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A proof tableau of Hoare logic is an annotated program with pre- and post-conditions, which cor-
responds to an inference tree of Hoare logic. In this paper, we show that a proof tableau for partial
correctness can be transformed into an inference sequence of rewriting induction for constrained
rewriting. We also show that the resulting sequence is a valid proof for an inductive theorem cor-
responding to the Hoare triple if the constrained rewriting system obtained from the program is
terminating. Such a valid proof with termination of the constrained rewriting system implies total
correctness of the program w.r.t. the Hoare triple. The transformation enables us to apply techniques
for proving termination of constrained rewriting to proving total correctness of programs together
with proof tableaux for partial correctness.

1 Introduction

In the field of term rewriting, automated reasoning about inductive theorems has been well investigated.
Here, an inductive theorem of a term rewriting system (TRS) is an equation that is inductively valid,
i.e., all of its ground instances are theorems of the TRS. As principles for proving inductive theorems,
we cite inductionless induction [14, 10] and rewriting induction (RI) [17], both of which are called im-
plicit induction principles. Frameworks based on the RI principle (RI frameworks, for short) consist
of inference rules to prove that given equations are inductive theorems. On the other hand, RI-based
methods are procedures within RI frameworks to apply inference rules under specified strategies. In
recent years, various RI-based methods for constrained rewriting (see, e.g., constrained TRSs [9, 19],
conditional and constrained TRSs [2], Z-TRSs [6], and logically constrained TRSs [11]) have been de-
veloped [2, 20, 6, 12, 8]. Constrained systems have built-in semantics for some function and predicate
symbols and have been used as a computation model of not only functional but also imperative pro-
grams [4, 7, 9, 5, 21, 12, 8].

For program verification, several techniques have been investigated in the literature, e.g., model
checking, Hoare logic, etc. On the other hand, constrained rewriting can be used as a computation model
of some imperative programs (cf. [8]), and RI frameworks for constrained rewriting are tuned to veri-
fication of imperative programs, e.g. equivalence of two functions under the same specification. Some
RI frameworks succeed in proving equivalence of an imperative program and its functional specification
such that a proof based on Hoare logic needs a loop invariant (cf. [8]). From such experiences, we are
interested in differences between RI frameworks and other verification methods.

In this paper, we show that a proof tableau of Hoare logic can be transformed into an inference
sequence of rewriting induction for logically constrained TRSs (LCTRSs). Here, a proof tableau is an
annotated while program with pre- and post-conditions, which corresponds to an inference tree of Hoare
logic. We also show that the resulting inference sequence is a valid proof for an inductive theorem
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corresponding to the Hoare triple for the proof tableau if the LCTRS obtained from the program is
terminating.

Given a while program P and a proof tableau TP of a Hoare triple {ϕP} P {ψP} for partial correctness,
we proceed as follows:

1. We transform P into an equivalent LCTRSRP, and we prove termination of the LCTRSRP.

2. We prepare rewrite rulesRcheck to verify the post-condition ψP in the proof tableau.

3. We prepare a constrained equation eP corresponding to the Hoare triple {ϕP} P {ψP}.
4. Starting with the equation eP, we transform the proof tableau into an inference sequence ({eP}, /0)
`RI · · · `RI ( /0,H) of RI in a top-down fashion, where we do not prove termination in constructing
the inference sequence of RI.

In addition to the above transformation, we show that termination of the LCTRSRP implies termination
of the LCTRS RP∪Rcheck ∪H. Termination of the LCTRS RP∪Rcheck ∪H ensures that the resulting
inference sequence ({eP}, /0) `RI · · · `RI ( /0,H) is a valid proof of RI—the equation eP is an inductive
theorem of the LCTRSRP—and thus, the while program P is totally correct w.r.t. ϕP and ψP.

The contribution of this paper is a top-down transformation of proof tableaux for partial correctness
to inference sequences of RI, which enables us to apply techniques for proving termination of constrained
rewriting to proving total correctness together with proof tableaux for partial correctness.

This paper is organized as the follows. In Section 2, we briefly recall LCTRSs, while programs, and
a conversion of while programs to LCTRSs. In Section 3, we recall proof tableaux of Hoare logic, and
in Section 4, we recall the framework of rewriting induction for LCTRSs. In Section 5, we show that a
proof tableau can be transformed into an inference sequence of RI, and the resulting inference sequence
is a valid proof for total correctness if the LCTRS obtained from the proof tableau is terminating. In
Section 6, we conclude this paper and describe future direction of this research.

2 Preliminaries

In this section, we recall LCTRSs, following the definitions in [11, 8]. We also recall while programs,
and then introduce a conversion of while programs to LCTRSs. Familiarity with basic notions on term
rewriting [1, 16] is assumed.

2.1 Logically Constrained Term Rewriting Systems

Let S be a set of sorts and V a countably infinite set of variables, each of which is equipped with a
sort. A signature Σ is a set, disjoint from V , of function symbols f , each of which is equipped with
a sort declaration ι1× ·· ·× ιn ⇒ ι where ι1, . . . , ιn, ι ∈ S. For readability, we often write ι instead of
ι1×·· ·× ιn⇒ ι if n = 0. We denote the set of well-sorted terms over Σ and V by T (Σ,V). In the rest of
this section, we fix S, Σ, and V . The set of variables occurring in s is denoted by Var(s). Given a term
s and a position p (a sequence of positive integers) of s, s|p denotes the subterm of s at position p, and
s[t]p denotes s with the subterm at position p replaced by t.

A substitution γ is a sort-preserving total mapping from V to T (Σ,V), and naturally extended for
a mapping from T (Σ,V) to T (Σ,V): the result sγ of applying a substitution γ to a term s is s with all
occurrences of a variable x replaced by γ(x). The domain Dom(γ) of γ is the set of variables x with
γ(x) 6= x. The notation {x1 7→ s1, . . . ,xk 7→ sk} denotes a substitution γ with γ(xi) = si for 1≤ i≤ n, and
γ(y) = y for y /∈ {x1, . . . ,xn}.
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To define LCTRSs, we consider different kinds of symbols and terms: (1) two signatures Σterms and
Σtheory such that Σ = Σterms∪Σtheory, (2) a mapping I which assigns to each sort ι occurring in Σtheory a set
Iι , (3) a mapping J which assigns to each f : ι1×·· ·× ιn⇒ ι ∈ Σtheory a function in Iι1×·· ·×Iιn ⇒Iι ,
and (4) a set Valι ⊆ Σtheory of values—function symbols a : ι such that J gives a bijective mapping from
Valι to Iι—for each sort ι occurring in Σtheory. We require that Σterms∩Σtheory ⊆ Val =

⋃
ι∈S Valι . The

sorts occurring in Σtheory are called theory sorts, and the symbols theory symbols. Symbols in Σtheory\Val
are calculation symbols. A term in T (Σtheory,V) is called a logical term. For ground logical terms, we
define the interpretation as J f (s1, . . . ,sn)K = J ( f )(Js1K, . . . ,JsnK). For every ground logical term s, there
is a unique value c such that JsK = JcK. We use infix notation for theory and calculation symbols.

