\X.S1) S2] ==> A[letrec X=S2 in S1] where (S2,\X.[.])

{SR,lbeta,2} letrec E in A[app (\X.S1) S2]

==> letrec E in A[letrec X=S2 in S1] where E /= {}, (S2,\X.[.])

{SR,lbeta,3} letrec E; Ch^A[X1,app (\X.S1) S2] in A1[var X1]

==> letrec E; Ch^A[X1,letrec X=S2 in S1] in A1[var X1] where (S2,\X.[.])

{SR,lapp,1} A[app (letrec E in S1) S2] ==> A[letrec E in (app S1 S2)]

where E /={},(S2,letrec E in [.])

{SR,lapp,2} letrec E1 in A[app (letrec E in S1) S2]

==> letrec E1 in A[letrec E in (app S1 S2)]

where E1 /= {},E /={},(S2,letrec E in [.])

{SR,lapp,3} letrec E1;Ch^A[X,app (letrec E in S1) S2] in A1[var X]

==> letrec E1;Ch^A[X,letrec E in app S1 S2] in A1[var X]

where E/={},(S2,letrec E in [.])

. . .

ANSWER \X.S

ANSWER letrec E in \X.S where E /= {}

Figure 7: Some standard reductions and answers for Lneed as input for the LRSX Tool

s1
T,n

//

∼α
∼α

s2
∼α

t1∈
γ(t,∆

)

s′1∈
γ(t,∆

)

T,n
//❴❴❴ s′2

s1
T,n

//

∼α
∼α

s2
∼α

t1

SR,n′
��

s′1 T,n
//❴❴❴

SR,n′
��✤
✤

s′2

t2 ∼α
t2
′

Figure 8: Illustration of Cond. 1 and 2 in Def. 3.9:

solid lines are given relations, dotted / dashed lines are

existentially quantified relations, t1 fulfills the DVC.

·
SR,n

��

T,n′
// ·

SR,n′2
��✤
✤

·
SR,n2

��
✤
✤

SR,nk ��
✤
✤

SR,n′l��
✤
✤

·
T,nk+1

//❴❴❴❴
T,nm

//❴❴❴❴ ·

Figure 9: Representation of a forking diagram

Definition 3.8. For a program calculus (SR,Ans), a ground expression s0 converges (written s0↓) iff

there exists a sequence s0 α
SR
−→ s1 α

SR
−→ ·· · α

SR
−→ sk where sk is an answer and k ≥ 0. We write s ≤↓ t

iff s↓ =⇒ t↓ (≤↓ is called convergence approximation), and s ∼↓ t iff s ≤↓ t and t ≤↓ s (∼↓ is called

convergence equivalence). If for all contexts d we have d[s] ≤↓ d[t], then we write s≤c t and say that t

contextually approximates s. Expressions s,t are contextually equivalent (s∼c t) if s≤c t and t≤c s.

Meta transformations are letrec rewrite rules that fulfill some form of stability w.r.t. α-renaming.

These conditions on meta transformations allow us to inspect overlaps between transformations and

standard reductions or answers without considering α-renaming steps. I.e., they guarantee that inspecting

overlaps of the form s1
SR
←− s2

T
−→ s3 is sufficient, and hence inspecting overlaps of the form s1

SR
←−α

s2 α
T
−→ s3, where the α-renaming part of s1

SR
←−α s2 is non-trivial, is not necessary (see Appendix A for a

soundness proof of the diagram technique which also formalizes this aspect).

Definition 3.9. A letrec rewrite rule with κ =T is a meta transformation, if the following conditions hold

(see also Fig. 8): for all s1,s2,t1 with s1
T,n
−−→ s2, s1 ∼α t1, such that t1 fulfills the DVC: 1. If t1 ∈ γ(t,∆)

for some (t,∆) ∈ Ans, then there exists s′1 ∈ γ(t,∆) such that s′1 ∼α s1 and s′1
T,n
−−→ s′2 with s′2 ∼α s2. 2. If

t1
SR,n′
−−−→ t2, then there exist s′1 ∼α s1, s′2 ∼α s2, t′2 ∼α t2 such that s′1

T,n
−−→ s′2, and s′1

SR,n′
−−−→ t′2.

A meta transformation ℓ
T,n
−−→∆ r is correct iff γ(ℓ

T,n
−−→∆ r) ⊆∼c. A meta transformation ℓ

T,n
−−→∆ r is

called overlapable if no Ch-variable occurs in ℓ and r and the transformation is closed w.r.t. a sufficient

26 Automating the Diagram Method to Prove Correctness of Program Transformations

context class for ∼c, i.e. s
T,n
−−→ t, s≤↓ t imply s≤c t.

