
L. Fribourg and M. Heizmann (Eds.): VPT/HCVS 2020
EPTCS ??, 2020, pp. 105–127, doi:10.4204/EPTCS.??.15

This work is licensed under the
Creative Commons Attribution License.

Competition Report: CHC-COMP-20

Philipp Rümmer
Uppsala University, Sweden

CHC-COMP-201 is the third competition of solvers for Constrained Horn Clauses. In this year, 9
solvers participated at the competition, and were evaluated in four separate tracks on problems in
linear integer arithmetic, linear real arithmetic, and arrays. The competition was run in the first week
of May 2020 using the StarExec computing cluster. This report gives an overview of the competition
design, explains the organisation of the competition, and presents the competition results.

1 Introduction

Constrained Horn Clauses (CHC) have over the last decade emerged as a uniform framework for rea-
soning about different aspects of software safety [10, 2]. Constrained Horn clauses form a fragment of
first-order logic, modulo various background theories, in which models can be constructed effectively
with the help of model checking algorithms. Horn clauses can be used as an intermediate verifica-
tion language that elegantly captures various classes of systems (e.g., sequential code, programs with
functions and procedures, concurrent programs, or networks of timed automata) and various verification
methodologies (e.g., the use of state invariants, verification with the help of contracts, Owicki-Gries-style
invariants, or rely-guarantee methods). Horn solvers can be used as off-the-shelf back-ends in verifiers,
and thus enable construction of verification systems in a modular way.

CHC-COMP-20 is the third competition of solvers for Constrained Horn Clauses, a competition
affiliated with the 7th Workshop on Horn Clauses for Verification and Synthesis (HCVS) at ETAPS 2020.
The goal of CHC-COMP is to compare state-of-the-art tools for Horn solving with respect to performance
and effectiveness on realistic, publicly available benchmarks. The deadline for submitting solvers to
CHC-COMP-20 was April 30 2020, resulting in 9 solvers participating, which were evaluated in the first
week of May 2020. The 9 solvers were evaluated in four separate tracks on problems in linear integer
arithmetic, linear real arithmetic, and the theory of arrays. The results of the competition can be found
in Section 6 of this report.

Due to the Covid-19 crisis, both ETAPS 2020 and HCVS were postponed, and at the time of finalising
this report no new dates had been set; this means that the present report is the main documentation of
CHC-COMP-20 at the moment. It is planned, however, that the competition will be presented and
discussed in detail also at the HCVS workshop when it takes place, either in physical or virtual form.

1.1 Acknowledgements

CHC-COMP-20 heavily builds on the infrastructure and scripts written for CHC-COMP-18 and CHC-
COMP-19, run by Arie Gurfinkel and Grigory Fedyukovich, respectively. Contributors to the competi-
tion infrastructure also include Adrien Champion, Dejan Jovanovic, and Nikolaj Bjørner.

Like in the first two competitions, CHC-COMP-20 was run using StarExec [24]. We are extremely
grateful for the computing resources and evaluation environment provided by StarExec, and for the fast

1https://chc-comp.github.io/

http://dx.doi.org/10.4204/EPTCS.??.15
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
https://www.starexec.org
https://www.starexec.org
https://www.starexec.org
https://chc-comp.github.io/

106 Competition Report: CHC-COMP-20

and competent support by Aaron Stump and his team whenever problems occurred. CHC-COMP-20
would not have been possible without this!

The organiser of CHC-COMP-20 is supported by the Swedish Research Council (VR) under grant
2018-04727, and by the Swedish Foundation for Strategic Research (SSF) under the project WebSec
(Ref. RIT17-0011).

2 Brief Overview of the Competition Design

2.1 Competition Tracks

In CHC-COMP-20 the same tracks as in CHC-COMP-19 were used for evaluating solvers:

• LIA-nonlin: benchmarks with at least one non-linear clause, and linear integer arithmetic as back-
ground theory;

• LIA-lin: benchmarks with only linear clauses, and linear integer arithmetic as background theory;

• LIA-lin-arrays: benchmarks with only linear clauses, and the combined theory of linear integer
arithmetic and arrays as background theory;

• LRA-TS: benchmarks encoding transition systems, with linear real arithmetic as background the-
ory. Benchmarks in this track have exactly one uninterpreted relation symbol, and exactly three
linear clauses encoding initial states, transitions, and error states.

2.2 Computing Nodes

The competition was run on 30 nodes provided by StarExec. Each node had two quadcore CPUs, and
each node was used to run two jobs in parallel during the competition runs. The machine specs are:

Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz (2393 MHZ)

10240 KB Cache

263932744 kB main memory

Software:

OS: CentOS Linux release 7.7.1908 (Core)

kernel: 3.10.0-1062.4.3.el7.x86_64

glibc: glibc-2.17-292.el7.x86_64

gcc-4.8.5-39.el7.x86_64

glibc-2.17-292.el7.i686

2.3 Test and Competition Runs

All solvers submitted to CHC-COMP-20 were evaluated twice:

• in a first set of test runs, in which pre-submissions of the solvers were evaluated to check their
configurations and identify possible inconsistencies. For the test runs a smaller set of randomly
selected benchmarks was used. The results of the test runs for each solver were directly commu-
nicated to the team submitting the solver, but not made public and not shared with other teams.
In the test runs, each solver-benchmark pair was limited to 600s CPU time, 600s wall-clock time,
and 64GB memory.

https://www.starexec.org
https://www.starexec.org/starexec/public/machine-specs.txt

Philipp Rümmer 107

• in the competition runs, the results of which determined the outcome of CHC-COMP-20. The
selection of the benchmarks for the competition runs is described in Section 4, and the evaluation
of the competition runs in Section 2.4. In the competition runs, each job was limited to 1800s CPU
time, 1800s wall-clock time, and 64GB memory.