A constraint is a logical term ϕ of some sort bool with Ibool = B = {>,⊥}, the set of booleans. A
constraint ϕ is valid if JϕγK = > for all substitutions γ which map Var(ϕ) to values, and satisfiable if
JϕγK = > for some such substitution. A substitution γ respects ϕ if γ(x) is a value for all x ∈ Var(ϕ)
and JϕγK = >. We typically choose a theory signature with Σtheory ⊇ Σcore

theory, where Σcore
theory contains

true, false : bool, ∧,∨, =⇒ : bool× bool⇒ bool, ¬ : bool⇒ bool, and, for all theory sorts ι , symbols
=ι , 6=ι : ι × ι ⇒ bool, and an evaluation function J that interprets these symbols as expected. We omit
the sort subscripts from = and 6= when clear from context.

The standard integer signature Σint
theory is Σcore

theory ∪{+,−,∗,exp,div,mod : int× int⇒ int}∪{≥,> :
int× int⇒ bool}∪{n : int | n ∈ Z} with values true, false, and n for all integers n ∈ Z. Thus, we use
n (in sans-serif font) as the function symbol for n ∈ Z (in math font). We define J in the natural way,
except: since all J ( f ) must be total functions, we set J (div)(n,0) = J (mod)(n,0) = J (exp)(n,k) = 0
for all n and all k < 0. When constructing LCTRSs from, e.g., while programs, we can add explicit error
checks for, e.g., “division by zero”, to constraints (cf. [8]).

A constrained rewrite rule is a triple `→ r [ϕ ] such that ` and r are terms of the same sort, ϕ is a
constraint, and ` has the form f (`1, . . . , `n) and contains at least one symbol in Σterms \Σtheory (i.e., ` is
not a logical term). If ϕ = true with J (true) = >, we may write `→ r. We define LVar(`→ r [ϕ ])
as Var(ϕ)∪ (Var(r) \ Var(`)). We say that a substitution γ respects `→ r [ϕ ] if γ(x) ∈ Val for all
x∈LVar(`→ r [ϕ ]), and JϕγK=>. Note that it is allowed to have Var(r) 6⊆ Var(`), but fresh variables
in the right-hand side may only be instantiated with values. Given a set R of constrained rewrite rules,
we let Rcalc be the set { f (x1, . . . ,xn)→ y [y = f (x1, . . . ,xn) ] | f : ι1× ·· · × ιn ⇒ ι ∈ Σtheory \ Val}.
We usually call the elements of Rcalc constrained rewrite rules (or calculation rules) even though their
left-hand side is a logical term. The rewrite relation →R is a binary relation on terms, defined by:
s[`γ]p →R s[rγ]p if `→ r [ϕ ] ∈ R∪Rcalc and γ respects `→ r [ϕ ]. A reduction step with Rcalc is
called a calculation.

Now we define a logically constrained term rewriting system (LCTRS) as the abstract rewriting
system (T (Σ,V),→R). An LCTRS is usually given by supplying Σ, R, and an informal description of
I and J if these are not clear from context. An LCTRS R is said to be left-linear if for every rule in
R, the left-hand side is linear. R is said to be non-overlapping if for every term s and rule `→ r [ϕ ]
such that s reduces with `→ r [ϕ ] at the root position: (a) there are no other rules `′→ r′ [ϕ ′ ] such that
s reduces with `′→ r′ [ϕ ′ ] at the root position, and (b) if s reduces with any rule at a non-root position
q, then q is not a position of `. R is said to be orthogonal if R is left-linear and non-overlapping. For
f (`1, . . . , `n)→ r [ϕ ] ∈ R, we call f a defined symbol of R, and non-defined elements of Σterms and
all values are called constructors of R. Let DR be the set of all defined symbols and CR the set of
constructors. A term in T (CR,V) is a constructor term ofR.

Example 2.1 ([8]) Let S = {int,bool}, and Σ = Σterms∪Σint
theory, where Σterms = { fact : int⇒ int }∪{ n :

int | n ∈ Z }. Then both int and bool are theory sorts. We also define set and function interpretations,
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i.e., Iint = Z, Ibool = B, and J is defined as above. Examples of logical terms are 0 = 0+−1 and
x+3≥ y+−42 that are constraints. 5+9 is also a (ground) logical term, but not a constraint. Expected
starting terms are, e.g., fact(42) or fact(fact(−4)). To implement an LCTRS calculating the factorial
function, we use the signature Σ above and the following rules: Rfact = { fact(x)→ 1 [x≤ 0 ], fact(x)→
x× fact(x− 1) [¬(x ≤ 0) ] }. Using calculation steps, a term 3− 1 reduces to 2 in one step with the
calculation rule x− y→ z [z = x− y ], and 3× (2× (1× 1)) reduces to 6 in three steps. Using the
constrained rewrite rules inRfact, fact(3) reduces in ten steps to 6.

A constrained term is a pair s [ϕ ] of a term s and a constraint ϕ . We say that s [ϕ ] and t [ψ ] are
equivalent, written by s [ϕ ] ∼ t [ψ ], if for all substitutions γ which respect ϕ , there is a substitution δ

which respects ψ such that sγ = tδ , and vice versa. Intuitively, a constrained term s [ϕ ] represents all
terms sγ where γ respects ϕ , and can be used to reason about such terms. For this reason, equivalent
constrained terms represent the same set of terms. For a rule ρ := `→ r [ψ ]∈R∪Rcalc and position q,
we let s [ϕ ]→ρ,q t [ϕ ] if there exists a substitution γ such that s|q = `γ , t = s[rγ]q, γ(x) is either a value or
a variable in Var(ϕ) for all x ∈ LVar(`→ r [ψ ]), and ϕ =⇒ (ψγ) is valid. We write s [ϕ ]→base t [ϕ ]
for s [ϕ ]→ρ,q t [ϕ ] with some ρ,q. The relation→R on constrained terms is defined as ∼·→base ·∼.