A sufficient criterion for Conditions (1) and (2) from Definition 3.9 is that applicability of a trans-

formation to an expression s implies applicability of the transformation to all α-renamed expressions

s′ ∼α s that fulfill the DVC:

Proposition 3.10. Let (SR,Ans) be a program calculus and s
T,n
−−→∆ t be a letrec rewrite rule such that

no Ch-variable occurs in ℓ and r and the transformation is closed w.r.t. a sufficient context class for

contextual equivalence. Assume that s1
T,n
−−→ s2 implies that for all s′1 ∼α s1 such that s′1 fulfills the DVC

also s′1
T,n
−−→ s′2 for some s′2 ∼α s2. Assume also that s1

T,n
−−→ s2 for s1 ∈ γ(Ans) implies that for all s′1 ∼α s1

also s′1
T,n
−−→ s′2 holds for some s′2 ∼α s2. Then s

T,n
−−→∆ t is overlapable.

In Lneed, the criterion holds for most of the considered transformations. An exception is the reversed

copy transformation, (e.g. the reversal of
cp-in
−−→ in Fig. 5). It violates the criterion in Proposition 3.10,

since all ground instances of the left hand side violate the DVC. However, Conditions (1) and (2) from

Definition 3.9 hold, since two occurrences of λv.e do not forbid the application of a standard reduction.

Meta transformations ℓ
T,n
−−→∆ r are written in the LRSX Tool as “{n,k} ℓ ==> r where Constraints”

where k is a non-negative integer representing the variant of the rule. For the calculus Lneed a context

lemma [17] holds, which shows that top contexts are a sufficient class for ∼c, thus it suffices to consider

the closure of garbage collection w.r.t. top contexts. We can represent the rules for garbage collection as:

{gcT,1} T[letrec E1;E2 in S] ==> T[letrec E1 in S]

where E1 /= {}, E2 /= {}, [E1,letrec E2 in [.]], (S,letrec E2 in [.])

{gcT,2} T[letrec E in S] ==> T[S] where E /= {}, (S,letrec E in [.])

4 Computing Diagrams and Automated Induction

For proving γ(gcT)⊆≤↓, we have to compute all overlaps between the left hand side of (gcT) and an an-

swer (called answer overlaps5), and between the left hand sides of (gcT) and a standard reduction (called

forking overlaps)6 . Clearly, computing the overlaps cannot be done using the concretizations w.r.t. γ , but

has to be done on the meta-syntax, i.e. by unifying the left hand sides of the meta-transformation with the

left hand sides of the standard reductions and the answers, respecting the constraint tuples corresponding

to the rules. An appropriate unification algorithm for LRSX was developed in [18] and implemented in the

LRSX Tool. Calling the tool produces 99 (93, resp.) overlaps of (gcT,1) ((gcT,2) resp.) with all standard

reductions and answers. For joining the overlaps we have to apply standard reductions and transformation

rules to the constrained expressions (again on the meta-syntax) of the overlaps until a common successor

is found. For an answer s and an answer overlap s
T,n′
−−→ t, a join is a sequence tk

SR,nk←−−−α · · ·
SR,n1
←−−−α t where

k ≥ 0 and tk ∈ γ(Ans). For a forking overlap s1
SR,n
←−− t

T,n′
−−→ t1, a join is a sequence

s1 α
SR,n2
−−→ ·· · α

SR,nk−−→ sk α

T,nk+1
−−−→ ·· · α

T,nm
−−→ sm ∼α tl

SR,n′l←−−α · · ·
SR,n′2←−−α t1

where m,k, l ≥ 1 and k > 1 is only allowed if (SR,Ans) is deterministic7 . The forking overlap together

with a join builds a forking diagram which can be depicted as shown in Fig. 9 (where steps from the

5Internally, answer overlaps are computed as overlaps with rules ℓ
answer
−−−−→ ans for ℓ ∈ Ans and a new constant ans.

6In the LRSX Tool the commands to overlap the left hand sides with all standard reductions are overlap (gcT,1).l all

and overlap (gcT,2).l all.

7For each ground expression s, there exists at most one t such that s
SR
−→ t ∈ γ(SR).

D. Sabel 27

overlap are written with solid arrows, and (existentially quantified) steps of the join are written with

dashed arrows). Similarly, for an answer overlap together with its join is called an answer diagram.