2.4 Evaluation of the Competition Runs

The ranking of solvers in each track was done based on the Score reached by the solvers in the competi-
tion run for that track. In case two solvers had equal Score, the ranking of the two solvers was determined
by CPU time. It was assumed that the outcome of running one solver on one benchmark can only be sat,
unsat, or unknown; the last outcome includes solvers giving up, running out of resources, or crashing.

The definition of Score and CPU time are:

• Score: the number of sat or unsat results produced by a solver on the benchmarks of a track.

• CPU time: the average CPU time needed by a solver to produce the result sat or unsat in some
track, not counting the runtime for unknown results. This average time was computed based on
the CPU time stamp reported by StarExec for the output of the result sat/unsat.

In addition, the following features were computed for each solver and each track:

• Wall-clock time: the average wall-clock time needed by a solver to produce the result sat or unsat
in some track, not counting the runtime for unknown results.

• Speedup: the ratio CPU time / Wall-clock time.

• SotAC: the state-of-the-art contribution of a solver, computed in the same way as in the CADE
ATP System Competition (CASC). The SotAC of a benchmark in some track is the inverse of the
number of systems that reported sat or unsat for the benchmark. The SotAC of a solver is the
average SotAC of the benchmarks it could solve.

3 Competition Benchmarks

3.1 File Format

CHC-COMP represents benchmarks in a fragment of the SMT-LIB 2.6 format. The fragment is defined
on https://chc-comp.github.io/format.html. For CHC-COMP-20, several minor modifications
were done in the format definition, in particular the role of nullary predicates was clarified. The con-
formance of a well-typed SMT-LIB script with the CHC-COMP fragment can be checked using the
format-checker available on https://github.com/chc-comp/chc-tools.

3.2 Benchmark Processing

All benchmarks used in CHC-COMP-20 were pre-processed using the format.py script available in the
repository https://github.com/chc-comp/scripts, using the command line

> python3 format.py --out_dir <outdir> --merge_queries True <smt-file>

The script tries to translate arbitrary Horn-like problems in SMT-LIB format to problems within the
CHC-COMP fragment. Only benchmarks processed in this way were used in the competition. The
option --merge_queries was added for CHC-COMP-20 to the script, and has the effect of merging

https://www.starexec.org
http://www.tptp.org/CASC/
http://www.tptp.org/CASC/
https://chc-comp.github.io/format.html
https://github.com/chc-comp/chc-tools
https://github.com/chc-comp/scripts

108 Competition Report: CHC-COMP-20

multiple queries in a benchmark into a single query by introducing an auxiliary nullary predicate. For a
discussing on this, see Section 3.3.

After processing with format.py, benchmarks were checked and categorised into the four tracks
using the format-checker scripts available on https://github.com/chc-comp/chc-tools.

Benchmarks that could not be processed by format.py, were rejected by the format-checker, or
did not conform to any of the competition tracks, were not used in CHC-COMP-20.

3.3 Handling of Benchmarks with Multiple Queries

In the CHC-COMP format, a query is a clause with the head false, and encodes the property to be
verified in a benchmark. At the moment, the CHC-COMP fragment of SMT-LIB only allows benchmarks
with exactly one query, which means that problems involving multiple queries have to be mapped to the
single-query format. Of the CHC-COMP benchmarks, a significant number contains multiple queries.

In the past competitions, this was handled by splitting benchmarks with multiple queries into mul-
tiple single-query benchmarks (option --split_queries of format.py); in CHC-COMP-20, instead
benchmarks with multiple queries were converted to the single-query format by introducing an auxiliary
nullary predicate (or Boolean variable), and merging all queries to a single query (--merge_queries
of format.py). The motivation for the new pre-processing is that splitting of queries sometimes makes
benchmarks artificially hard: with multiple queries, often some of the queries can be disproven easily,
while other queries are difficult to prove or disprove. Such problems, seen as a whole, are simple to
solve, but splitting and considering all queries individually will lead to some hard benchmarks. Since the
benchmarks used in CHC-COMP should represent realistic applications, this is an undesired effect.

In future editions of CHC-COMP, it might be even better to just allow benchmarks with multiple
queries, and extend the CHC-COMP format accordingly. Many solvers are already now able to process
benchmarks with multiple queries. Other solvers could decide themselves whether benchmarks with
multiple queries should be handled by splitting or by merging; both translations are quite simple to
implement in a solver, or alternatively a solver could invoke the existing script for pre-processing.

3.4 Benchmark Inventory

In contrast to most other competitions, CHC-COMP stores benchmarks in a decentralised way, in mul-
tiple repositories managed by the contributors of the benchmarks themselves. Table 1 summarises the
number of benchmarks that were obtained by collecting benchmarks from all available repositories us-
ing the process in Section 3.2. Duplicate benchmarks were identified by computing a checksum for each
(processed) benchmark, and were discarded.

The repository chc-comp19-benchmarks of benchmarks selected for CHC-COMP-19 was included in
the collection, because this repository contains several unique families of benchmarks that are not avail-
able in other repositories under https://github.com/chc-comp. Such benchmarks include problems
generated by the Ultimate tools in the LIA-lin-arrays track.

