
H. Cirstea, S. Escobar (Eds.): Third International Workshop on Rewriting
Techniques for Program Transformations and Evaluation (WPTE’16).
EPTCS 235, 2017, pp. 1–15, doi:10.4204/EPTCS.235.1

c© B. Accattoli
This work is licensed under the
Creative Commons Attribution License.

The Complexity of Abstract Machines

Beniamino Accattoli
INRIA & LIX, École Polytechnique

beniamino.accattoli@inria.fr

Theλ -calculus is a peculiar computational model whose definition does not come with a notion of
machine. Unsurprisingly, implementations of theλ -calculus have been studied for decades. Abstract
machines are implementations schema for fixed evaluation strategies that are a compromise between
theory and practice: they are concrete enough to provide a notion of machine and abstract enough to
avoid the many intricacies of actual implementations. There is an extensive literature about abstract
machines for theλ -calculus, and yet—quite mysteriously—the efficiency of these machines with
respect to the strategy that they implement has almost neverbeen studied.

This paper provides an unusual introduction to abstract machines, based on the complexity of
their overhead with respect to the length of the implementedstrategies. It is conceived to be a
tutorial, focusing on the case study of implementing the weak head (call-by-name) strategy, and yet
it is an original re-elaboration of known results. Moreover, some of the observation contained here
never appeared in print before.

1 Cost Models & Size-Explosion

Theλ -calculus is an undeniably elegant computational model. Its definition is given by three constructors
and only one computational rule, and yet it is Turing-complete. A charming feature is that it does not
rest on any notion of machine or automaton. The catch, however, is that its cost model are far from being
evident. What should be taken as time and space measures for the λ -calculus? The natural answers
are the number of computational steps (for time) and the maximum size of the terms involved in a
computation (for space). Everyone having played with theλ -calculus would immediately point out
a problem: theλ -calculus is a nondeterministic system where the number of steps depends much on
the evaluation strategy, so much that some strategies may diverge when others provide a result (but
fortunately the result, if any, does not depend on the strategy). While this is certainly an issue to address,
it is not the serious one. The big deal is calledsize-explosion, and it affects all evaluation strategies.

Size-Explosion. There are families of terms where the size of then-th term is linear inn, evaluation
takes a linear number of steps, but the size of the result is exponential inn. Therefore, the number of
steps does not even account for the time to write down the result, and thus at first sight it does not look
as a reasonable cost model. Let’s see examples.

The simplest one is a variation over the famous loopingλ -termΩ := (λx.xx)(λx.xx) →β Ω →β
In Ω there is an infinite sequence of duplications. In the first size-exploding family there is a sequence of
n nested duplications. We define both the family{tn}n∈N of size-exploding terms and the family{un}n∈N

of results of the evaluation

t0 := y u0 := y
tn+1 := (λx.xx)tn un+1 := unun

We use|t| for the size of a term,i.e. the number of symbols to write it, and say that a term isneutral
if it is normal and it is not an abstraction.

http://dx.doi.org/10.4204/EPTCS.235.1
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 The Complexity of Abstract Machines

Proposition 1.1(Open and Rightmost-Innermost Size-Explosion). Let n∈N. Then tn →n
β un, moreover

|tn|= O(n), |un|= Ω(2n), and un is neutral.

Proof. By induction onn. The base case is immediate. The inductive case:tn+1 = (λx.xx)tn →n
β

(λx.xx)un →β unun = un+1, where the first sequence is obtained by thei.h. The bounds on the sizes
are immediate, as well as the fact thatun+1 is neutral.

Strategy-Independent Size-Explosion. The example relies on rightmost-innermost evaluation (i.e.
the strategy that repeatedly selects the rightmost-innermost β -redex) and open terms (the free variable
t0 = y). In fact, evaluating the same family in a leftmost-outermost way would produce an exponentially
long evaluation sequence. One may then believe that size-explosion is a by-product of a clumsy choice
for the evaluation strategy. Unfortunately, this is not thecase. It is not hard to modify the example as to
make it strategy-independent, and it is also easy to get rid of open terms. Let the identity combinator be
I := λz.z (it can in fact be replaced by any closed abstraction). Define

r1 := λx.λy.(yxx) p0 := I

rn+1 := λx.(rn(λy.(yxx))) pn+1 := λy.(ypnpn)

The size-exploding family is{rnI}n∈N, i.e. it is obtained by applyingrn to the identityI = p0. The
statement we are going to prove is in fact more general, aboutrnpm instead of justrnI , in order to obtain
a simple inductive proof.

Proposition 1.2(Closed and Strategy-Independent Size-Explosion). Let n>0. Then rnpm→n
β pn+m, and

in particular rnI →n
β pn. Moreover,|rnI |= O(n), |pn|= Ω(2n), rnI is closed, and pn is normal.

Proof. By induction onn. The base case:r1pm= λx.λy.(yxx)pm →β (λy.(ypmpm)) = pm+1. The induc-
tive case:rn+1pm = λx.(rn(λy.(yxx)))pm →β rn(λy.(ypmpm)) = rnpm+1 →

n
β pn+m+1, where the second

sequence is obtained by thei.h. The rest of the statement is immediate.

The family {rnI}n∈N is interesting because no matter how one looks at it, it always explodes: if
evaluation is weak (i.e. it does not go under abstraction) there is only one possible derivation to normal
form and if it is strong (i.e. unrestricted) all derivations have the same length (and arepermutatively
equivalent). To our knowledge this family never appeared inprint before.

2 The λ -Calculus is Reasonable, Indeed

Surprisingly, the isolation and the systematic study of thesize-explosion problem is quite recent—there
is no trace of it in the classic books on theλ -calculus, nor in any course notes we are aware of. Its
essence, nonetheless, has been widespread folklore for a long time: in practice, functional languages
never implement fullβ -reduction, considered a costly operation, and theoretically the λ -calculus is usu-
ally considered a model not suited for complexity analyses.