Applying letrec rewrite rules uses a matching algorithm for LRSX (see [13]). A peculiarity of the

matching problem is, that constrained expressions of the overlap have to be matched against meta-

expressions from the rewrite rule which also come with constraint tuples. Thus the algorithm has to

guarantee that the given constraints imply the needed constraints before returning a matcher. Addition-

ally, the rewrite mechanism has to guarantee completeness w.r.t. ground instances, i.e. each rewrite step

on the meta-level (applying meta rewrite rules to constrained expressions) must also be possible for all

ground instances. Our tool uses an iterative and depth-bounded depth-first search to bound the number

of applied transformations and reductions. Since sometimes no join is found, since a possible rewriting

requires more knowledge on the (non-)emptiness of environment and context variables, the LRSX Tool

uses backtracking: if no join is found for an overlap, then first a case distinction for context variables

in the problem is done (whether they are empty or non-empty) and then the case distinction is done for

environment variables. As a further feature, in the LRSX Tool the search space for joins can be limited:

using the ignore-primitive of the tool one can forbid to use some transformations at all for the search for

joins, and with the restrict-primitive the number of allowed uses of a transformation can be bounded.

For checking if a join is found, we have to test equivalence of constrained expressions. A simple

check is testing ∼let, but however, also the constraint tuples have to be checked. We omit the more

complicated check, but in [14] a sound and complete check for proving equivalence of constrained ex-

pressions can be found. A key technique in the check is to split non-capture constraints (s,d) into atomic

non-capture constraints which are pairs (u,v) such that u,v are variables or meta-variables. The split

is done by collecting the variables and meta-variables appearing in s and in d. A ground substitution

ρ satisfies an atomic NCC (u,v) iff Var(ρ(u))∩CVA(ρ(v)) = /0 where CVA(x) = {x} for all variables x

and CVA(r) = CV(r) for all other constructs r. Since ρ satisfies (s,d) iff it satisfies all split NCCs, the

computations for checking equivalence of constraints can be done on the sets of atomic NCCs.

The join-command of the LRSX Tool tries to join the found overlaps and to compute forking and

answer diagrams: The diagrams are rewrite rules where the left hand side represents the overlap and

the right hand represents the join, where on both sides the diagrams are abstracted from the concrete

expressions (and thus they represent string rewrite systems where the alphabet are names or reductions

and transformations and the abstract symbol <-ANSWER-). For our example, the computed forking dia-

grams and answer diagrams (in textual representation, and condensed form) are shown in Fig. 11 and a

pictorial representation of the forking diagrams is in Fig. 10. Here unions of rules are used (which are

also supported in the LRSX Tool): (SR,lbeta) is the union of (SR,lbeta,1), (SR,lbeta,2), and

(SR,lbeta,3). (SR,lapp) is the union of (SR,lapp,1), (SR,lapp,2), and (SR,lapp,3), (SR,cp)

is the union of the rules representing (sr,cp-in) and (sr,cp-e), (SR,llet) is the union of the rules repre-

senting (sr,llet-in) and (sr,llet-e) (see Fig. 5), and (SR,lll) is the union of (SR,llet) and (SR,lapp).

In a pen-and-paper proof of γ(gcT)⊆≤↓, an induction on the length of a converging reduction sequence

s
SR,∗
−−→ s′ for s with s

gcT
−−→ t is used to show that t converges. The induction base is covered by the answer

diagrams, and for the induction step, let s
SR
−→ s1

SR,∗
−−→ s′. Applying a forking diagram to s1

SR
←− s

gcT
−−→ t

shows existence of some t ′ with s1
gcT
−−→ t ′

SR
←− t or s1

gcT
−−→ t ′ = t and by the induction hypothesis t ′↓ which

also implies t↓. This induction (even with more complex induction measures) can be automatized by

interpreting the answer and forking diagrams as term rewrite system and by showing (innermost) termi-

nation of them (see [11]). From the obtained answer and forking diagrams for (gcT), the LRSX Tool

generates the term rewrite system shown in Fig. 12 which can be proved to be innermost terminating

using the prover AProVE and the certifier CeTA.

28 Automating the Diagram Method to Prove Correctness of Program Transformations

·
gcT

//

SR,lbeta
��

·
SR,lbeta
��✤
✤

·
gcT

//❴❴❴❴ ·

·
gcT

//

SR,cp
��

·
SR,cp
��✤
✤

·
gcT

//❴❴❴❴ ·

·
gcT

//

SR,lll
��

·
SR,lll
��✤
✤

·
gcT

//❴❴❴❴ ·

·
gcT

//

SR,lll
��

·

·
gcT

77♦
♦

♦
♦

Figure 10: Diagrams for (gcT), pictorial

<-SR,lbeta- . -gcT-> ~~> -gcT-> . <-SR,lbeta-

<-SR,cp- . -gcT-> ~~> -gcT-> . <-SR,cp-

<-SR,lll- . -gcT-> ~~> -gcT-> . <-SR,lll-

<-SR,lll- . -gcT-> ~~> -gcT->

<-ANSWER- . -gcT-> ~~> <-ANSWER-

Figure 11: Diagrams for (gcT), textual

gcT(SRlbeta(x)) -> SRlbeta(gcT(x))

gcT(SRcp(x)) -> SRcp(gcT(x))

gcT(SRlll(x)) -> SRlll(gcT(x))

gcT(SRlll(x)) -> gcT(x)

gcT(Answer) -> Answer

Figure 12: Obtained TRS for (gcT)