2.2 While Programs

In this section, we recall the syntax of while programs (see e.g., [18]).
We deal with a simple class of while programs over the integers, which consist of assignments, skip,

sequences, “if” statements, and “while” statements with loop invariants: a “while” statement is of the
form while@ζ (ψ){c} with ζ a loop invariant. To deal with proof tableaux, we allow to write assertions
of the form @ϕ as annotations. An annotated while program is defined by the following BNF:

P ::= v := E | skip | P ;P |@B | if(B){P}else{P} | while@B(B){P}
E ::= n | v | (E + E) | (E − E) | (E ∗ E) | (E / E)

B ::= true | false | E = E | E < E | (¬B) | (B∨B)

where n ∈ Z, v ∈ V , and we may omit brackets in the usual way. We use 6=, ≤, >, ≥, ∧, =⇒ , etc,
as syntactic sugars. We abbreviate while@ true(ψ){c} to while(ψ){c}. For page limitation, we do not
introduce the semantics of while programs, and they are evaluated in the usual way: in evaluating while
programs, we ignore loop invariants and assertions, while they are taken into account in considering
proof tableaux. For a while program P, we denote the set of variables appearing in P by Var(P). Given
an assignment θ for Var(P), we write θ ⇒P θ ′ if the execution of P starts with θ and halts with an
assignment θ ′. We abuse assignments for variables as substitutions for terms.

Example 2.2 The following, denoted by Psum, is a while program with Var(Psum) = {x, i,z}, which com-
putes the summation from 0 to x if x≥ 0.

1 i := 0;
2 z := 0;
3 while(x > i){
4 z := z+ i+1;
5 i := i+1;
6 }
7

We write a line number for each statement, and write a blank line at the end of the program, which is
used to simplify a conversion of while programs to LCTRSs.
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2.3 Converting while Programs to LCTRSs

In this section, we briefly introduce a conversion of while programs to LCTRSs (see e.g., [8]).
Let P be a while program such that Var(P) = {x1, . . . ,xn} and P has m lines without any assertion.

We denote the sequence “x1, . . . ,xn” by~x. We prepare state, a sort for tuples of integers. We assume that
there is no blank line in P with line numbers, except for the last line m e.g., line 7 of Psum. We first prepare

m function symbols state1, . . . ,statem with sort

n︷ ︸︸ ︷
Z×·· ·×Z⇒ state. Instances of state1, . . . ,statem rep-

resent states in executing P. Here, a state consists of a program counter and an assignment to variables
in the program (see e.g., [3]). For example, statei(v1, . . . ,vn) represents a state such that the program
counter stores i and v1, . . . ,vn are assigned to x1, . . . ,xn, resp. For each statement in P, we generate
constrained rewrite rules for state1, . . . ,statem as follows:

• an assignment i xk := e; is converted to the following rule:

{ statei(~x)→ statei+1(x1, . . . ,xk−1,e,xk+1, . . . ,xn) }

• a “skip” statement i skip; is converted to the following rule:

{ statei(~x)→ statei+1(~x) }

• an “if” statement i if(ϕ){
... · · ·
j }else{
... · · ·
k }

is converted to the following rules:

{
statei(~x)→ statei+1(~x) [ ϕ ] state j(~x)→ statek+1(~x)
statei(~x)→ state j+1(~x) [¬ϕ ] statek(~x)→ statek+1(~x)

}
• a “while” statement i while@ζ (ϕ){

... · · ·
j }

is converted to the following rules:

{
statei(~x)→ statei+1(~x) [ ϕ ] state j(~x)→ statei(~x)
statei(~x)→ state j+1(~x) [¬ϕ ]

}
For brevity, we replace statem in the final result by end. By definition, it is clear that any LCTRS obtained
from a while program by the above conversion is orthogonal.

Example 2.3 The program Psum in Example 2.2 is converted to the following LCTRS:

Rsum =



state1(x, i,z)→ state2(x,0,z)
state2(x, i,z)→ state3(x, i,0)
state3(x, i,z)→ state4(x, i,z) [ x > i ]
state3(x, i,z)→ end(x, i,z) [¬(x > i) ]
state4(x, i,z)→ state5(x, i,z+ i+1)
state5(x, i,z)→ state6(x, i+1,z)
state6(x, i,z)→ state3(x, i,z)
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Rsum is orthogonal (and thus, confluent), quasi-reductive (i.e., every ground term with a defined symbol
is reducible), and terminating. Note that termination ofRsum can be proved by e.g., Ctrl [13].

Theorem 2.4 ([9]) Let RP be the LCTRS obtained from P by the conversion in this section. For all
assignments θ ,θ ′ (for Var(P)), θ ⇒P θ ′ iff state1(~x)θ →∗RP

end(~x)θ ′.

Note that the execution of P starting with θ does not halt iff state1(~x)θ does not terminate on RP. It
follows from Theorem 2.4 that ifRP is terminating, then any execution of P halts. On the other hand, the
converse does not hold for all while programs, i.e., the conversion above does not preserve termination
of P (see, e.g., [15]).1

3 Proof Tableaux of Hoare Logic

Hoare logic is a logic to prove a Hoare triple to hold (see e.g., [18]). A triple {ϕ} P {ψ} for partial
correctness is said to hold (or P is partially correct w.r.t. pre- and post-conditions ϕ , ψ) if for any initial
state satisfying ϕ , the final state of the execution satisfies ψ whenever the execution from the initial
state halts. A triple [ϕ]P [ψ] for total correctness is said to hold (or P is totally correct w.r.t. pre- and
post-conditions ϕ , ψ) if for any initial state satisfying ϕ , the execution from the initial state halts and the
final state of the execution satisfies ψ . Note that total correctness is equivalent to partial correctness with
termination of the program under the pre-condition.

In this section, we formalize proof tableaux of Hoare triples. The aim of this paper is to transform
a proof tableau of a Hoare triple for partial correctness into an inference sequence of RI (shown in
Section 4). For this reason, we consider proof tableaux for partial correctness and we do not focus on the
construction of proof tableaux.

In the following, we consider while programs as sequences of commands connected by “;”, and we
write P as C1;C2; . . . ;Cn. Note that we consider “;” to implicitly exist at the end of “if” and “while”
statements. Bodies of “if” and “while” statements are also considered sequences of commands.