A way out of the issue of cost models for theλ -calculus, at first sight, is to take the time and
space required for the execution of aλ -term in a fixed implementation. There is however no canonical
implementation. The design of an implementation in fact rests on a number of choices. Consequently,
there are a number of different but more or less equivalent machines taking a different number of steps
and using different amounts of space to evaluate a term. Fixing one of them would be arbitrary, and,
most importantly, would betray the machine-independent spirit of the λ -calculus.

B. Accattoli 3

Micro-Step Operational Semantics. Luckily, the size-explosion problem can be solved in a machine-
independent way. Somewhat counterintuitively, in fact, the number ofβ -steps can be taken as a rea-
sonable cost model. The basic idea is simple: one has to step out of theλ -calculus, by switching to a
different setting thatmimicsβ -reduction without literally doing it, acting oncompact representationsof
terms to avoid size-explosion. Essentially, the recipe requires four ingredients:

1. Statics: λ -terms are refined with a form ofsharingof subterms;

2. Dynamics: evaluation has to manipulate terms with sharing viamicro-operations;

3. Cost: these micro-step operations have constant cost;

4. Result: micro-evaluation stops on ashared representation of the result.

The recipe leaves also some space for improvisation:λ -calculus can in fact be enriched withfirst-class
sharing in various ways. Mainly, there are three approaches:abstract machines, explicit substitutions,
andgraph rewriting. They differ in the details but not in the essence—they can begrouped together
under the sloganmicro-step operational semantics.

Reasonable Strategies. An evaluation strategy→ for theλ -calculus isreasonableif there is a micro-
step operational semanticsM mimicking→ and such that the number of micro-steps to evaluate a term
t is polynomial in the number of→-steps to evaluatet (and in the size oft, we will come back to this
point later on). If a strategy→ is reasonable then its length is a reasonable cost model, despite size-
explosion: the idea is that theλ -calculus is kept as anabstractmodel, easy to define and reason about,
while complexity-concerned evaluation is meant to be performed at the more sophisticated micro-step
level, where the explosion cannot happen.

Of course, the design of a reasonable micro-step operational semantics depends much on the strategy
and the chosen flavor of micro-steps semantics, and it can be far from easy. Forweakstrategies—used
to model functional programming languages—reasonable micro-steps semantics are based on a simple
form of sharing. The first result about reasonable strategies was obtained by Blelloch and Greiner in 1995
[11] and concerns indeed a weak strategy, namely the call-by-value one. At the micro-step level it relies
on abstract machines. Similar results were then proved again, independently, by Sands, Gustavsson, and
Moran in 2002 [13] and by Dal Lago and Martini in 2006 [12]. Forstrongstrategies—at work in proof
assistant engines—quite more effort and care are required.A sophisticated second-level of sharing, called
useful sharing, is necessary to obtain reasonable micro-step semantics for strong evaluation. The first
such semantics has been introduced by Accattoli and Dal Lagoin 2014 [10] for the leftmost-outermost
strategy, and its study is still ongoing [7, 2].

The Complexity of Abstract Machines. To sum up, various techniques, among which abstract ma-
chines, can be used to prove that the number ofβ -steps is a reasonable time cost model,i.e. a metric for
time complexity. The study can then be reversed, exploring how to use this metric to study the relative
complexity of abstract machines, that is, the complexity ofthe overhead of the machine with respect
to the number ofβ -steps. Such a study leads to a new quantitative theory of abstract machines, where
machines can be compared and the value of different design choices can be measured. The rest of the
paper provides a gentle introduction to the basic concepts of the new complexity-aware theory of ab-
stract machines being developed by the author in joint works[3, 6, 4, 7, 2] with Damiano Mazza, Pablo
Barenbaum, and Claudio Sacerdoti Coen, and resting on toolsand concepts developed beforehand in
collaborations with Delia Kesner [9] and Ugo Dal Lago [8], aswell as Kesner plus Eduardo Bonelli and
Carlos Lombardi [5].

4 The Complexity of Abstract Machines

Case Study: Weak Head Strategy. The paper focuses on a case study, the weak head (call-by-name)
strategy, also known as weak head reduction (we usereductionandstrategyas synonymous, and prefer
strategy), and defined as follows:

(rootβ)

(λx.t)u→wh t{x�u}
t →wh u

(@l)
tr →wh ur (1)

This is probably the simplest possible evaluation strategy. Of course, it is deterministic. Let us mention
two other ways of defining it, as they will be useful in the sequel. First, the given inductive definition
can be unfolded into a single synthetic rule(λx.t)ur1 . . . rk →wh t{x�u}r1 . . . rk. Second, the strategy can
be given via evaluation contexts: defineE := 〈·〉 | Er and define→wh asE〈(λx.t)u〉 →wh E〈t{x�u}〉
(whereE〈t〉 is the operation of pluggingt in the contextE, consisting in replacing the hole〈·〉 with t).

Sometimes, to stress the modularity of the reasoning, we will abstract the weak head strategy into a
generic strategy→. Last, aderivationis a possibly empty sequence of rewriting steps.

3 Introducing Abstract Machines

Tasks of Abstract Machines. An abstract machine is an implementation schema for an evaluation
strategy→ with sufficiently atomic operations and without too many details. A machine for→ accounts
for 3 tasks:

1. Search: searching for→-redexes;

2. Substitution: replace meta-level substitution with an approximation based on sharing;

3. Names: take care ofα-equivalence.

Dissecting Abstract Machines. To guide the reader through the different concepts to designand an-
alyze abstract machines, the next two subsections describein detail two toy machines that address in
isolation the first two mentioned tasks,searchandsubstitution. They will then be merged into the Milner
Abstract Machine (MAM). In Sect. 7 we will analyze the complexity of the MAM. Next, we will address
namesand describe the Krivine Abstract Machine, and quickly study its complexity.

Abstract Machines Glossary.