5 Extended Techniques and Limitations of the Method

Our example to prove γ(gcT) ⊆ ≤↓ is quite simple. Unification and matching for LRSX-expressions

and usual term rewrite systems for the automated induction are successful. However, the LRSX Tool

provides more sophisticated techniques that are for instance required when proving the remaining part,

i.e. γ(gcT)⊆≥↓, to complete the correctness proof of garbage collection. First observe that the diagram

technique works as before with the difference that the reversal of (gcT) is used (i.e. with writing (gcT)−

for reversing the transformation (gcT) we have to show γ((gcT)−) ⊆ ≤↓). However, this means that

we have to overlap left hand sides of standard reductions and answers with right hand sides of (gcT).

The obtained overlaps are called answer and commuting diagrams. Computing the overlaps results in 99

overlaps for (gcT,1) and 203 overlaps for (gcT,2). However, using the presented techniques for computing

joins fails. An overlap (we omit the constraints) which cannot be joined is

A[(λX .S) T [letrec E1 in S′]]
SR,lbeta,1 ��

A[(λX .S) T [letrec E1;E2 in S′]]
gcT,1

oo

A[letrec X .T [letrec E1 in S′] in S]

The automated method cannot apply a (SR,lbeta)-reduction to the upper-right expression, since it can-

not infer that variable X does not occur in E2. However, this problem can be solved by α-renaming

the expression such that the DVC holds. That is why symbolic α-renaming (see [12]) is built into

the LRSX Tool which is quite more complex than usual α-renaming, since it has to be performed

on the meta syntax, e.g. internally symbolic renamings of the form α · S are required. Even with α-

renaming, the LRSX Tool cannot join all overlaps. E.g., for the overlap (we omit the constraints)

A[letrec X .S′ in S] A[(λX .S) S′]
SR,lbeta,1
oo A[(letrec E in (λX .S)) S′]

gcT,2
oo a meta-argument is re-

quired to close the overlap stating that the standard reduction moves the environment E to the top of the

expression, i.e. a sequence A[(letrec E in (λX .S)) S′]
SR,lll,+
−−−−→ letrec E in A[(λX .S)) S′] where

SR,lll,+
−−−−→ is the transitive closure of

SR,lll
−−−→. In the LRSX Tool such transitive closures can be defined and

with these rules it is able to compute a complete set of commuting diagrams for the (gcT)-transformation.

A pictorial representation of the commuting diagrams for a ∈ {lbeta,cp, lll} is shown in Fig. 13.

The automated induction has to treat the transitive closure in the rules. A naive encoding leads to

term rewrite systems with infinitely many rules. The LRSX Tool generates a term rewrite system with

free variables on the right hand sides (or alternatively integer term rewrite systems, see [11, 4]) where

D. Sabel 29

·

SR,a

��

·
gcT

oo

SR,a

��
✤
✤
✤

· ·
gcT

oo❴ ❴ ❴

·

SR,a

��

·
gcT

oo

SR,lll,+
��✤
✤

·
SR,a
��
✤

✤

· ·
gcT

oo❴ ❴ ❴

·

SR,lbeta

��

·
gcT

oo

SR,lll,+
��✤
✤

·
SR,lbeta
��✤
✤

·
SR,lll
��✤
✤

· ·
gcT

oo❴ ❴ ❴

Figure 13: Commuting Diagrams for (gcT)

gcT(SRlbeta(x)) -> W24(k,x)

W24(s(k),x) -> SRlll(W24(k,x))

W24(s(k),x) -> SRlll(SRlbeta(gcT(x)))

Figure 14: Term rewrite rules for the 2nd diagram

these variables are interpreted as variables representing constructors. Every transitive closure is encoded

as a guessing of the number of steps it represents. E.g., the second diagram is encoded by three term

rewrite rules in Fig. 14. The termination prover AProVE and the certifier CeTA support such termination

problems with free variables on right-hand sides interpreted as arbitrary constructor term. For (gcT),

innermost termination can be proved and certified.
Now consider the transformations (cp-in) and (cp-e) from Fig. 5 closed by top-contexts. Computing

commuting diagrams and deriving the corresponding term rewrite system results in the system

cpT(SRlbeta(x)) -> SRlbeta(cpT(x)) cpT(SRcp(x)) -> SRcp(cpT(cpT(x)))

cpT(SRlll(x)) -> SRlll(cpT(x)) cpT(SRlbeta(x)) -> SRcp(SRlbeta(x))

cpT(SRcp(x)) -> SRcp(cpT(x))

which is non-terminating. If we split (cpT) into transformations where the copy target is a top-context