From jayhorn-benchmarks, only the problems generated for sv-comp-2020 were considered, which
subsume the problems for sv-comp-2019.

4 Benchmark Rating and Selection

This section describes how the benchmarks for CHC-COMP-20 were selected among the unique bench-
marks summarised in Table 1. For the competition tracks LIA-lin-arrays and LRA-TS, the benchmark

https://github.com/chc-comp/chc-tools
https://github.com/chc-comp

Philipp Rümmer 109

Repository LIA-nonlin LIA-lin LIA-lin-arrays LRA-TS
eldarica-misc 69 / 66 147 / 134
extra-small-lia 55 / 55
hcai-bench 135 / 133 100 / 86 39 / 39
hopv 68 / 67 49 / 48
jayhorn-benchmarks 5138 / 5084 75 / 73
kind2-chc-benchmarks 851 / 738
ldv-ant-med 10 / 10
llreve-bench 59 / 57 44 / 44 31 / 31
quic3 43 / 43
sally-chc-benchmarks 177 / 174
seahorn 72 / 70 3421 / 2847
tricera-benchmarks 4 / 4 405 / 405
vmt-chc-benchmarks 906 / 803 99 / 98
sv-comp 1643 / 1169 3150 / 2932 79 / 73
chc-comp19-benchmarks 271 / 265 326 / 314 305 / 305 229 / 227
Total 8310 / 7653 8678 / 7741 507 / 501 505 / 499

Table 1: Summary of benchmarks available on https://github.com/chc-comp and in the StarExec
CHC space. For each collection of benchmarks and each CHC-COMP-20 track, the first number gives
the total number of benchmarks, and the second number the number of contributed unique benchmarks
(after discarding duplicate benchmarks).

library only contains 501 and 499 unique benchmarks, respectively, which are small enough sets to use
all benchmarks in the competition. For the tracks LIA-nonlin and LIA-lin, in contrast, too many bench-
marks are available, so that a representative sample of the benchmarks had to be chosen.

To gauge the difficulty of the available problems in LIA-nonlin and LIA-lin, a simple rating based
on the performance of the CHC-COMP-19 solvers was computed. For this, the two top-ranked com-
peting solvers from CHC-COMP-19 were run for a few seconds on each of the LIA-nonlin and LIA-lin
benchmarks:

• Eldarica: was run with a 5s timeout on each benchmark.2 Eldarica runs entirely in managed code
on a JVM; to avoid frequent JVM restarts, the daemon mode of Eldarica was used. Otherwise, the
same binary and same options were chosen as in CHC-COMP-19.

• Ultimate Unihorn: was run with a slightly higher timeout of 8s, since the solver also partly runs
in managed code, but (to the best of the organiser’s knowledge) does not have a similar daemon
mode as Eldarica. The same binary and options as in CHC-COMP-19 were used.

The outcomes of those test runs gave rise to three possible ratings for each benchmark:

• A: both tools were able to determine the benchmark status within the given time budget.

• B: only one tool could determine the benchmark status.

• C: both tools timed out.

2Run on an Intel Core i5-650 2-core machine with 3.2GHz.

https://github.com/chc-comp
https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=73700
https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=73700

110 Competition Report: CHC-COMP-20

LIA-nonlin LIA-lin
Repository #A / #B / #C #A / #B / #C
eldarica-misc 12 / 28 / 26 26 / 91 / 17
extra-small-lia 3 / 24 / 28
hcai-bench 19 / 71 / 43 59 / 19 / 8
hopv 26 / 38 / 3 45 / 2 / 1
jayhorn-benchmarks 49 / 2680 / 2355 55 / 18 /
kind2-chc-benchmarks 58 / 179 / 501
llreve-bench 6 / 35 / 16 9 / 35 /
seahorn 6 / 34 / 30 753 / 323 / 1771
tricera-benchmarks 1 / 3 / 9 / 23 / 373
vmt-chc-benchmarks 33 / 252 / 518
sv-comp 25 / 1057 / 87 968 / 1855 / 109
chc-comp19-benchmarks 42 / 116 / 107 31 / 100 / 183
Total 244 / 4241 / 3168 1991 / 2742 / 3008

Table 2: The number of unique LIA-nonlin and LIA-lin benchmarks with ratings A / B / C.

The number of benchmarks per rating are shown in Table 2. As can be seen from the table, the
simple rating method separates the benchmarks into partitions of comparable size, and provides some
information about the relative hardness of the problems in the different repositories.

From each repository r, up to 3 ·Nr benchmarks were then selected randomly: Nr benchmarks with
rating A, Nr benchmarks with rating B, and Nr benchmarks with rating C. If a repository contained
fewer than Nr benchmarks for some particular rating, instead benchmarks with the next-higher rating
were chosen. As special cases, up to Nr benchmarks were selected from repositories with only A-rated
benchmarks; up to 2 ·Nr benchmarks from repositories with only B-rated benchmarks; and up to 3 ·Nr

benchmarks from repositories with only C-rated benchmarks.
The number Nr was chosen individually for each repository, based on a manual inspection of the

repository to judge the diversity of the contained benchmarks. The chosen Nr, and the numbers of
selected benchmarks for each repository, are given in Table 3.