• An abstract machineM is given bystates, noteds, andtransitionsbetween them, noted ;

• A state is given by thecode under evaluationplus somedata-structuresto implementsearchand
substitution, and to take care ofnames;

• The code under evaluation, as well as the other pieces of codescattered in the data-structures, are
λ -termsnot considered moduloα-equivalence;

• Codes are over-lined, to stress the different treatment ofα-equivalence;

• A codet is well-namedif x may occur only inu (if at all) for every sub-codeλx.u of t;

• A states is initial if its code is well-named and its data-structures are empty;

• Therefore, there is a bijection·◦ (up to α) between terms and initial states, calledcompilation,
sending a termt on the initial statet◦ on a well-named codeα-equivalent tot;

• An executionis a (potentially empty) sequence of transitionss′ ∗ sfrom an initial states′ obtained
by compiling a(n initial) termt0;

B. Accattoli 5

• A states is reachableif it can be obtained as the end state of an execution;

• A states is final if it is reachable and no transitions apply tos.

• A machine comes with a map· from states to terms, calleddecoding, that on initial states is the
inverse (up toα) of compilation;

• A machineM has a set ofβ -transitionsthat are meant to be mapped toβ -redexes (and whose name
involvesβ) by the decoding, while the remainingoverhead transitionsare mapped on equalities;

• We use|ρ | for the length of an executionρ , and|ρ |β for the number ofβ -transitions inρ .

Implementations. For every machine one has to prove that it correctly implements the strategy it was
conceived for. Our notion, tuned towards complexity analyses, requires a perfect match between the
number ofβ -steps of the strategy and the number ofβ -transitions of the machine execution.

Definition 3.1 (Machine Implementation). A machineM implements a strategy→ onλ -terms when given
a λ -term t the following holds

1. Executions to Derivations: for anyM-executionρ : t◦ ∗
M

s there exists a→-derivation d: t →∗ s.

2. Derivations to Executions: for every→-derivation d: t →∗
wh u there exists aM-executionρ : t◦ ∗

M
s

such that s= u.

3. β -Matching: in both previous points the number|ρ |β of β -transitions inρ is exactly the length|d|
of the derivation d,i.e. |d|= |ρ |β .

Note that if a machine implements a strategy than the two areweakly bisimilar, where weakness is
given by the fact that overhead transitions do not have an equivalent on the calculus (hence their name).
Let us point out, moreover, that theβ -matching requirement in our notion of implementation is unusual
but perfectly reasonable, as all abstract machines we are aware of do satisfy it.

4 The Searching Abstract Machine

Strategies are usually specified through inductive rules asthose in (1). The inductive rules incorporate in
the definition the search for the next redex to reduce. Abstract machines make such a search explicit and
actually ensure two related subtasks:

1. Store the current evaluation context in appropriatedata-structures.

2. Searchincrementally, exploiting previous searches.

For weak head reduction the search mechanism is basic. The data structure is simply a stackπ storing
the arguments of the current head subterm.

Searching Abstract Machine. The searching abstract machine (Searching AM) in Fig. 1 has two com-
ponents, thecodein evaluation position and theargument stack. The machine has only two transitions,
corresponding to the rules in (1), oneβ -transition (rβ) dealing withβ -redexes in evaluation position
and one overhead transition (@l) adding a term on the argument stack. Compilation of a (well-named)
term t into a machine state simply sendst to the initial state (t,ε). The decoding given in Fig. 1 is
defined inductively on the structure of states. It can equivalently be given contextually, by associating
an evaluation context to the data structures—in our case sending the argument stackπ to a contextπ by
settingε := 〈·〉, u :: π := π〈〈·〉u〉, and(t,π) := π〈t〉. It is useful to have both definitions since sometimes
one is more convenient than the other.

6 The Complexity of Abstract Machines

Stacks π := ε | t :: π
Compilation t◦ := (t,ε)

Decoding (t,ε) := t
(t,u :: π) := (tu,π)

Code Stack Trans. Code Stack

tu π @l t u :: π
λx.t u :: π rβ t{x�u} π

Figure 1: Searching Abstract Machine (Searching AM).

Implementation. We now show the implementation theorem for the Searching AM with respect to the
weak head strategy. Despite the simplicity of the machine, we provide a quite accurate account of the
proof of the theorem, to be taken as a modular recipe. The proofs of the other implementation theorems
in the paper will then be omitted as they follow exactly the same structure,mutatis mutandis.

Theexecutions-to-derivationspart of the implementation theorem always rests on a lemma about the
decoding of transitions, that in our case takes the following form.

Lemma 4.1(Transitions Decoding). Let s be a Searching AM state.

1. β -Transition: if s rβ s′ then s→β s′.

2. Overhead Transition: if s @l s′ then s= s′.

Proof. The first point is more easily proved using the contextual definition of decoding.

1. s= (λx.t,u :: π) = u :: π〈λx.t〉 = π〈(λx.t)u〉 →β π〈t{x�u}〉 = s′.

2. s′ = (t,u :: π) = (tu,π) = s.

Transitions decoding extends to a projection of executionsto derivations (via a straightforward in-
duction on the length of the execution), as required by the implementation theorem. For thederivations-
to-executionspart of the theorem, we proceed similarly, by first proving that single weak head steps are
simulated by the Searching AM and then extending the simulation to derivations via an easy induction.
There is a subtlety, however, because, if done naively, one-step simulations do not compose.

Let us explain the point. Given a stept →wh u there exists a statessuch thatt◦ ∗
@l rβ sands= u,

as expected. This property, however, cannot be iterated to build a many-steps simulation, becauses= u
does not implys= u◦, i.e. sin general is not the compilation ofu. To make things work, the simulation of
t →wh u should not start fromt◦ but from a states′ such thats′ = t. Now, the proof of the step simulation
lemma we just described relies on the following three properties:

Lemma 4.2(Bricks for Step Simulation).