(tcpT) and where the target is below an abstraction (dcpT), then the diagram set becomes

·
SR,a

��

·
tcpT
oo

SR,a
��✤
✤

· ·
tcpT
oo❴ ❴

·
SR,a

��

·
dcpT
oo

SR,a
��✤
✤

· ·
dcpT
oo❴ ❴

·
SR,lbeta

��

·
dcpT

oo

SR,lbeta
��✤
✤

· ·
tcpT

oo❴ ❴ ❴ ❴

·
SR,cp

��

·
dcpT

oo

SR,cp
��✤
✤

· ·
dcpT
oo❴ ❴ ·

dcpT
oo❴ ❴

·

SR,lbeta

��

·
tcpT

oo

SR,cpxxq q
q

·

SR,lbetaxxq q
q

·

and termination of the corresponding TRS can be proved.

We conclude this section by explaining situations for program calculi and program transformations

that cannot be handled by the current version of the LRSX Tool. The underlying meta language has no

support for substitutions, i.e. usual β -reduction (λx.s) t → s[t/x] can only be represented by encoding

explicit substitutions (for instance, by using the letrec-construct). Languages which use an equational

theory to equate programs (for instance, structural congruence in the π-calculus [8] or in the CHF-

calculus[16]) are not supported at the moment, since this would require unification and matching to

handle the equational theory. Also program transformations with more complicated side-conditions (for

instance, those using strictness information) can not be represented in the tool, since only rules that can

be constrained the constraint tuples can be represented. Finally, the occurrence restrictions on meta-

variables and the conditions on program transformations clearly forbid some program transformations.

For instance, we do not allow program transformations that use chain-variables, for calculi which use

chain-variables in the standard reduction rules.

6 Implementation and Experiments

The Haskell-implementation of the automated diagram method to prove correctness of program trans-

formation is available as a Cabal-package from http://goethe.link/LRSXTOOL61. We tested our imple-

mentation with three different program calculi and a lot of program transformations. The tested calculi

http://goethe.link/LRSXTOOL61

30 Automating the Diagram Method to Prove Correctness of Program Transformations

overlaps # meta joins # meta joins
with α-renaming diagram computation time

forking answer forking answer forking answer

Calculus Lneed (11 SR rules, 16 transformations, 2 answers)

→ 2215 27 5398 27 93 0 48 secs.

← 2963 38 7235 38 1399 3 116 secs.

Calculus L
+seq
need (17 SR rules, 18 transformations, 2 answers)

→ 4869 29 14700 29 143 0 149 secs.

← 6394 43 18046 43 2374 3 255 secs.

Calculus LR (76 SR rules, 43 transformations, 17 answers)

→ 85455 1586 389678 1586 73601 0 ∼ 19 hours

← 105053 2280 426664 2440 93075 155 ∼ 16 hours

Table 1: Statistics of executing the LRSX Tool

are the calculus Lneed [19] – a minimal call-by-need lambda calculus with letrec – the calculus L
+seq
need

which extends Lneed by the seq-operator, where seq e1 e2 first evaluates the first argument e1 and after

obtaining a successful result it evaluates argument e2, and the calculus LR [20] which extends L
+seq
need by

data constructors for lists, booleans and pairs together with corresponding case-expressions, and can be

seen as an untyped core language of Haskell. The tested program transformations include all calculus

reductions which can be summarized as “partial evaluation”, several copying transformations and rules

for removing garbage and inlining of let-bindings which are referenced only once.

Our experimental results are in Table 1, where we also list the numbers of standard reductions, trans-

formations, and answers in the input. The table shows the numbers of computed overlaps, corresponding

joins (which is higher due to the branching in unsuccessful cases), joins which use the α-renaming

procedure. The row marked with→ represent the forking diagrams, and← represent the reversed trans-

formations, i.e. commuting diagrams. In all cases, termination of the termination problems was proved

by AProVE and certified by CeTA. The last column lists the execution time8 for calculating the overlaps

and the joins. With increasing numbers of rules, transformations, and syntactic constructs the compu-

tation time increases, due to the combinatorial explosion. The time to compute joins for commuting

diagrams in LR is higher than for computing forking diagrams, since we put more effort in optimizing

the commuting diagram computation (by avoiding unusual search paths).

7 Conclusion

We presented a system (the LRSX Tool) to automatically prove correctness of program transformations.

We illustrated its use by an example and discussed peculiarities of its design and its implementation. By

providing the results of experiments, we demonstrated the success of the method and the tool.