For the actual selection of benchmarks with rating X, the following Unix command was used:
> cat <rating-X-benchmark-list> | sort -R | head -n <num>

The final set of benchmarks selected for CHC-COMP-20 can be found in the github repository
https://github.com/chc-comp/chc-comp20-benchmarks, and on StarExec in the public space
CHC/CHC-COMP/chc-comp20-benchmarks.

5 Solvers Entering CHC-COMP-20

In total, 9 solvers were submitted to CHC-COMP-20: 8 competing solvers, and one further solver (Eldar-
ica, co-developed by the competition organiser) that was entering outside of the competition. A summary
of the participating solvers is given in Table 4.

More details about the participating solvers are provided in the solver descriptions in Section 8.
The binaries of the solvers used for the competition runs can be found in the public StarExec space
CHC/CHC-COMP/chc-comp20-benchmarks.

https://github.com/chc-comp/chc-comp20-benchmarks
https://www.starexec.org
https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=405635
https://www.starexec.org
https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=405635

Philipp Rümmer 111

LIA-nonlin LIA-lin LIA-lin-arrays LRA-TS
Repository Nr #Sel Nr #Sel #Selected #Selected
eldarica-misc 10 30 15 45
extra-small-lia 10 30
hcai-bench 20 60 15 38 39
hopv 10 23 10 13
jayhorn-benchmarks 30 90 10 20
kind2-chc-benchmarks 30 90
ldv-ant-med 10
llreve-bench 15 45 15 30 31
quic3 43
sally-chc-benchmarks 174
seahorn 15 45 30 90
tricera-benchmarks 1 2 20 60
vmt-chc-benchmarks 30 90 98
sv-comp 30 90 30 90 73
chc-comp19-benchmarks 30 90 30 90 305 227
Total 565 596 501 499

Table 3: The number of selected unique benchmarks for the four CHC-COMP-20 tracks.

6 Competition Results

6.1 Overview

The winners and top-ranked solvers of the four CHC-COMP-20 tracks are:

LIA-nonlin LIA-lin LIA-lin-arrays LRA-TS
Winner Spacer Spacer Spacer IC3IA
Place 2 Eldarica-abs Eldarica-abs Ultimate Unihorn Sally

(two config.)
Place 3 Ultimate Unihorn Ultimate Unihorn ProphIC3 Spacer

6.2 Detailed Results

Detailed results for the four tracks can be found in Figures 1, 2, 3, and 4.

6.3 Observed Inconsistencies in the Competition Runs, and Fixes

LIA-lin-arrays: Only one case of inconsistent results was observed in the competition runs, namely
the results for benchmark chc-LIA-lin-arrays_381.smt2 in the LIA-lin-arrays track. Ultimate Uni-
horn claimed that this benchmark is satisfiable, whereas Spacer reported that it is unsatisfiable; all other
solvers timed out.

This issue was discussed with the authors of the solvers. Spacer can produce an internal counterex-
ample for the problem, but no counterexample for the complete input problem that could be verified by
independent tools. Ultimate Unihorn does not have functionality to output models. No obvious bug was

112 Competition Report: CHC-COMP-20

Solver LIA-nonlin LIA-lin LIA-lin-arrays LRA-TS
Eldarica-abs def def — —
IC3IA — default.sh default.sh default.sh

PCSat pcsat_dt_tb pcsat_dt_tb — —
ProphIC3 — — default.sh —
Sally — — — y2o2_-

decomposing_-

itp, parallel

Spacer lia lia_lin arrays lra

Ultimate
TreeAutomizer

default default default default

Ultimate Unihorn default default default default

Eldarica (Hors
Concours)

def def def —

Table 4: The submitted solvers, and the configurations used in the individual tracks.

found in either of the tools. This means that there is no immediate way to establish the actual status of
the benchmark beyond doubt, and no way to tell which of the solvers gave the right answer; but clearly
one of the tools contains a bug.

Since no further inconsistencies were observed in the competition, in this particular case the organ-
iser decided to remove the benchmark chc-LIA-lin-arrays_381.smt2 and not count Spacer’s nor
Ultimate Unihorn’s answer. The issue highlights a problem in the competition design, however, which
should be addressed in the next competition (see Section 7 for more thoughts about this).

Fixes in IC3IA and ProphIC3: After the submission deadline, the team submitting the solvers IC3IA
and ProphIC3 reported that they had found a bug affecting the soundness of both tools in the LIA-lin-
arrays track, and provided new versions of the tools. No inconsistencies were observed for either tool in
the competition runs, but since there was enough time the experiments in LIA-lin-arrays were repeated
with the new versions of the solvers. This changed the results in LIA-lin-arrays in the following way:

#sat #unsat
IC3IA (original) 96 47
IC3IA (fixed) 92 55
ProphIC3 (original) 183 74
ProphIC3 (fixed) 140 74

The performance of IC3IA increased slightly, and the new version reached the same score as Ultimate
TreeAutomizer. The performance of ProphIC3, in contrast, decreased significantly, and ProphIC3 moved
from the second to the third place.

6.4 Resource Budgets: CPU time vs. Wall-clock time

In the preparation phase of CHC-COMP-20, there was a discussion with several teams about the use of
CPU time vs. wall-clock time to define the resource budget of solvers, and the possibility to have separate
tracks in future editions of CHC-COMP for parallel solvers (with wall-clock time budget and no limit on

Philipp Rümmer 113

CPU time). For CHC-COMP-20, such tracks were not introduced in the end, and the primary resource
limit was the available CPU time, but adding tracks for parallel solvers can be an interesting new feature
for CHC-COMP-21, or beyond.