1. Vanishing Transitions Terminate: @l terminates;

2. Determinism: the Searching AM is deterministic;

3. Progress: final Searching AM states decode to→wh-normal terms.

Proof. Termination: @l -sequences are bound by the size of the code.Determinism: rβ and @l

clearly do not overlap and can be applied in a unique way.Progress: final states have the form(λx.t ,ε)
and(x,π), that both decode to→wh-normal forms.

B. Accattoli 7

Environments E := ε | [x�t] :: E
Compilation t◦ := (t,ε)

Decoding (t,ε) := t
(t, [x�u] :: E) := (t{x�u},E)

Code Env Trans Code Env

(λx.t)ur1 . . . rk E dβ tr1 . . . rk [x�u] :: E
xr1 . . . rk E :: [x�t] :: E′

 var tα r1 . . . rk E :: [x�t] :: E′

wheretα denotest where bound names have been freshly renamed.

Figure 2: Micro-Substituting Abstract Machine (Micro AM).

Lemma 4.3(One-Step Simulation). Let s be a Searching AM state. If s→wh u then there exists a state s′

such that s ∗
@l rβ s′ and s′ = u.

Proof. Let nf@l (s) be the normal form ofs with respect to @l , that exists and is unique by termi-
nation of @l (Lemma 4.2.1) and determinism of the machine (Lemma 4.2.2).Since @l is mapped
on identities (Lemma 4.1.2) one hasnf@l (s) = s. By hypothesiss →wh-reduces, so that by progress
(Lemma 4.2.3)nf@l (s) cannot be final. Thennf@l (s) rβ s′, andnf@l (s) = s→wh s′ by the one-step
simulation lemma (Lemma 4.1.1). By determinism of→wh, one obtainss′ = u.

Finally, we obtain the implementation theorem.

Theorem 4.4. The Searching AM implements the weak head strategy.

Proof. Executions to Derivations: by induction on the length|ρ | of ρ using Lemma 4.1.Derivations to
Executions: by induction on the length|d| of d using Lemma 4.3 and noting thatt◦ = t.

5 The Micro-Substituting Abstract Machine

Decomposing Meta-Level Substitution. The second task of abstract machines is to replace meta-level
substitutiont{x�u} with micro-step substitution on demand, i.e. a parsimonious approximation of meta-
level substitution based on:

1. Sharing: when aβ -redex(λx.t)u is in evaluation position it is fired but the meta-level substitution
t{x�u} is delayed, by introducing an annotation[x�u] in a data-structure for delayed substitutions
calledenvironment;

2. Micro-Step Substitution: variable occurrences are replaced one at a time;

3. Substitution on Demand: replacement of a variable occurrence happens only when it ends up in
evaluation position—variable occurrences that do not end in evaluation position are never substi-
tuted.

The purpose of this section is to illustrate this process in isolation via the study of a toy machine, the
Micro-Substituting Abstract Machine(Micro AM) in Fig. 2, forgetting about the search for redexes.

8 The Complexity of Abstract Machines

Environments. We are going to treat environments in an unusual way: the literature mostly deals
with local environments, to be discussed in Sect. 9, while here we prefer to first address the simpler
notion of global environment, but to ease the terminology we will simply callthemenvironments. So,
an environment Eis a list of entries of the form[x�u]. Each entry denotes thedelayedsubstitution of
u for x. In a state(t,E′ :: [x�u] :: E′′) the scope ofx is given byt andE′, as it is stated by forthcoming
Lemma 5.1. The (global) environment models a store. As it is standard in the literature, it is alist, but
the list structure is only used to obtain a simple decoding and a handy delimitation of the scope of its
entries. These properties are useful to develop the meta-theory of abstract machines, but keep in mind
that (global) environments are not meant to be implemented as lists.

Code. The code under evaluation is now aλ -term hr1 . . . rk expressed as a headh (that is either aβ -
redex(λx.t)u or a variablex) applied tok arguments—it is a by-product of the fact that the Micro AM
does not addresssearch.

Transitions. There are two transitions:
• Delayingβ : transition dβ removes theβ -redex(λx.t)u but does not execute the expected sub-

stitution {x�u}, it rather delays it, adding[x�u] to the environment. It is theβ -transition of the
Micro AM.

• Micro-Substitution On Demand: if the head of the code is a variablex and there is an entry[x�t]
in the environment then transition var replaces that occurrence ofx—and only that occurrence—
with a copy oft. It is necessary to rename the new copy oft (into a well-named term) to avoid
name clashes. It is the overhead transition of the Micro AM.

Implementation. Compilation sends a (well-named) termt to the initial state(t,ε), as for the Search-
ing AM (but now the empty data-structure is the environment). The decoding simply applies the delayed
substitutions in the environment to the term, considering them as meta-level substitutions.

The implementation of weak head reduction→wh by the Micro AM can be shown using the recipe
given for the Searching AM, and it is therefore omitted. The only difference is in the proof that the
overhead transition var terminates, that is based on a different argument. We spell it out because it will
be useful also later on for complexity analyses. It requiresthe following invariant of machine executions:

Lemma 5.1(Name Invariant). Let s= (t,E) be a Micro AM reachable state.
1. Abstractions: if λx.u is a subterm oft or of any code in E then x may occur only inu;

2. Environment: if E = E′ :: [x�u] :: E′′ then x is fresh with respect tou and E′′.

Proof. By induction on the length of the executionρ leading tos. If ρ is empty thens is initial and the
statement holds becauset is well-named by hypothesis. Ifρ is non-empty then it follows from thei.h.
and the fact that transitions preserve the invariant, as an immediate inspection shows.

Lemma 5.2(Micro-Substitution Terminates). var terminates in at most|E| steps (on reachable states).

Proof. Consider a var transition copyingu from the environmentE′ :: [x�u] :: E′′. If the next transition
is again var, then the head ofu is a variabley and the transition copies from an entry inE′′ because by
Lemma 5.1y cannot be bound by the entries inE′. Then the number of consecutive var transitions is
bound byE (that is not extended by var).