Definition 3.1 An annotated while program P is called a proof tableau if all of the following hold:

• every longest command-(sub)sequence in P has the length more than two, and the head and last
elements of the sequence are annotations, e.g., P is of the form @ϕ;C1; . . . ;Cn;@ψ (n > 0),

• for each subsequence @ϕ;@ψ of annotations, the formula ϕ =⇒ ψ is valid, and

• for each subsequence C1;C2;C3, if C2 is not an annotation, then the first and third elements C1, C3
are annotations such that

– if C2 is an assignment x := e, then C1 is C3{x 7→ e},
– if C2 is skip, then C1 and C3 are equivalent,
– if C2 is of the form if(ψ){S′}else{S′′} and C1 is of the form @ϕ , then the head of S′ is

@ϕ ∧ψ , the head of S′′ is @ϕ ∧¬ψ , and C3 and the last elements of both S′ and S′′ are
equivalent, i.e., C1;C2;C3 is of the form

@ϕ; if(ψ){@ϕ ∧ψ; . . . ; @ξ}else{@ϕ ∧¬ψ; . . . ; @ξ}; @ξ

and
1 When replacing x > i in Psum by x 6= i, the constructed LCTRSR′sum is the one obtained fromRsum by replacing x > i by

x 6= i. LCTRSR′sum is not terminating because we have an infinite reduction sequence from, e.g., state3(0,1,0).
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ϕ =⇒ ϕ ′ is valid {ϕ ′}C {ψ ′} ψ ′ =⇒ ψ is valid
{ϕ}C {ψ} {ϕ{v 7→ e}} v := e {ϕ}

{ϕ} skip {ϕ}
{ϕ}C1 {ξ} {ξ}C2 {ψ}

{ϕ}C1; C2 {ψ}
{ϕ ∧ψ}C1 {ξ} {ϕ ∧¬ψ}C2 {ξ}
{ϕ} if(ψ){C1}else{C2} {ξ}

{ζ ∧ψ}C {ζ}
{ζ} while@ζ (ψ){C} {ζ ∧¬ψ}

Figure 1: basic inference rules of Hoare logic.

A1 @ x≥ 0;
A2 @ x≥ 0∧0 = 0;

1 i := 0;
A3 @ x≥ 0∧ i = 0;
A4 @ x≥ 0∧ i = 0∧0 = 0;

2 z := 0;
A5 @ x≥ 0∧ i = 0∧ z = 0;
A6 @ z = 1

2 i(i+1)∧ x≥ i;
3 while@z = 1

2 i(i+1)∧ x≥ i (x > i){
A7 @ z = 1

2 i(i+1)∧ x≥ i∧ x > i;

A8 @ z+ i+1 = 1
2(i+1)(i+2)∧ x≥ i+1;

4 z := z+ i+1;
A9 @ z = 1

2(i+1)(i+2)∧ x≥ i+1;
5 i := i+1;

A10 @ z = 1
2 i(i+1)∧ x≥ i;

6 }
A11 @ z = 1

2 i(i+1)∧ x≥ i∧¬(x > i);
A12 @ z = 1

2 x(x+1);
7

Figure 2: an annotated while program Tsum for Psum.

– if C2 is of the form while@ζ (ϕ){S}, then C1 and the last element of the sequence S are @ζ ,
and the head element of S is @ζ ∧ϕ , and C3 is @ζ ∧¬ϕ , i.e., C1;C2;C3 is of the form

@ζ ; while@ζ (ϕ){@ζ ∧ϕ; . . . ; @ζ}; @ζ ∧¬ϕ.

Note that a proof tableau is a tableau representation of an inference tree constructed by basic inference
rules of Hoare logic illustrated in Figure 1 (see e.g., [18]).

Example 3.2 The annotated while program of Figure 2, denoted by Tsum, is a proof tableau for the Hoare
triple {x≥ 0} Psum

{
z = 1

2 x(x+1)
}

, where the original line numbers for Psum are left.

4 Rewriting Induction on LCTRSs

In this section, we recall the framework of rewriting induction (RI) for LCTRSs [8].
A constrained equation is a triple s ≈ t [ϕ ]. We may simply write s ≈ t instead of s ≈ t [ϕ ] if ϕ

is true. We write s ' t [ϕ ] to denote either s ≈ t [ϕ ] or t ≈ s [ϕ ]. A substitution γ is said to respect
s ≈ t [ϕ ] if γ respects ϕ and Var(s)∪Var(t) ⊆ Dom(γ), and to be a ground constructor substitution
if all γ(x) with x ∈ Dom(γ) are ground constructor terms. An equation s ≈ t [ϕ ] is called an inductive
theorem of an LCTRSR if sγ ↔∗R tγ for any ground constructor substitution γ that respects s≈ t [ϕ ].

As in [8], we restrict LCTRSs to be terminating and quasi-reductive. An RI-based method is to
construct an inference sequence by applying the following basic inference rules to pairs (E ,H) of finite
sets E andH of constrained equations and rewrite rules, resp.:
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EXPANSION

(E ]{s' t [ϕ ]},H) `RI (E ∪ExpdR(s≈ t [ϕ ], p),H∪{s→ t [ϕ ]})

where

• p is a basic position of s,2

• R∪H∪{s→ t [ϕ ]} is terminating, and

• ExpdR(s ≈ t [ϕ ], p) is the set of constrained equation s′ ≈ t ′ [ϕ ′ ] such that sγ ≈ tγ [ϕγ ∧
ψγ ] →1.p,`→r [ψ ] s′ ≈ t ′ [ϕ ′ ] for some renamed variant ` → r [ψ ] of a rule in R (i.e.,
Var(`,r,ψ)∩Var(s, t,ϕ) = /0) and a most general unifier γ of s|p and `.

Note that ≈ is considered a binary function symbol in constrained rewriting.

SIMPLIFICATION

(E ]{s' t [ϕ ]},H) `RI (E ∪{u≈ t [ψ ]},H)

where s [ϕ ]→R∪H u [ψ ].

DELETION

(E ]{s≈ t [ϕ ]},H) `RI (E ,H)

where s = t or ϕ is not satisfiable.

In addition to the above, we use the following inference rules:

CASESPLITTING

(E ]{s' t [ϕ ]},H) `RI (E ∪ExpdR(s≈ t [ϕ ], p),H)

where p is a basic position of s. Note that CASESPLITTING is a variant of EXPANSION without
adding s→ t [ϕ ] toH.