Acknowledgments. We thank René Thiemann for support on AProVE and CeTA. We also thank the

anonymous reviewers of WPTE 2018 for their valuable comments.

8Tests ran on a system with Intel i7-4790 CPU 3.60GHz, 8 GB memory using GHC’s -N option for parallel execution

D. Sabel 31

References

[1] Z. M. Ariola & M. Felleisen (1997): The Call-By-Need lambda Calculus. JFP 7(3), pp. 265–301.

[2] Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky & P. Wadler (1995): A call-by-need lambda calculus. In:

POPL 1995, ACM, pp. 233–246, doi:10.1145/199448.199507.

[3] F. Baader & T. Nipkow (1998): Term Rewriting and All That. Cambridge University Press, doi:10.1017/

CBO9781139172752.

[4] C. Fuhs, J. Giesl, M.Plücker, P. Schneider-Kamp & S. Falke (2009): Proving Termination of Integer Term

Rewriting. In: RTA 2009, LNCS 5595, Springer, pp. 32–47, doi:10.1007/978-3-642-02348-4_3.

[5] J. Giesl, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, C. Otto, M. Plücker, P. Schneider-Kamp, T. Ströder,

S. Swiderski & R. Thiemann (2014): Proving Termination of Programs Automatically with AProVE. In:

IJCAR 2014, LNCS 8562, Springer, pp. 184–191, doi:10.1007/978-3-319-08587-6_13.

[6] A. Jez (2014): Context Unification is in PSPACE. In: ICALP 2014, Part II, LNCS 8573, Springer, pp.

244–255, doi:10.1007/978-3-662-43951-7_21.

[7] E. Machkasova & F. A. Turbak (2000): A Calculus for Link-Time Compilation. In: ESOP 2000, LNCS 1782,

Springer, pp. 260–274, doi:10.1007/3-540-46425-5_17.

[8] R. Milner (1999): Communicating and mobile systems - the Pi-calculus. Cambridge University Press.

[9] J. H. Morris (1968): Lambda-Calculus Models of Programming Languages. Ph.D. thesis, MIT.

[10] G. D. Plotkin (1975): Call-by-name, call-by-value, and the lambda-calculus. Theoret. Comput. Sci. 1, pp.

125–159, doi:10.1016/0304-3975(75)90017-1.

[11] C. Rau, D. Sabel & M. Schmidt-Schauß (2012): Correctness of Program Transformations as a Termination

Problem. In: IJCAR 2012, LNCS 7364, Springer, pp. 462–476, doi:10.1007/978-3-642-31365-3_36.

[12] D. Sabel (2017): Alpha-renaming of Higher-order Meta-expressions. In: PPDP 2017, ACM, pp. 151–162,

doi:10.1145/3131851.3131866.

[13] D. Sabel (2017): Matching of Meta-Expressions with Recursive Bindings. In: Informal Proceedings of UNIF

2017. Available at unif-workshop.github.io/UNIF2017/papers/UNIF_2017_paper_2.pdf.

[14] D. Sabel (2017): Rewriting of Higher-Order Meta-Expressions with Recursive Bindings. Frankfurter

Informatik-Berichte 2017-1, Goethe-University Frankfurt. Available at d-nb.info/1136368175/34.

[15] D. Sabel & M. Schmidt-Schauß (2008): A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding

Choice: Context Lemma and Correctness of Transformations. Math. Structures Comput. Sci. 18(03), pp.

501–553, doi:10.1017/S0960129508006774.

[16] D. Sabel & M. Schmidt-Schauß (2011): A contextual semantics for concurrent Haskell with futures. In:

PPDP 2011, ACM, pp. 101–112, doi:10.1145/2003476.2003492.

[17] M. Schmidt-Schauß & D. Sabel (2010): On generic context lemmas for higher-order calculi with sharing.

Theoret. Comput. Sci. 411(11-13), pp. 1521 – 1541, doi:10.1016/j.tcs.2009.12.001.

[18] M. Schmidt-Schauß & D. Sabel (2016): Unification of Program Expressions with Recursive Bindings. In:

PPDP 2016, ACM, pp. 160–173, doi:10.1145/2967973.2968603.

[19] M. Schmidt-Schauß, D. Sabel & E. Machkasova (2010): Simulation in the Call-by-Need Lambda-Calculus

with letrec. In: RTA 2010, LIPIcs 6, Schloss Dagstuhl, pp. 295–310, doi:10.4230/LIPIcs.RTA.2010.295.

[20] M. Schmidt-Schauß, M. Schütz & D. Sabel (2008): Safety of Nöcker’s Strictness Analysis. JFP 18(04), pp.

503–551, doi:10.1017/S0956796807006624.