Theorem 5.3. The Micro AM implements the weak head strategy.

B. Accattoli 9

Environments E := ε | [x�t] :: E
Stacks π := ε | t :: π

Compilation t◦ := (t,ε ,ε)

Decoding (t,ε ,ε) := t
(t,u :: π,E) := (tu,π,E)

(t,ε , [x�u] :: E) := (t{x�u},ε ,E)

Code Stack Env Trans Code Stack Env

tu π E @l t u :: π E
λx.t u :: π E rβ t π [x�u] :: E

x π E :: [x�t] :: E′
 var tα π E :: [x�t] :: E′

wheretα denotest where bound names have been freshly renamed.

Figure 3: Milner Abstract Machine (MAM).

6 Search + Micro-Substitution = Milner Abstract Machine

The Searching AM and the Micro AM can be merged together into the Milner Abstract Machine (MAM),
defined in Fig. 3. The MAM has both an argument stack and an environment. The machine has oneβ -
transition rβ inherited from the Searching AM, and two overhead transitions, @l inherited from the
the Searching AM and var inherited from the Micro AM. Note that in var the code now is simply a
variable, because the arguments are supposed to be stored inthe argument stack.

For the implementation theorem once again the only delicatepoint is to prove that the overhead
transitions terminate. As for the Micro AM one needs a name invariant. A termination measure can
then be defined easily by mixing the size of the codes (needed for @l) and the size of the environment
(needed for var), and it is omitted here, because it will be exhaustively studied for the complexity
analysis of the MAM. Therefore, we obtain that:

Theorem 6.1. The MAM implements the weak head strategy.

7 Introducing Complexity Analyses

The complexity analysis of abstract machines is the study ofthe asymptotic behavior of their overhead.

Parameters for Complexity Analyses. Let us reason abstractly, by considering a generic strategy→
in theλ -calculus and a given machineM implementing→. By thederivations-to-executionspart of the
implementation (Definition 3.1), given a derivationd : t0 →n u there is a shortest executionρ : t◦0 M

s such thats= u. Determiningthe complexity ofM amounts to bound the complexity of a concrete
implementation ofρ , say on a RAM model, as a function of two fundamental parameters:

1. Input: the size|t0| of the initial termt0 of the derivationd;

2. Strategythe lengthn= |d| of the derivationd, that coincides with the number|ρ |β of β -transitions
in ρ by theβ -matching requirement for implementations.

Note that our notion of implementation allows to forget about the strategy while studying the complexity
of the machine, because the two fundamental parameters are internalized: the input is simply the initial
code and the length of the strategy is simply the number ofβ -transitions.

10 The Complexity of Abstract Machines

Types of Machines. The bound on the overhead of the machine is then used to classify it, as follows.

Definition 7.1. LetM an abstract machine implementing a strategy→. Then

• M is reasonableif the complexity ofM is polynomial in the input|t0| and the strategy|ρ |β ;

• M is unreasonableif it is not reasonable;

• M is efficient if it is linear in both the input and the strategy (we sometimes say that it isbilinear).

Recipe for Complexity Analyses. The estimation of the complexity of a machine usually takes 3steps:

1. Number of Transitions: bound the length of the executionρ simulating the derivationd, usually
having a bound on every kind of transition ofM.

2. Cost of Single Transitions: bound the cost of concretely implementing a single transition of M—
different kind of transitions usually have different costs. Here it is usually necessary to go beyond
the abstract level, making some (high-level) assumption onhow codes and data-structure are con-
cretely represented (our case study will provide examples).

3. Complexity of the Overhead: obtain the total bound by composing the first two points, that is, by
taking the number of each kind of transition times the cost ofimplementing it, and summing over
all kinds of transitions.

8 The Complexity of the MAM

In this section we provide the complexity analysis of the MAM, from which analyses of the Searching
and Micro AM easily follow.

The Crucial Subterm Invariant. The analysis is based on the following subterm invariant.

Lemma 8.1(Subterm Invariant). Let ρ : t◦0 MAM (u,π,E) be a MAM execution. Thenu and any code
in π and E are subterms of t0.

Note that the MAM copies code only in transition var, where it copies a code from the environment
E. Therefore, the subterm invariant bounds the size of the subterms duplicated along the execution.

Let us be precise aboutsubterms: for us,u is a subterm oft0 if it does so up to variable names, both
free and bound (and so the distinction between terms and codes is irrelevant). More precisely: define
t− ast in which all variables (including those appearing in binders) are replaced by a fixed symbol∗.
Then, we will consideru to be a subterm oft wheneveru− is a subterm oft− in the usual sense. The key
property ensured by this definition is that the size|u| of u is bounded by|t|.

Proof. By induction on the length ofρ . The base case is immediate and the inductive one follows from
the i.h. and the immediate fact that the transitions preserve the invariant.

The subterm invariant is crucial, for two related reasons. First, it linearly relates the cost of duplica-
tions to the size of the input, enabling complexity analyses. With respect to the length of the strategy,
then, micro-step operations have constant cost, as required by the recipe for micro-step operational se-
mantics in Sect. 2. Second, it implies that size-explosion has been circumvented: duplications are linear,
and so the size of the state can grow at most linearly with the number of steps,i.e. it cannot explode. In
particular, we also obtain the compact representation of the results required by the recipe.

B. Accattoli 11

The relevance of the subterm invariant goes in fact well beyond abstract machines, as it is typical
of most instances of micro-step operational semantics. Andfor complexity analyses of theλ -calculus
it is absolutely essential, playing a role analogous to thatof the cut-elimination theorem in the study of
sequent calculi or of the sub-formula property for proof search.

Number of Transitions. The next lemma bounds the global number of overhead transitions. For the
micro-substituting transition var it relies on an auxiliary bound of a more local form. For the searching
transition @l the bound relies on the subterm invariant. We denote with|ρ |β , |ρ |@l , and |ρ |var the
number of rβ , @l , and var transitions inρ , respectively.