GENERALIZATION

(E ]{s≈ t [ϕ ]},H) `RI (E ∪{s≈ t [ψ ]},H)

where ϕ =⇒ ψ is valid. Note that this is a simpler version of the original one in [8].

A pair (E ,H) is called a process of RI. Starting with (E , /0), we apply the inference rules above to
processes of RI. If we get ( /0,H), then all the equations in E are proved to be inductive theorems ofR.

Next, we revisit the role of termination in the RI method. When we apply EXPANSION to (Ei,Hi),
we prove termination ofR∪Hi∪{s→ t [ϕ ]}. This is necessary to avoid both constructing an incorrect
inference sequence and applying SIMPLIFICATION infinitely many times. However, from theoretical
viewpoint, it suffices to prove termination of R∪H after constructing an inference sequence (E , /0) `RI

· · · `RI ( /0,H). In this paper, we drop termination of R∪H∪{s→ t [ϕ ]} from the side condition of
EXPANSION. Due to this relaxation, a constructed inference sequence does not always ensure that E is
a set of inductive theorems of R. For this reason, we introduce the notion of valid inference sequences.
An inference sequence (E , /0) `RI · · · `RI ( /0,H) is called valid ifR∪H is terminating.

Theorem 4.1 ([8]) Let R be an LCTRS and E a finite set of equations. If we have a valid inference
sequence (E , /0) `RI · · · `RI ( /0,H), then every equation in E is an inductive theorem ofR.

2 A position of p of term s is basic if s|p is of the form f (s1, . . . ,sn) with f a defined symbol and s1, . . . ,sn constructor terms.
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5 Transforming a Proof Tableau into an Inference Sequence of RI

In this section, using the proof tableau Tsum, we first illustrate a transformation of a proof tableau into an
inference sequence of RI, and then formalize the transformation.

5.1 Overview

Let us recall the LCTRSRsum in Example 2.2 and the proof tableau Tsum in Figure 2. To verify the post-
condition after the execution of Psum, we prepare the following rules with a new symbol chk : state⇒
bool:

R′check =

{
chk(end(x, i,z))→ true [ z = 1

2x(x+1) ]
chk(end(x, i,z))→ false [¬(z = 1

2x(x+1)) ]

}
We let R1 =Rsum∪R′check. To prove the Hoare triple {x≥ 0} Psum

{
z = 1

2 x(x+1)
}

to hold, it suffices
to consider initial states satisfying the pre-condition x≥ 0, and thus, we prove the following equation an
inductive theorem ofR1:

(A1) chk(state1(x, i,z))≈ true [x≥ 0 ]

It is clear thatR1 is quasi-reductive.
From now on, we transform the proof tableau Tsum into an inference sequence of RI for R1 in a

top-down fashion. The construction is independent of termination of R1 with generated rules, and thus
the construction itself does not ensure validity of the resulting inference sequence.

We start with the initial process ({ (A1) }, /0). Line A2 of Tsum is an assertion @x≥ 0∧ 0 = 0 and
the validity of x≥ 0 =⇒ x≥ 0∧0 = 0 is guaranteed by the fact that Tsum is a proof tableau. Using the
validity, we can generalize (A1) by applying GENERALIZATION to the above process:

({ (A2) chk(state1(x, i,z))≈ true [x≥ 0∧0= 0 ]} , /0)

Let us recall the inference rule of assignment in Hoare logic (Figure 1). For an assignment xk :=
e on line j, a rewrite rule state j(~x)→ state j+1(x1, . . . ,xk−1,e,xk+1, . . . ,xn) is generated, and thus, we
have the derivation state j(~x) [ϕ{xk 7→ e} ]→R state j+1(~x) [ϕ ] because state j(~x) [ϕ{xk 7→ e} ]→base

state j+1(x1, . . . ,xk−1,e,xk+1, . . . ,xn) [ϕ{xk 7→ e} ] ∼ state j+1(~x) [ϕ ]. Line 1 of Tsum is an assignment
i := 0, and hence, state1(x, i,z) [x≥ 0∧0= 0 ]→R1 state2(x, i,z) [x≥ 0∧ i = 0 ]. Thus, we can simplify
(A2) by applying SIMPLIFICATION to the above process:

({ (A3) chk(state2(x, i,z))≈ true [x≥ 0∧ i = 0 ]} , /0)

Line A4 of Tsum is @x≥ 0∧ i = 0∧0 = 0 and we can generalize (A3) by applying GENERALIZATION:

({ (A4) chk(state2(x, i,z))≈ true [x≥ 0∧ i = 0∧0= 0 ]} , /0)

Line 2 of Tsum is an assignment z := 0, and we can simplify (A4) by applying SIMPLIFICATION:

({ (A5) chk(state3(x, i,z))≈ true [x≥ 0∧ i = 0∧ z = 0 ]} , /0)

Line A6 of Tsum is @z = 1
2 i(i+1)∧ x≥ i and we can generalize (A5) by applying GENERALIZATION:({

(A6) chk(state3(x, i,z))≈ true [z = 1
2 i(i+1)∧ x≥ i ]

}
, /0
)
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Line 3 of Tsum is a “while” statement. At this point, we have two branches: the one entering the
loop (i.e., executing the body of the loop) and the other exiting the loop. For the case analysis, we apply
EXPANSION to (A6), getting the following two equations and one oriented equation:({

(A7) chk(state4(x, i,z))≈ true [ z = 1
2 i(i+1)∧ x≥ i∧ x > i ]

(A11) chk(end(x, i,z))≈ true [z = 1
2 i(i+1)∧ x≥ i∧¬(x > i) ]

}
,{ (A6) }

)
where (A6) is oriented from left to right. The first equation represents the case where the loop body is
executed, and the second one represents the case where we exit from the loop.