It is meaningful to analyse the CHC-COMP-20 outcomes in this light. An immediate observation is
that the three LIA tracks show very different behaviour with respect to runtime than the LRA-TS track.
In the LIA tracks, the average CPU time of solvers is usually significantly below 100s, and the cactus
plots show that the ranking of solvers hardly changes above 100s CPU time (Figures 1, 2, 3). Only
few benchmarks in those tracks can be solved with CPU time above 600s. This means that CPU time
(and therefore also wall-clock time) is essentially not a limiting factor in the LIA tracks, the current
solvers already hardly utilise the available computation time. Since there is plenty of computation time
available, already at this point solvers can use portfolios and run different configurations in parallel, as
done by some of the participating solvers. To make specific parallel LIA tracks interesting, it would
be necessary to change the scoring scheme of CHC-COMP: no longer count just the number of solved
benchmarks, but also factor in the required wall-clock time in the ranking of solvers.

The situation is different in LRA-TS: in this track the average CPU time used by solvers is between
100s and 300s, and the cactus plots show interesting developments even after 600s CPU time. Since the
maximum speed-up observed in LRA-TS is 2.93, the cactus plot for wall-clock performance should be
interpreted only up to a time limit of around 600s, beyond 600s the results are limited by the available
CPU time. Limiting the wall-clock time to 600s would indeed change the ranking of solvers, with the
parallel computation used in pSally paying off, and other solvers could of course be optimised in a similar
way. It would be an interesting experiment to repeat the evaluation of LRA-TS with unlimited CPU time,
and wall-clock time limited to 1800s, which would amount to a parallel track.

In summary, for the next editions of CHC-COMP parallel tracks are mainly interesting for LRA-TS,
where solvers can indeed utilise the available computation time. In the LIA tracks the solvers are mainly
limited by the implemented algorithms and heuristics, and less by the available computation time.

7 Conclusions

The organiser would like to congratulate the winners of the four CHC-COMP-20 tracks, Spacer and
IC3IA, and all solvers and people submitting solvers for the excellent performance this year! Thanks go
to all people who have been helping with infrastructure, scripts, benchmarks, or in other ways, see the
acknowledgements in the introduction; and to the HCVS workshop for hosting CHC-COMP!

In order to keep CHC-COMP an interesting and relevant competition, the organiser also identified several
questions and issues that should be discussed and addressed in the next editions:

• Duplicate benchmarks included in multiple repositories. The selection of benchmarks in CHC-
COMP-20 probably contained some benchmarks repeatedly, for instance benchmarks from the
repositories sv-comp or chc-comp19-benchmarks that were pre-processed using different tools
initially, and thus not identified as duplicates. The outcome of the competition was probably not
affected very much by this, but this is an issue that should be addressed in the long run. To keep
the decentralised model of storing benchmarks in CHC-COMP, one could maintain a global list of
all available unique benchmarks.

• A more systematic method for hardness rating of benchmarks is needed. Some rating is required
to select interesting benchmarks, but any rating has the potential of changing the outcome of the
competition. The use of Eldarica and Ultimate Unihorn (in the versions from CHC-COMP-19) for

114 Competition Report: CHC-COMP-20

problem rating possibly puts the CHC-COMP-20 versions of those solvers at a disadvantage (or
advantage) compared to other solvers not used for rating. For instance, if solvers A and B show
completely uncorrelated performance on some set of benchmarks, then picking 50% easy and 50%
hard benchmarks for solver A will not affect the expected outcome for solver B, but will fix the
outcome of solver A to 50%.

• A better way has to be found to handle cases of inconsistent results, as observed this year in the
LIA-lin-arrays track. There are different solutions: (i) only use benchmarks with known status in
the competition; (ii) require solvers to produce, on demand, models or counterexamples when they
claim to be able to solve a problem. This requires a discussion.

• An approach to determine and store the expected outcome of the individual benchmarks.

• A discussion is needed about new tracks to be added in the competition: parallel tracks, or tracks
with new background theories, for instance algebraic data-types or bit-vectors?

• A bigger set of benchmarks is needed, and all users and tool authors are encouraged to
submit benchmarks! In particular, in the LIA-nonlin and LRA-TS tracks, the competition results
indicate that harder benchmarks are required.

Philipp Rümmer 115

8 Solver Descriptions

The tool descriptions in this section were contributed by the tool submitters, and the copyright on the
texts remains with the individual authors.

Eldarica-abs

Xiaozhen Zhang
Dalian University of Technology, China

Weiqiang Kong
Dalian University of Technology, China

Algorithm. Eldarica-abs is a variant of Eldarica [15], which is a model checker for Horn clauses,
Numerical Transition Systems, and software programs. Eldarica-abs mainly concentrates on the mod-
ification of the exploration strategies of abstraction lattices utilized in Eldarica. Identical with Eldar-
ica, the inputs of Eldarica-abs can be read in a variety of formats, including SMT-LIB v2 and Prolog
for Horn clauses, and fragments of Scala and C for software programs; and these inputs can be anal-
ysed using a variant of the Counterexample-Guided Abstraction Refinement (CEGAR) method, in which
interpolation-based techniques are used to synthesis new predicates for CEGAR. Different from Eldarica,
Eldarica-abs takes the cost-guided bidirectional heuristic search strategy to search constructed abstrac-
tion lattices in order to compute the interpolants of good quality [25]. As the goal elements are not
only maximal and feasible, but also of minimal cost, this search strategy chooses from the top of the
abstraction lattice to search downwards and introduces the predecessors computing function to avoid the
repeated visit of the predecessors; and then, for the feasible predecessors of one element under consid-
eration, upward searching strategy is taken to search an element whose all successors are all infeasible;
for the infeasible predecessors, the cost and infeasibility information contained in these elements are
utilized to change the set of the elements to be searched; additionally, for the selection of every element
to be extended, we make the most of the information contained in the visited elements set and the set of
elements to be visited, in order to choose the best candidate element and then promote the performance
of the searching process along an effective path.