Lemma 8.2. Let ρ : t◦0 MAM s be a MAM execution. Then:

1. Micro-Substitution Linear Local Bound: if σ : s ∗
@l ,var s′ then|σ |var ≤ |E|= |ρ |β ;

2. Micro-Substitution Quadratic Global Bound: |ρ |var ≤ |ρ |2β ;

3. Searching (andβ) Local Bound: if σ : s ∗
rβ ,@l s′ then|σ | ≤ |t0|;

4. Searching Global Bound: |ρ |@l ≤ |t0| · (|ρ |var+1)≤ |t0| · (|ρ |2β +1).

Proof.

1. Reasoning along the lines of Lemma 5.2 one obtains that var transitions inσ have to use entries
of E from left to right (@l and var do not modifyE), and so|σ |var ≤ |E|. Now, |E| is exactly
|ρ |β , because the only transition extendingE, and of exactly one entry, is rβ .

2. The fact that a linear local bound induces a quadratic global bound is a standard reasoning. We
spell it out to help the unacquainted reader. The executionρ alternates phases ofβ -transitions and
phases of overhead transitions,i.e. it has the shape:

t◦0 = s1
∗
rβ s′1

∗
@l ,var s2

∗
rβ s′2

∗
@l ,var . . .sk

∗
rβ s′k

∗
@l ,var s

Let ai be the length of the segmentsi
∗
rβ s′i andbi be the number of var transitions in the seg-

ments′i
∗
@l ,var si+1, for i = 1, . . . ,k. By Point 1, we obtainbi ≤ ∑i

j=1a j . Then|ρ |var = ∑k
i=1bi ≤

∑k
i=1 ∑i

j=1a j . Note that∑i
j=1a j ≤ ∑k

j=1a j = |ρ |β and k ≤ |ρ |β . So |ρ |var ≤ ∑k
i=1 ∑i

j=1a j ≤

∑k
i=1 |ρ |β ≤ |ρ |2β .

3. The length ofσ is bound by the size of the code in the states because rβ ,@l strictly decreases
the size of the code, that in turn is bound by the size|t0| of the initial term by the subterm invariant
(Lemma 8.1).

4. The executionρ alternates phases of rβ and @l transitions and phases of var transitions,i.e.
it has the shape:

t◦0 = s1
∗
rβ ,@l s′1

∗
var s2

∗
rβ ,@l s′2

∗
var . . .sk

∗
rβ ,@l s′k

∗
var

∗
rβ ,@l s

By Point 3 the length of the segmentssi
∗
rβ ,@l s′i is bound by the size|t0| of the initial term.

The code may grow, instead, with var transitions. So|ρ |@l is bound by|t0| times the number
|ρ |var of micro-substitution transitions, plus|t0| once more, because at the beginning there might
be rβ ,@l transitions before any var transition—in symbols,|ρ |@l ≤ |t0| · (|ρ |var +1). Finally,
|t0| · (|ρ |var+1)≤ |t0| · (|ρ |2β +1) by Point 2.

12 The Complexity of Abstract Machines

Cost of Single Transitions. To estimate the cost of concretely implementing single transitions we need
to make some hypotheses on how the MAM is going to be itself implemented on RAM:

1. Codes, Variable (Occurrences), and Environment Entries: abstractions and applications are con-
structors with pointers to subterms, a variable is a memory location, a variable occurrence is a
reference to that location, and an environment entry[x�t] is the fact that the location associated to
x contains (the topmost constructor of)t.

2. Random Access to Global Environments: the environmentE of the MAM can be accessed in
constant time (in var) by just following the reference given by the variable occurrence under
evaluation, with no need to accessE sequentially, thus ignoring its list structure.

It is now possible to bound the cost of single transitions. Note that the case of var transitions relies
on the subterm invariant.

Lemma 8.3. Let ρ : t◦0 MAM s be a MAM execution. Then:

1. Each @l transition inρ has constant cost;

2. Each rβ transition inρ has constant cost;

3. Each var transition inρ has cost bounded by the size|t0| of the initial term.

Proof. According to our hypothesis on the concrete implementationof the MAM, @l just moves the
pointer to the current code on the left subterm of the application and pushes the pointer to the right
subterm on the stack—evidently constant time. Similarly for rβ . For var, the environment entry
[x�t] is accessed in constant time by hypothesis, butt has to beα-renamed,i.e. copied. It is not hard
to see that this can be done in time linear in|t| (the naive algorithm for copying carries around a list of
variables, and it is quadratic, but it can be easily improvedto be linear) that by the subterm invariant
(Lemma 8.1) is bound by the size|t0| of the initial term.

Complexity of the Overhead. By composing the analysis of the number of transitions (Lemma 8.2)
with the analysis of the cost of single transitions (Lemma 8.3) we obtain the main result of the paper.

Theorem 8.4(The MAM is Reasonable). Let ρ : t◦0 MAM s be a MAM execution. Then:

1. @l transitions inρ cost all together O(|t0| · (|ρ |2β +1));

2. rβ transitions inρ cost all together O(|ρ |β);
3. var transitions inρ cost all together O(|t0| · (|ρ |2β +1));

Thenρ can be implemented on RAM with cost O(|t0| · (|ρ |2β +1)), i.e. the MAM is a reasonable imple-
mentation of the weak head strategy.

The Efficient MAM. According to the terminology of Sect. 3, the MAM is reasonable but it is not
efficient because micro-substitution takes time quadraticin the length of the strategy. The quadratic
factor comes from the fact that in the environment there can be growing chains of renamings,i.e. of
substitutions of variables for variables, see [6] for more details on this issue. The MAM can actually
be optimized easily, obtaining an efficient implementation, by replacing rβ with the following two
β -transitions:

λx.t y :: π E rβ1
t{x�y} π E

λx.t u :: π E rβ2
t π [x�u] :: E if u is not a variable

B. Accattoli 13

Search is Linear and the Micro AM is Reasonable. By Lemma 8.2 the cost of search in the MAM
is linear in the number of transitions for implementing micro-substitution. This is an instance of a more
general fact:searchturns out to always be bilinear (in the initial code and in theamount of micro-
substitutions). There are two consequences of this generalfact. First, it can be turned into a design
principle for abstract machines—searchhas to be bilinear, otherwise there is something wrong in the
design of the machine. Second, search is somewhat negligible for complexity analyses.