Line A8 of Tsum is an assertion and we can generalize (A7) by applying GENERALIZATION:({
(A8) chk(state4(x, i,z))≈ true [z+ i+1= 1

2(i+1)(i+2)∧ x≥ i+1 ], (A11)
}
,{ (A6) }

)
Line 4 of Tsum is an assignment z := z+ i+1 and we can simplify (A8) by applying SIMPLIFICATION:({

(A9) chk(state5(x, i,z))≈ true [z = 1
2(i+1)(i+2)∧ x≥ i+1 ], (A11)

}
,{ (A6) }

)
Line 5 of Tsum is an assignment i := i+1 and we can simplify (A9) by applying SIMPLIFICATION:({

(A10) chk(state6(x, i,z))≈ true [z = 1
2 i(i+1)∧ x≥ i ], (A11)

}
,{ (A6) }

)
Line 6 of Tsum is the end of the loop and we can apply the rule state6(x, i,z)→ state3(x, i,z) that makes
the left-hand side of (A10) go back to the beginning of the loop. Thus, we can simplify (A10):({

(B1) chk(state3(x, i,z))≈ true [z = 1
2 i(i+1)∧ x≥ i ], (A11)

}
,{ (A6) }

)
The equation (B1) means that we reach the beginning of the loop after the one execution of the body.
Moreover, (B1) is the same as (A6) due to the loop invariant, and hence the induction hypothesis (A6) is
applicable to (B1). Thus, we can simplify (B1) by applying SIMPLIFICATION to the above process with
rule (A6) chk(state3(x, i,z))→ true [z = 1

2 i(i+1)∧ x≥ i ]:({
(B2) true≈ true [z = 1

2 i(i+1)∧ x≥ i ], (A11)
}
,{ (A6) }

)
The both sides of (B2) are equivalent and we can delete (B2) by applying DELETION:({

(A11) chk(end(x, i,z))≈ true [z = 1
2 i(i+1)∧ x≥ i∧¬(x > i) ]

}
,{ (A6) }

)
The remaining equation (A11) represents the state after exiting the loop. The last line of Tsum is an

assertion corresponding to the post-condition. Due to the validity of z = 1
2 i(i+1)∧x≥ i∧¬(x > i) =⇒

z = 1
2 x(x+1), we can generalize (A11) by applying GENERALIZATION:({

(B3) chk(end(x, i,z))≈ true [z = 1
2x(x+1) ]

}
,{ (A6) }

)
The constraints of (B3) and the post-condition of Tsum are equivalent and we can apply the first rule of
R′check to the left-hand side of (B3) in order to verify the post-condition. Thus, we can simplify (B3)
by applying SIMPLIFICATION with rule chk(end(x, i,z))→ true [z = 1

2x(x+ 1) ] in R′check to the above
process: ({

(B4) true≈ true [z = 1
2x(x+1) ]

}
,{ (A6) }

)
The both sides of (B4) are equivalent and we can delete (B4) by applying DELETION:

( /0,{ (A6) })

In the above illustration, we did not show the case of “if” statements. However, the missing case is a
simpler one of “while” statements, where we use CASESPLITTING instead of EXPANSION.

Finally, we show that R1∪{ (A6) } is terminating. Since any term with sort state or bool does not
appear inRsum as a proper subterm,R′check∪{ (A6) } does not introduce non-termination intoRsum. As
described before,Rsum is terminating and henceR1∪{ (A6) } is so.
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5.2 Formalization

In this section, we formalize the idea illustrated in the previous section. In the following, we consider

• a while program P such that Var(P) = {x1, . . . ,xn},

• a proof tableau TP for a Hoare triple {ϕP} P {ψP},3 and

• the LCTRSRP obtained from P by the conversion in Section 2.3.

We denote the sequence x1, . . . ,xn by ~x. Unlike previous sections, we specify line numbers for TP, and
reuse them in converting P to RP. For this reason, the function symbol to represent initial states is not
state1 but statei0 for some i0 > 1. Notice that the pre-condition ϕP is on line 1 of TP as an assertion. For
readability, we use start as a meta symbol that stands for statei0 .

To check whether the final state of the execution of P satisfies the post-condition ψP, we prepare the
following rules:

Rcheck =

{
chk(end(~x))→ true [ ψP ]
chk(end(~x))→ false [¬ψP ]

}
where chk : state⇒ bool. Then, to verify the Hoare triple {ϕP} P {ψP}, we prepare the following
constrained equation:

chk(start(~x))≈ true [ϕP ]

In the following, we denote the above equation by eP.
By definition,RP∪Rcheck has the following properties.

Lemma 5.1 All of the following hold:

(a) RP∪Rcheck is orthogonal.

(b) IfRP is terminating, thenRP∪Rcheck is so.

Proof. We first prove (a). As described in Section 2.3, RP is orthogonal. By definition, Rcheck is
orthogonal. Rcheck has no defined symbol ofRP and thus,Rcheck does not generate any overlap withRP.
Therefore,RP∪Rcheck is orthogonal.

Next, we prove (b). Assume that RP is terminating but RP ∪Rcheck is not. Then, there exists an
infinite reduction sequence of RP∪Rcheck. Due to the sort of chk, the infinite reduction sequence starts
with a term of the form statei(~t), and any rule of Rcheck is not used in the reduction sequence. This
means that the infinite reduction sequence is caused byRP. This contradicts the assumption. �

The equation eP has the following property.

Theorem 5.2 If eP is an inductive theorem of RP∪Rcheck, then {ϕP} P {ψP} holds.

Proof. Let θ be an assignment for Var(P). Assume that ϕPθ holds and the execution of P starting
with θ halts with an assignment θ ′, i.e., θ ⇒P θ ′. Then, it follows from Theorem 2.4 that start(~x)θ →∗RP

end(~x)θ ′, and hence chk(start(~x))θ→∗RP
chk(end(~x))θ ′. Since ϕPθ holds and eP is an inductive theorem

of RP ∪Rcheck, we have that chk(start(~x))θ ↔∗RP∪Rcheck
true. Since RP ∪Rcheck is orthogonal (i.e.,

confluent) by Lemma 5.1 (a), we have that chk(start(~x))θ →∗RP∪Rcheck
true and hence chk(end(~x))θ ′ has

to reduce to true. This means that ψPθ ′ holds. Therefore, {ϕP} P {ψP} holds. �

3 Note that P is the same as the while program obtained from TP by removing assertions.
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Theorem 5.2 enables us to prove {ϕP} P {ψP} to hold by showing that eP is an inductive theorem of
RP∪Rcheck. Note that the converse of Theorem 5.2 holds if P is terminating.