[21] R. Thiemann & C. Sternagel (2009): Certification of Termination Proofs Using CeTA. In: TPHOLs 2009,

LNCS 5674, Springer, pp. 452–468, doi:10.1007/978-3-642-03359-9_31.

[22] J. B. Wells, D. Plump & F. Kamareddine (2003): Diagrams for Meaning Preservation. In: RTA 2003, LNCS

2706, Springer, pp. 88 –106, doi:10.1007/3-540-44881-0_8.

http://dx.doi.org/10.1145/199448.199507
http://dx.doi.org/10.1017/CBO9781139172752
http://dx.doi.org/10.1017/CBO9781139172752
http://dx.doi.org/10.1007/978-3-642-02348-4_3
http://dx.doi.org/10.1007/978-3-319-08587-6_13
http://dx.doi.org/10.1007/978-3-662-43951-7_21
http://dx.doi.org/10.1007/3-540-46425-5_17
http://dx.doi.org/10.1016/0304-3975(75)90017-1
http://dx.doi.org/10.1007/978-3-642-31365-3_36
http://dx.doi.org/10.1145/3131851.3131866
unif-workshop.github.io/UNIF2017/papers/UNIF_2017_paper_2.pdf
d-nb.info/1136368175/34
http://dx.doi.org/10.1017/S0960129508006774
http://dx.doi.org/10.1145/2003476.2003492
http://dx.doi.org/10.1016/j.tcs.2009.12.001
http://dx.doi.org/10.1145/2967973.2968603
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.295
http://dx.doi.org/10.1017/S0956796807006624
http://dx.doi.org/10.1007/978-3-642-03359-9_31
http://dx.doi.org/10.1007/3-540-44881-0_8

32 Automating the Diagram Method to Prove Correctness of Program Transformations

[23] A. K. Wright & M. Felleisen (1994): A Syntactic Approach to Type Soundness. Inf. Comput. 115(1), pp.

38–94, doi:10.1006/inco.1994.1093.

A Soundness of the Diagram Method

We show soundness of the diagram method. Since we sometimes use slightly more general formulations

of program transformations for computing joins (but not for computing overlaps), we use two sets of meta

transformations. Let (SR,Ans) be a program calculus, OTR be a set of overlapable meta transformations,

and TR⊇ OTR be a set of meta transformations such that for each (ℓ
T,n
−→∆ r) ∈ TR there exists (ℓ

T,n′
−−→∆

r) ∈ OTR with γ(ℓ
T,n
−→∆ r)⊆γ(ℓ

T,n′
−−→∆ r) (we say that n′ subsumes n w.r.t. γ). A set of forking and

answer diagrams is complete for a set OTR iff for all forking overlaps of transformations in OTR with

standard reductions and every answer overlap, an applicable diagram is in the set. Applicabilty means

that the concrete overlap is an instance of the overlap described by the diagram and that the existentially

quantified expressions, reductions, and transformations can accordingly be instantiated.

A set of forking and answer diagrams can be viewed as a string rewrite system (that replaces the

overlap by the join). In [11] it was shown that proving termination of the string rewrite system with

infinitely many rules can be automated by using termination provers for term rewrite systems to show

termination of the corresponding integer term rewrite system, or term rewrite system with free variables

on the right hand side that represent arbitrary constructor terms. We do not repeat this technqiue here, and

formulate our soundness result in terms of the string rewrite system which is induced by the diagrams:

Theorem A.1. If a complete set of forking and answer diagrams for OTR is terminating as a string

rewrite system, then all ℓ
T,n
−→∆ r ∈ TR are convergence equivalent.

Proof. Since transformations in TR are subsumed by the transformations in OTR it is sufficient to con-

sider ℓ
T,n
−−→∆ r ∈ OTR. Assume that s

T,n
−−→ t and s↓. Then there exists a sequence s′k ∼α sk

SR
←−α · · ·

SR
←−α

s
T,n
−−→ t where s′k ∈ γ(Ans). We apply modifications to the sequence and replace overlaps by joins ac-

cording to the following rules:

1. If the sequence contains a transformation step s1
T,n′
−−→ s2 where

T,n′
−−→∆′∈ (TR \OTR), then there

exists
T,n′′
−−→∆′′∈ OTR with s1

T,n′
−−→s2 ∈ γ(

T,n′′
−−→∆′′). Replace s1

T,n′
−−→ s2 by s1

T,n′′
−−→ s2.

2. If the sequence contains a step s1
SR,n′
←−−−α s2, i.e. s1

SR,n′
←−−− s′2 ∼α s2, and s′2 does not fulfill the DVC,

then replace s′2 by an expression s′′2 ∼α s′2 such that s′′2 fulfills the DVC. By the definition of standard

reductions, the standard reduction s′1
SR,n′
←−−− s′′2 with s′1 ∼α s1 exists. Replace s1

SR,n′
←−−− s′2 ∼α s2 by

s1 ∼α s′1
SR,n′
←−−− s′′2 ∼α s2.