Architecture and Implementation. The overall architecture of Eldarica-abs is the same as Eldarica
and it can be divided into three phases: input encoding phase; preprocessing phase; CEGAR engine solv-
ing phase [15]. Among these phases, interpolation abstraction is introduced as an effective convergence
heuristic technique to compute the Craig interpolants of good quality, which are utilized to inspire the
acquirement of the right predicates necessary in CEGAR process. In the course of obtaining suitable
Craig interpolants, Eldarica-abs takes a different cost-guided bidirectional heuristic exploration strategy
to search the constructed abstraction lattices.

Based on the work of Eldarica, Eldarica-abs is also implemented in Scala and depends on Java and
Scala libraries and the Princess SMT solver.

Configuration in CHC-COMP-20. Eldarica-abs was running with default options in the competition.

https://github.com/zhangxiaozhen/Eldarica-abs

BSD licence

https://github.com/zhangxiaozhen/Eldarica-abs

116 Competition Report: CHC-COMP-20

IC3IA 2020.05

Alberto Griggio
Fondazione Bruno Kessler, Italy

Ahmed Irfan
Stanford University, USA

Makai Mann
Stanford University, USA

Algorithm. The tool is an open-source implementation of IC3 Modulo Theories via Implicit Predicate
Abstraction (IC3IA). It is one approach for extending IC3 to the theory level, with the advantage that it
can be applied to arbitrary theories without theory-specific quantifier elimination procedures.

Architecture and Implementation. It depends on MathSAT 5.6.3 [7]. The ic3ia code is distributed
under the GPLv3 license. This tool operates on transition systems rather than CHC. CHC clauses are
translated to Verification Modulo Theories (VMT) format using a program distributed with ic3ia.

Configuration in CHC-COMP-20. The submitted solver is run using options -solver-approx 1

-inc-ref 1.

https://es-static.fbk.eu/people/griggio/ic3ia/index.html

GPLv3

PCSat

Yu Gu
University of Tsukuba, Japan

Hiroshi Unno
University of Tsukuba, Japan

Algorithm. PCSat is a solver for a general class of second-order constraints on predicate and function
variables. Its applications include but not limited to branching-time temporal verification, dependent
refinement type inference, program synthesis, and infinite-state game solving.

PCSat is based on CounterExample-Guided Inductive Synthesis (CEGIS), with the support of mul-
tiple synthesis engines including template-based, decision-tree-based, and graphical-model-based [23]
ones.

Architecture and Implementation. PCSat is designed and implemented as a highly-configurable
solver, allowing us to test various possible combinations of synthesis engines, example sampling strate-
gies, and backend SAT/SMT solvers. This design is enabled by the powerful module system and the
metaprogramming features of the OCaml functional programming language.

Configuration in CHC-COMP-20. We adopted a parallel combination of the template-based and
decision-tree-based synthesis engines. Z3 and MiniSat are used as the backend SMT and SAT solvers,
respectively.

https://github.com/hiroshi-unno/coar

Apache License 2.0

https://es-static.fbk.eu/people/griggio/ic3ia/index.html
https://github.com/hiroshi-unno/coar

Philipp Rümmer 117

ProphIC3

Makai Mann
Stanford University, USA

Ahmed Irfan
Stanford University, USA

Alberto Griggio
Fondazione Bruno Kessler, Italy

Oded Padon
Stanford University, USA

Clark Barrett
Stanford University, USA

Algorithm. The tool prophic3 is a prototype implementation of a Counter-example Guided Abstrac-
tion Refinement (CEGAR) [20] algorithm for model checking modulo the theory of arrays. The algo-
rithm abstracts the theory of arrays using uninterpreted functions and lazily adds array axioms. Fur-
thermore, it uses counterexamples to add history and prophecy variables which can help find simpler
invariants, even reducing quantified invariants to quantifier-free invariants in some cases. The approach
wraps a standard model checker. The underlying model checker must support all the theories used in the
input problem, except the theory of arrays.

Architecture and Implementation. The prophic3 prototype depends on ic3ia [11], an implementa-
tion of IC3 Modulo Theories via Implicit Predicate Abstraction (IC3IA) [6]. IC3IA is one approach
for extending IC3 [5] to arbitrary theories. This is version 2020.05 of ic3ia. It depends on MathSAT
5.6.3 [7]. This tool operates on transition systems rather than CHC. CHC clauses are translated to Veri-
fication Modulo Theories (VMT) format using a program distributed with ic3ia.

Configuration in CHC-COMP-20. The submitted solver is a portfolio approach which runs prophic3
from git tag chccomp-2020 with option -no-eq-uf, as well as bounded model checking [1] up to bound
100 on the concrete system.

https://github.com/makaimann/prophic3

GPLv3

Sally and pSally

Martin Blicha3

Università della Svizzera italiana, Switzerland

Algorithm. Our competition entry is derived from the model checker Sally [17], which we have en-
hanced in two ways: First, we have supplied our interpolating SMT solver OpenSMT with a specialized
interpolation procedure for Linear Real Arithmetic (LRA) as part of Sally’s backend. Secondly, we have
implemented a parallel version of Sally (pSally) where multiple instances cooperate by sharing informa-
tion discovered about the problem at hand. The current version of the tool is limited to solving safety of
Transition Systems encoded in LRA.