Next, we formalize the transformation shown in Section 5.1. We first prepare a function Trans1 that
takes a suffix T of proof tableau TP and finite sets E and H of equations and rewrite rules, resp., and
returns a suffix T ′ of T , and finite sets E ′ andH′ of equations and rewrite rules, resp.: Trans1(T,E ,H) =
(T ′,E ′,H′). For readability, we use visualized notations for suffixes of proof tableaux, e.g.,

i @ϕ;
i+1 @ψ;

...
...

for @ϕ; @ψ; . . . such that the first element @ϕ is located on line i. We assume that any equation in
E is of the form chk(state j(~t)) ≈ true [ϕ ] or chk(end(~t)) ≈ true [ϕ ], and then we define Trans1 so as
to make E ′ a set of such equations. Following the definition of proof tableaux, the function Trans1 is
defined as follows:
• (two continuous assertions)

Trans1(

i @ϕ;
i+1 @ψ;

...
...

, { chk(state j(~x))≈ true [ϕ ] }]E ,H)

= (
i+1 @ψ;

...
...

,{ chk(state j(~x))≈ true [ψ ] }∪E ,H)

Note that i> j. This case corresponds to the application of GENERALIZATION to ({ chk(state j(~x))
≈ true [ψ ] }]E ,H).
• (assignments)

Trans1(

i @ϕ;
i+1 xk := e;
i+2 @ψ;

...
...

, { chk(statei+1(~x))≈ true [ϕ ] }]E ,H)

= (
i+2 @ψ;

...
...

,{ chk(state j(~x))≈ true [ψ ] }∪E ,H)

where statei+1(. . . ,xk, . . .)→ state j(. . . ,e, . . .) ∈ RP. Note that ϕ = ψ{xk 7→ e}, j > i+ 1, and
statei+1(~x) [ϕ ]→RP state j(~x) [ψ ].4 This case corresponds to the application of SIMPLIFICATION

to ({ chk(statei+1(~x))≈ true [ϕ ] }]E ,H).
• (the beginning of “while” statements)

Trans1(

i @ζ ;
i+1 while@ξ (ϕ){
i+2 @ζ ∧ϕ;

...
...

, { chk(statei+1(~x))≈ true [ζ ] }]E ,H)

= (
i+2 @ζ ∧ϕ;

...
...

,

{
chk(state j(~x))≈ true [ ζ ∧ϕ ]
chk(statek(~x))≈ true [ζ ∧¬ϕ ]

}
∪E ,

{ chk(statei+1(~x))→ true [ζ ] }∪H)
4 This is because statei+1(~x) [ϕ ] = statei+1(~x) [ψ{xk 7→ e} ] →base state j(x1, . . . ,xk−1,e,xk+1, . . . ,xn) [ψ{xk 7→ e} ] ∼

state j(~x) [ψ ].
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where statei+1(~x)→ state j(~x) [ϕ ],statei+1(~x)→ statek(~x) [¬ϕ ] ∈ RP. Note that i+ 1 < j < k.
This case corresponds to the application of EXPANSION to ({ chk(statei+1(~x)) ≈ true [ζ ] } ]
E ,H).
• (the end of “while” statements)

Trans1(

i @ζ ;
i+1 }
i+2 @ζ ∧¬ϕ;

...
...

, { chk(statei+1(~x))≈ true [ζ ] }]E ,H) = (
i+2 @ζ ∧¬ϕ;

...
...

,E ,H)

where statei+1(~x)→ state j(~x) ∈ RP, chk(state j(~x))→ true [ζ ] ∈ H, and j < i+ 1. This case
corresponds to the application of SIMPLIFICATION with rule statei+1(~c)→ state j(~x) ∈RP, SIM-
PLIFICATION with rule chk(state j(~x))→ true [ζ ] ∈H, and DELETION:

({chk(statei+1(~x))≈ true [ζ ]}∪E ,H) `RI ({chk(state j(~x))≈ true [ζ ]}∪E ,H)
`RI ({true≈ true [ζ ]}∪E ,H)
`RI (E ,H)

• (the beginning of “if” statements)

Trans1(

i @ϕ;
i+1 if(ψ){
i+2 @ϕ ∧ψ;

...
...

, { chk(statei+1(~x))≈ true [ϕ ] }]E ,H)

= (
i+2 @ϕ ∧ψ;

...
...

,

{
chk(state j(~x))≈ true [ ϕ ∧ψ ]
chk(statek(~x))≈ true [ϕ ∧¬ψ ]

}
∪E ,H)

where statei+1(~x)→ state j(~x) [ψ ],statei+1(~x)→ statek(~x) [¬ψ ] ∈ RP. Note that i+1 < j < k.
This case corresponds to the application of CASESPLITTING to ({ chk(statei+1(~x))≈ true [ϕ ] }]
E ,H).
• (the beginning of “else” statements)

Trans1(

i @ξ ;
i+1 }else{
i+2 @ϕ ∧¬ψ;

...
...

,

{
chk(statei+1(~x))≈ true [ ξ ]
chk(state j(~x))≈ true [ϕ ∧¬ψ ]

}
]E ,H)

= (
i+2 @ϕ ∧¬ψ;

...
...

,

{
chk(statek(~x))≈ true [ ξ ]
chk(state j(~x))≈ true [ϕ ∧¬ψ ]

}
∪E ,H)

where statei+1(~x)→ statek(~x) ∈ RP. Note that i+2 < j < k. This case corresponds to the appli-
cation of SIMPLIFICATION to ({ chk(statei+1(~x))≈ true [ξ ], chk(state j(~x))≈ true [ϕ ∧¬ψ ] }]
E ,H).
• (the end of “if” statements)

Trans1(

i @ξ ;
i+1 }
i+2 @ξ ;

...
...

,

{
chk(statek(~x))≈ true [ξ ]

chk(statei+1(~x))≈ true [ξ ]

}
]E ,H)

= (
i+2 @ξ ;

...
...

,{ chk(statek(~x))≈ true [ξ ] }∪E ,H)
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where statei+1(~x)→ statek(~x) ∈ RP and i+ 1 < k. This case corresponds to the application of
SIMPLIFICATION to ({ chk(statek(~x))≈ true [ξ ], chk(statei+1(~x))≈ true [ξ ] }]E ,H).

• (the end of tableaux)

Trans1( i @ϕ; , { chk(end(~x))≈ true [ϕ ] }]E ,H) = (ε,E ,H)

Note that the last element of TP is @ψP and thus, ϕ = ψP. Note also that chk(end(~x)) →
true [ψP ] ∈Rcheck. This case corresponds to the application of SIMPLIFICATION and DELETION:

({chk(end(~x))≈ true [ϕ ]}∪E ,H) `RI ({true≈ true [ϕ ]}∪E ,H) `RI (E ,H)

By by the definition of proof tableaux and Trans1, Trans1 satisfies the following properties.