3. If the sequence contains s1
SR
←−α s2 α

SR
−→ s3, then the calculus is deterministic and thus s1 ∼α s3

holds. Replace the s1
SR
←−α s2 α

SR
−→ s3 by s1 ∼α s3.

4. If the sequence has a prefix s1 α
SR
−→ s3 where s1 is an answer, then the calculus is deterministic and

s3 is an answer and we replace the prefix s1 α
SR
−→ s3 by s3.

5. Subsequences s1 ∼α s2 ∼α s3 are replaced by s1 ∼α s3.

6. If the left-most expression of the sequence is s1 ∈ γ(Ans) and does not fulfill the DVC, then replace

s1 by s′1 ∼α s1 such that s′1 fulfills the DVC. Due to our assumption on answers, s′1 ∈ γ(Ans).

http://dx.doi.org/10.1006/inco.1994.1093

D. Sabel 33

7. If the sequence has a prefix t1 ∼α s1
T,n′
−−→ s2, where t1 fulfills the DVC and t1 ∈ γ(Ans), then

first apply Condition (1) of Definition 3.9, i.e. replace the prefix by t1 ∼α s′1
T,n
−−→ s′2 ∼α s2 where

s′1 ∈ γ(Ans) and s′1 ∼α t. Since the set of answer diagrams is complete, there is an answer diagram

that allows us to replace the answer overlap s′1
T,n
−−→ s′2 by the corresponding join.

8. If the sequence contains t2
SR,n′
←−−− t1 ∼α s1

T,n′′
−−→ s2, then t1 fulfills the DVC (by the modification

in item 2) and we can use Condition 2 of Definition 3.9 and replace t2
SR,n′
←−−− t1 ∼α s1

T,n′′
−−→ s2 by

t2 ∼α t′2
SR,n′
←−−− s′1

T,n′′
−−→ s′2 ∼α s2. Since the set of forking diagrams is complete, we can apply a

diagram in the set and replace the forking overlap t′2
SR,n′
←−−− s′1

T,n′′
←−− s′2 by its join.

The modifications show that we can replace overlaps by joins until the sequence is of the form sn
SR
←−α

· · ·
SR
←−α t. Termination of the string rewrite system and the observation that α

SR
−→-reductions which are

introduced by joins can always be removed by the modifications (3) and (4), shows that the replacement

together with the modifications terminates. Since, the left end of the sequence is always an expression in

γ(Ans), this shows t↓.

B The Simple Example

We provide the input for the LRSX Tool for the calculus Simple and the correctness proof of transforma-

tion (top). Note that ⊥ is represented by bot, ⊤ by top, ¬ by neg, and ∧ by cap (written prefix).

-- file: simple.inp

-- Evaluation contexts A and arbitrary contexts C

define A ::= [.] | (cap A S) | (neg A)

define C ::= [.] | (cap C S) | (cap S C) | (neg C)

-- The prefix table and the forking table

declare prefix A A = (A,A)

declare prefix A C = (A,C)

declare prefix C A = (A,A)

declare prefix C C = (C,C)

declare fork A C = (A,A,C,(cap [.1] [.2]))

declare fork C C = (C,C,C,(cap [.1] [.2]))

declare fork C C = (C,C,C,(cap [.2] [.1]))

declare fork C A = (A,C,A,(cap [.2] [.1]))

-- standard reduction and answers

{SR,bot} A[cap bot S] ==> A[bot]

{SR,top} A[cap top S] ==> A[S]

{SR,neg,1} A[neg top] ==> A[bot]

{SR,neg,2} A[neg bot] ==> A[top]

ANSWER top

-- our example transformation:

{top} C[cap top S] ==> C[S]

-- control commands to compute the diagrams

"forking_diagrams" <- overlap (top).l all

"commuting_diagrams" <- overlap (top).r all

-- calling

-- lrsx join simple.inp

-- lrsx induct atp-path=aprove/ forking_diagrams

-- lrsx induct atp-path=aprove/ commuting_diagrams

-- will generate the diagrams and perform the automated induction

-- (it is assumed that aprove.jar and ceta are in the path specified by atp-path)

	1 Introduction
	2 Illustration of the Diagram Method – Examples
	3 Representation of Program Calculi and Transformations
	3.1 Meta-Syntax to Represent Expressions
	3.2 Rewrite Rules

	4 Computing Diagrams and Automated Induction
	5 Extended Techniques and Limitations of the Method
	6 Implementation and Experiments
	7 Conclusion
	A Soundness of the Diagram Method
	B The Simple Example