The tool uses Sally’s PD-KIND engine [17] as the core algorithm. PD-KIND strengthens the IC3
algorithm with k-induction and gradually builds a k-inductive safe invariant of the transition system. It
relies on an SMT solver for answering satisfiability queries, generalization and interpolation. Our spe-
cialized interpolation procedure computes stronger interpolants than traditional interpolation algorithm

3This submitted tool builds on the work of Dejan Jovanović and Bruno Dutertre. The tool and the related research were
realised with significant contributions by various colleagues, in particular by Matteo Marescotti, Antti E. J. Hyvärinen and
Natasha Sharygina.

https://github.com/makaimann/prophic3

118 Competition Report: CHC-COMP-20

and this has been shown to be useful in model checking scenarios [3]. The parallel version on the other
hand leverages a portfolio of interpolation algorithms for discovering useful facts about the system under
analysis, as well as a cooperative framework for sharing the discovered information [4].

Architecture and Implementation. The competition entry uses Sally’s PD-KIND reasoning engine,
with the SMT solvers Yices2 [9] and OpenSMT [16] for generalization and interpolation, respectively.
OpenSMT uses an interpolation algorithm that computes decomposed LRA interpolants [3]. The parallel
version uses SMTS framework [21] for managing multiple instances and their communication.

Configuration in CHC-COMP-20.
Command line options of Sally:
$ sally --engine pdkind --solver y2o2 --solver-logic QF LRA

--pdkind-minimize-frames --pdkind-minimize-interpolants

--opensmt2-itp-lra 4 --opensmt2-simplify_itp 4 --yices2-mode dpllt --output-lang

horn -i <input file>

Command line options of pSally for creating three instances and enabling the sharing of information:
$ python3 smts.py -l -s3

http://sri-csl.github.io/sally/

GNU GENERAL PUBLIC LICENSE v2

https://zenodo.org/record/3484097

MIT LICENSE

SPACER

Hari Govind V K
University of Waterloo, Canada

Arie Gurfinkel
University of Waterloo, Canada

Algorithm. SPACER [19] is an IC3/PDR-style algorithm for solving linear and non linear CHCs. Given
a set of CHCs, it iteratively proves the unreachability of false at larger and larger depths until a model is
found or the set of CHCs is proven unsatisfiable. To prove unreachability at a particular depth, SPACER

recursively generates sets of predecessor states (called proof obligations (POBs)) from which false can
be derived and blocks them. Once a POB is blocked, SPACER generalizes the proof to learn a lemma that
blocks multiple POBs. SPACER uses many heuristics to learn lemmas. These include interpolation, in-
ductive generalization and quantifier generalization. The latest version of Spacer presents a new heuristic
for learning lemmas [18].

The current implementation of SPACER supports linear and nonlinear CHCs in the theory of Arrays,
Linear Arithmetic and FixedSizeBitVectors. SPACER can generate both quantified and quantifier free
models as well as resolution proof of unsatisfiability.

Architecture and Implementation. SPACER is implemented on top of the Z3 theorem prover. It
uses many SMT solvers implemented in Z3. Additionally, it implements a max-SMT solver and an
interpolating SMT solver.

http://sri-csl.github.io/sally/
https://zenodo.org/record/3484097

Philipp Rümmer 119

Configuration in CHC-COMP-20. We used different configurations for different tracks. However,
all the preprocessing options and some SPACER options remained the same in all the tracks. Common
configuration for all tracks:

fp.spacer.global=true fp.spacer.concretize=true fp.spacer.conjecture=true

fp.xform.tail_simplifier_pve=false fp.validate=true fp.spacer.mbqi=false

Additionally, in the Arrays track, we used the quantifier generalization strategies:

fp.spacer.q3.use_qgen=true fp.spacer.q3.instantiate=true fp.spacer.q3=true

In the LRA-TS track, we turned off interpolation:

fp.spacer.use_iuc=false

https://github.com/Z3Prover/z3

MIT License

Ultimate TreeAutomizer 0.1.25-6b0a1c7

Matthias Heizmann
University of Freiburg, Germany

Daniel Dietsch
University of Freiburg, Germany

Jochen Hoenicke
University of Freiburg, Germany

Alexander Nutz
University of Freiburg, Germany

Andreas Podelski
University of Freiburg, Germany

Algorithm. The ULTIMATE TREEAUTOMIZER solver implements an approach that is based on tree
automata [8]. In this approach potential counterexamples to satisfiability are considered as a regular set
of trees. In an iterative CEGAR loop we analyze potential counterexamples. Real counterexamples lead
to an unsat result. Spurious counterexamples are generalized to a regular set of spurious counterexamples
and subtracted from the set of potential counterexamples that have to be considered. In case we detected
that all potential counterexamples are spurious, the result is sat. The generalization above is based on
tree interpolation and regular sets of trees are represented as tree automata.