Lemma 5.3 If Trans1(T,E ,H) = (T ′,E ′,H′), then (a) (E ,H) `∗RI (E ′,H′), and (b) if T ′ 6= ε , then Trans1
is applicable to (T ′,E ′,H′).

Next, we define a function Trans that applies Trans1 to (TP,{eP}, /0) as much as possible, returning a
list of RI processes:

• Trans(ε,E ,H) = (E ,H), and

• Trans(T,E ,H) = (E ,H),Trans(T ′,E ′,H′) where T 6= ε and Trans1(T,E ,H) = (T ′,E ′,H′).5

By definition and Lemma 5.3, Trans satisfies the following properties.

Lemma 5.4 Trans(TP,{eP}, /0) returns a finite sequence of RI processes.

Proof. The first argument of Trans is a proof tableau and the length is decreasing when Trans is recur-
sively called. It follows from Lemma 5.3 (b) that Trans calls Trans1 until the first argument (suffixes of
TP) becomes ε . Therefore, Trans halts, returning a finite sequence of RI processes. �

Lemma 5.5 Let the result of Trans(TP,{eP}, /0) be a sequence (E1,H1),(E2,H2), . . . ,(En,Hn). Then,
({eP}, /0) = (E1,H1) `∗RI (E2,H2) `∗RI · · · `∗RI (En,Hn) = ( /0,Hn).

Proof. By definition, it is clear that the head of the resulting sequence is ({eP}, /0). The last call of
Trans takes ε as the first argument, and thus the last call of Trans1 returns (ε,En,Hn). In the case of
the beginning of “while” or “if” statements, Trans1 adds an equation to the second argument, and in the
case of the end of “while” or “if” statements, Trans1 removes an equation from the second argument.
This means that in the case of the end of TP, the number of remaining equations is one, i.e., |En−1| = 1.
It follows from the last application Trans1(. . . ,En−1,Hn−1) = (ε,En,Hn) that En−1 = {chk(end(~x)) ≈
true [ψP ]} and En = /0. It follows from Lemma 5.3 (a) that (Ei,Hi) `∗RI (Ei+1,Hi+1) for all 1 ≤ i < n.
Therefore, this lemma holds. �

Finally, we show that termination of RP implies both termination of RP∪Rcheck ∪H and total cor-
rectness of P w.r.t. ϕP and ψP. Let Trans(TP,{eP}, /0) = ({eP}, /0), . . . ,( /0,H). We have already shown
that termination of RP implies termination of RP∪Rcheck (Lemma 5.1 (b)). Thus, we show that termi-
nation of RP implies termination of RP ∪Rcheck ∪H. Since the right-hand sides of oriented equations
inH are always true,H is always terminating and does not introduce non-termination intoRP∪Rcheck.
This means that ifRP∪Rcheck is terminating, then so isRP∪Rcheck∪H.

5 The result of Trans(T,E ,H) is a sequence “(E ,H),Trans(T ′,E ′,H′)” that has (E ,H) as its head element.
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Theorem 5.6 IfRP is terminating, thenRP∪Rcheck∪H is so.

As a consequence of Lemma 5.5 and Theorem 5.6, we have the following result.

Theorem 5.7 If RP is terminating, then ({eP}, /0) `∗RI · · · `∗RI ( /0,H) is valid, and thus, [ϕP]P [ψP] holds
(i.e., P is totally correct w.r.t. ϕP and ψP).

Theorem 5.7 means that if {ϕP} P {ψP} is proved to hold (via TP), then (1) there exists an inference
sequence of RI, and (2) if RP is terminating, then [ϕP] P [ψP] can be proved to hold without using
inference rules for proving total correctness.

6 Conclusion

In this paper, we showed that a proof tableau for partial correctness can be transformed into an inference
sequence of RI, and also showed that if the corresponding LCTRS is terminating, then the inference
sequence is valid and the program is totally correct w.r.t. the specified pre- and post-conditions. Our
result indicates that if we can prove partial correctness of a program by Hoare logic, then there exists a
way to prove it by RI. However, this does not mean that RI is better than Hoare logic. From the idea of
the transformation, we may apply RI to the initial equation such as (A1) instead of constructing a proof
tableau for a given Hoare triple. Unfortunately, Ctrl [13], an RI tool for LCTRSs, did not succeed in
automatically proving (A1) an inductive theorem ofR1.

Hoare logic often requires appropriate loop invariants, but once finding such invariants, we can con-
struct a proof tableau in a deterministic way. On the other hand, there must be several inference sequences
of RI, and for automation, RI requires an appropriate strategy for the application of inference rules. In
addition to the strategy, to apply GENERALIZATION in this paper, we have to, given a constraint ϕ , find
an appropriate formula ψ such that ϕ =⇒ ψ is valid and ψ makes the later inference succeed. In
Section 5.1, we had the proof tableau Tsum with an appropriate loop invariant, and thus, we could apply
GENERALIZATION, succeeding in transforming Tsum into a valid inference sequence of RI. However, this
is not always possible. For this reason, it is worth improving tools for RI so as to directly prove (A1) an
inductive theorem ofR1.

It would be possible to transform a proof tableaux for total correctness, which includes ranking
functions in loop invariants, into an inference sequence of RI. However, it is not clear how to use ranking
functions to prove termination of the corresponding LCTRS. Recall that termination of programs is not
preserved by the conversion to LCTRSs. For this reason, there is a program such that there exists a
ranking function to ensure termination of the program but the corresponding LCTRS is not terminating.
On the other hand, to prove validity of the converted inference sequence of RI, we can use techniques for
proving termination of LCTRSs, which are based on techniques developed well for term rewriting. The
transformation of proof tableaux for partial correctness into inference sequences of RI enables us to use
such techniques instead of finding appropriate ranking functions for all loops in given programs. The use
of techniques to prove termination is one of the advantages of the transformation.

As future work, we will transform some inference sequences of RI into proof tableaux of Hoare logic
in order to compare RI with Hoare logic. For inference sequences of RI, we sometimes need a lemma
equation that is helpful to use induction, but it is not easy to find an appropriate lemma equation. For this
reason, we expect the transformation between proof tableaux of Hoare logic and inference sequences of
RI to help us to develop and improve a technique for lemma generation.
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