The Micro AM can be seen as the MAM up to search. In particular,it satisfies a subterm invariant
and thus circumvents size-explosion. The Micro AM is however quite less efficient, because at each
step it has to search the redex from scratch. An easy but omitted analisys shows that its overhead is
nonetheless polynomial. Therefore, it makes sense to consider very abstract machines as the Micro AM
that omit search. In fact, they already exist, in disguise, as strategies in thelinear substitution calculus
[1, 5], a recent approach to explicit substitutions modeling exactly micro-substitution without search (the
traditional approach to explicit substitutions instead models both micro-substitution and search) and they
were used for the first proof that a strong strategy (the leftmost-outermost one) is reasonable [10].

The Searching AM is Unreasonable. It is not hard to see that the Searching AM is unreasonable.
Actually, the number of transitions is reasonable. The projection of MAM executions on Searching AM
executions, indeed, shows that the number of searching transitions of the Searching AM is reasonable.
It is the cost of single transitions that becomes unreasonable. In fact, the Searching AM does not have a
subterm invariant, because it rests on meta-level substitution, and the size of the terms duplicated by the
 rβ transition can explode (it is enough to consider the size-exploding family of Proposition 1.2).

The moral is that micro-substitution is more fundamental than search. While the cost of search can
be expressed in terms of the cost of micro-substitution, theconverse is in fact not possible.

9 Names: Krivine Abstract Machine

Accounting for Names. In the study presented so far we repeatedly took names seriously, by dis-
tinguishing between terms and codes, by asking that initialcodes are well-named, and by proving an
invariant about names (Lemma 5.1). The process ofα-renaming however has not been made explicit,
the machines we presented rather rely on a meta-level renaming, used as a black box.

The majority of the literature on abstract machines, instead, pays more attention toα-equivalence,
or rather to how to avoid it. We distinguish two levels:

1. Removal of on-the-flyα-equivalence: in these cases the machine works on terms with variable
names but it is designed in order to implement evaluation without everα-renaming. Technically,
the global environment of the MAM is replaced by many local environments, each one for every
piece of code in the machine. The machine becomes more complex, in particular the non-trivial
concept of closure (to be introduced shortly) is necessary.

2. Removal of names: terms are represented using de Bruijn indexes (or de Bruijnlevels), removing
the problem ofα-equivalence altogether but sacrificing the readability ofthe machine and reducing
its abstract character. Usually this level is built on top ofthe previous one.

We are now going to introduce Krivine Abstract Machine (keeping names, so at the first level), yet
another implementation of the weak head strategy. Essentially, it is a version of the MAM without on-
the-fly α-equivalence. The complexity analysis will show that it hasexactly the same complexity of
the MAM. The further removal of names is only (anti)cosmetic—the complexity is not affected either.
Consequently, the task of accounting for names is—as for search—negligible for complexity analyses.

14 The Complexity of Abstract Machines

Local Env. e := ε | [x�c] :: e
Closures e := (t,e)

Stacks π := ε | c :: π
States s := (c,π)

Compilation t◦ := ((t,ε),ε)

Closure Decoding (t,ε) := t
(t, [x�c] :: e) := (t{x�c},e)

State Decoding (c,ε) := c
(c,c′ :: π) := ((cc′,ε),π)

Code LocEnv Stack Trans Code LocEnv Stack

tu e π @l t e (u,e) :: π
λx.t e c :: π rβ t [x�c] :: e π

x e π var t e′ π with e(x) = (t,e′)

Figure 4: Krivine Abstract Machine (KAM).

Krivine Abstract Machine. The machine is in Fig. 4. It relies on the mutually inductively defined
concepts oflocal environment, that is a list of closures, andclosure, that is a list of pairs of a code and a
local environment. A state is apair of a closure and a stack, but in the description of the transitions we
write it as atriple, by spelling out the two components of the closure. Let us explain the nameclosure:
usually, machines are executed on closed terms, and then a closure decodes indeed to a closed term.
While essential in the study of call-by-value or call-by-need strategies, for the weak head (call-by-name)
strategy the closed hypothesis is unnecessary, that is why we do not deal with it—so a closure here does
not necessarily decode to a closed term. Two remarks:

1. Garbage Collection: transition var, beyond implementing micro-substitution, also accounts for
some garbage collection, as it throws away the local environment e associated to the replaced
variablex. The MAM simply ignores garbage collection. For time analyses garbage collection can
indeed be safely ignored, while it is clearly essential for space (both the KAM and the MAM are
however desperately inefficient with respect to space).

2. No α-Renaming and the Length of Local Environments: names are never renamed. The initial
code, as usual, is assumed to be well-named. Then the entriesof a same local environment are all
on distinguished names (formally, a name invariant holds).Then the length of a local environment
e is bound by the number of names in the initial term, that is, bythe size of the initial term
(formally, |e| ≤ |t0|). This essential quantitative invariant is used in analisys of the next paragraph.

Implementation and Complexity Analysis. The proof that the KAM implements the weak head strat-
egy follows the recipe for these proofs and it is omitted. Forthe complexity analysis, the bound of the
number of transitions can be shown to be exactly as for the MAM. A direct proof is not so simple, be-
cause the bound on var transitions cannot exploit the size of the global environment. The bound can
be obtained by relating the KAM with the Searching AM (for which the exact same bound of the MAM
holds), or by considering thedepth(i.e. maximum nesting) of local environments. The proof is omitted.

The interesting part of the analysis is rather the study of the cost of single transitions. As for the
MAM, we need to spell out the hypotheses on how the KAM is concretely implemented on RAM.
Variables cannot be implemented with pointers, because thesame variable name can be associated to
different codes in different local environments. So they have to simply be numbers. Then there are two
choices for the representation of environments, either they are represented as lists or as arrays. In both
cases rβ can be implemented in constant time. For the other transitions:

B. Accattoli 15

1. Environments as Arrays: we mentioned that there is a bound on the length of local environments
(|e| ≤ |t0|) so that arrays can be used. The choice allows to implement var in constant time,
becausee can be accessed directly at the position described by the number given byx. Transition
 @l however requires to duplicatee, and this is necessary because the two copies might later on
be modified differently. So the cost of a @l transition becomes linear in|t0| and @l transitions
all together costO(|t0|2 · (|ρ |2β +1)), that also becomes the complexity of the whole overhead of
the KAM. This is worse than the MAM.

2. Environments as Lists: implementing local environments as lists provides sharing of environments,
overcoming the problems of arrays. With lists, transition @l becomes constant time, as for the
MAM, because the copy ofe now is simply the copy of a pointer. The trick is that the two copies
of the environment can only be extended differentlyon the head, so that the tail of the list can be
shared. Transition var however now needs to accesse sequentially, and so it costs|t0| as for the
MAM. Thus globally we obtain the same overhead of the MAM.

Summing up,namescan be pushed at the meta-level (as in the MAM) without affecting the complex-
ity of the overhead. Thus,namesare even less relevant thansearchat the level of complexity. The moral
of this tutorial then is thatsubstitutionis the crucial aspect for the complexity of abstract machines.

References

[1] Beniamino Accattoli (2012):An Abstract Factorization Theorem for Explicit Substitutions. In: RTA, pp.
6–21. Available athttp://dx.doi.org/10.4230/LIPIcs.RTA.2012.6.

[2] Beniamino Accattoli (2016):The Useful MAM, a Reasonable Implementation of the Strongλ -Calculus. In:
WoLLIC 2016, pp. 1–21. Available athttp://dx.doi.org/10.1007/978-3-662-52921-8_1.

[3] Beniamino Accattoli, Pablo Barenbaum & Damiano Mazza (2014): Distilling abstract machines. In: ICFP
2014, pp. 363–376. Available athttp://doi.acm.org/10.1145/2628136.2628154.

[4] Beniamino Accattoli, Pablo Barenbaum & Damiano Mazza (2015): A Strong Distillery. In: APLAS 2015,
pp. 231–250. Available athttp://dx.doi.org/10.1007/978-3-319-26529-2_13.

[5] Beniamino Accattoli, Eduardo Bonelli, Delia Kesner & Carlos Lombardi (2014):A nonstandard standardiza-
tion theorem. In: POPL, pp. 659–670. Available athttp://doi.acm.org/10.1145/2535838.2535886.

[6] Beniamino Accattoli & Claudio Sacerdoti Coen (2014):On the Value of Variables. In: WoLLIC 2014, pp.
36–50. Available athttp://dx.doi.org/10.1007/978-3-662-44145-9_3.

[7] Beniamino Accattoli & Claudio Sacerdoti Coen (2015):On the Relative Usefulness of Fireballs. In: LICS
2015, pp. 141–155. Available athttp://dx.doi.org/10.1109/LICS.2015.23.

[8] Beniamino Accattoli & Ugo Dal Lago (2012):On the Invariance of the Unitary Cost Model for Head Reduc-
tion. In: RTA, pp. 22–37. Available athttp://dx.doi.org/10.4230/LIPIcs.RTA.2012.22.

[9] Beniamino Accattoli & Delia Kesner (2010):The Structuralλ -Calculus. In: CSL, pp. 381–395. Available
athttp://dx.doi.org/10.1007/978-3-642-15205-4_30.

[10] Beniamino Accattoli & Ugo Dal Lago (2014):Beta reduction is invariant, indeed. In: CSL-LICS ’14, pp.
8:1–8:10. Available athttp://doi.acm.org/10.1145/2603088.2603105.

[11] Guy E. Blelloch & John Greiner (1995):Parallelism in Sequential Functional Languages. In: FPCA, pp.
226–237. Available athttp://doi.acm.org/10.1145/224164.224210.

[12] Ugo Dal Lago & Simone Martini (2006):An Invariant Cost Model for the Lambda Calculus. In: CiE 2006,
pp. 105–114. Available athttp://dx.doi.org/10.1007/11780342_11.

[13] David Sands, Jörgen Gustavsson & Andrew Moran (2002):Lambda Calculi and Linear Speedups. In: The
Essence of Computation, pp. 60–84. Available athttp://dx.doi.org/10.1007/3-540-36377-7_4.

http://dx.doi.org/10.4230/LIPIcs.RTA.2012.6
http://dx.doi.org/10.1007/978-3-662-52921-8_1
http://doi.acm.org/10.1145/2628136.2628154
http://dx.doi.org/10.1007/978-3-319-26529-2_13
http://doi.acm.org/10.1145/2535838.2535886
http://dx.doi.org/10.1007/978-3-662-44145-9_3
http://dx.doi.org/10.1109/LICS.2015.23
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.22
http://dx.doi.org/10.1007/978-3-642-15205-4_30
http://doi.acm.org/10.1145/2603088.2603105
http://doi.acm.org/10.1145/224164.224210
http://dx.doi.org/10.1007/11780342_11
http://dx.doi.org/10.1007/3-540-36377-7_4

	1 Cost Models & Size-Explosion
	2 The Lambda-Calculus is Reasonable, Indeed
	3 Introducing Abstract Machines
	4 The Searching Abstract Machine
	5 The Micro-Substituting Abstract Machine
	6 Search + Micro-Substitution = Milner Abstract Machine
	7 Introducing Complexity Analyses
	8 The Complexity of the MAM
	9 Names: Krivine Abstract Machine