Architecture and Implementation. TREEAUTOMIZER is a toolchain in the ULTIMATE framework.
This toolchain first parses the CHC input and then runs the treeautomizer plugin which implements
the above mentioned algorithm. We obtain tree interpolants from the SMT solver SMTInterpol4 [14]. For
checking satisfiability, we use the Z3 SMT solver5. The tree automata are implemented in ULTIMATE’s
automata library6. The ULTIMATE framework is written in Java and build upon the Eclipse Rich Client
Platform (RCP). The source code is available at GitHub7.

4https://ultimate.informatik.uni-freiburg.de/smtinterpol/
5https://github.com/Z3Prover/z3
6https://ultimate.informatik.uni-freiburg.de/automata_library
7https://github.com/ultimate-pa/

https://github.com/Z3Prover/z3
https://ultimate.informatik.uni-freiburg.de/smtinterpol/
https://github.com/Z3Prover/z3
https://ultimate.informatik.uni-freiburg.de/automata_library
https://github.com/ultimate-pa/

120 Competition Report: CHC-COMP-20

Configuration in CHC-COMP-20. Our StarExec archive for the competition is shipped with the
bin/starexec_run_default shell script calls the ULTIMATE command line interface with the
TreeAutomizer.xml toolchain file and the TreeAutomizerHopcroftMinimization.epf settings
file. Both files can be found in toolchain (resp. settings) folder of ULTIMATE’s repository.

https://ultimate.informatik.uni-freiburg.de/

LGPLv3 with a linking exception for Eclipse RCP

Ultimate Unihorn 0.1.25-6b0a1c7

Matthias Heizmann
University of Freiburg, Germany

Daniel Dietsch
University of Freiburg, Germany

Jochen Hoenicke
University of Freiburg, Germany

Alexander Nutz
University of Freiburg, Germany

Andreas Podelski
University of Freiburg, Germany

Algorithm. ULTIMATE UNIHORN reduces the satisfiability problem for a set of constraint Horn clauses
to a software verfication problem. In a first step UNIHORN applies a yet unpublished translation in
which the constraint Horn clauses are translated into a recursive program that is nondeterministic and
whose correctness is specified by an assert statement The program is correct (i.e., no execution violates
the assert statement) if and only if the set of CHCs is satisfiable. For checking whether the recursive
program satisfies its specification, Unihorn uses ULTIMATE AUTOMIZER [12] which implements an
automata-based approach to software verification [13].

Architecture and Implementation. ULTIMATE UNIHORN is a toolchain in the ULTIMATE frame-
work. This toolchain first parses the CHC input and then runs the chctoboogie plugin which does
the translation from CHCs into a recursive program. We use the Boogie language to represent that
program. Afterwards the default toolchain for verifying a recursive Boogie programs by ULTIMATE AU-
TOMIZER is applied. The ULTIMATE framework shares the libraries for handling SMT formulas with
the SMTInterpol SMT solver. While verifying a program, ULTIMATE AUTOMIZER needs SMT solvers
for checking satisfiability, for computing Craig interpolants and for computing unsatisfiable cores. The
version of UNIHORN that participated in the competition used the SMT solvers SMTInterpol8and Z39.
The ULTIMATE framework is written in Java and build upon the Eclipse Rich Client Platform (RCP).
The source code is available at GitHub10.

Configuration in CHC-COMP-20. Our StarExec archive for the competition is shipped with the
bin/starexec_run_default shell script calls the ULTIMATE command line interface with the
AutomizerCHC.xml toolchain file and the AutomizerCHC_No_Goto.epf settings file. Both files can
be found in toolchain (resp. settings) folder of ULTIMATE’s repository.

https://ultimate.informatik.uni-freiburg.de/

LGPLv3 with a linking exception for Eclipse RCP
8https://ultimate.informatik.uni-freiburg.de/smtinterpol/
9https://github.com/Z3Prover/z3

10https://github.com/ultimate-pa/

https://ultimate.informatik.uni-freiburg.de/
https://ultimate.informatik.uni-freiburg.de/
https://ultimate.informatik.uni-freiburg.de/smtinterpol/
https://github.com/Z3Prover/z3
https://github.com/ultimate-pa/

Philipp Rümmer 121

Eldarica v2.0.3 (Hors Concours)

Hossein Hojjat
University of Tehran, Iran

Philipp Rümmer
Uppsala University, Sweden

Algorithm. Eldarica [15] is a Horn solver applying classical algorithms from model checking: predi-
cate abstraction and counterexample-guided abstraction refinement (CEGAR). Eldarica can solve Horn
clauses over linear integer arithmetic, arrays, algebraic data-types, and bit-vectors. It can process Horn
clauses and programs in a variety of formats, implements sophisticated algorithms to solve tricky systems
of clauses without diverging, and offers an elegant API for programmatic use.

Architecture and Implementation. Eldarica is entirely implemented in Scala, and only depends on
Java or Scala libraries, which implies that Eldarica can be used on any platform with a JVM. For com-
puting abstractions of systems of Horn clauses and inferring new predicates, Eldarica invokes the SMT
solver Princess [22] as a library.

Configuration in CHC-COMP-20. Eldarica is in the competition run with the option -abstractPO,
which enables a simple portfolio mode: two instances of the solver are run in parallel, one with the default
options, and one with the option -abstract:off to switch off the interpolation abstract technique.

https://github.com/uuverifiers/eldarica

BSD licence

https://github.com/uuverifiers/eldarica

122 Competition Report: CHC-COMP-20

References

[1] Armin Biere, Alessandro Cimatti, Edmund Clarke & Yunshan Zhu (1999): Symbolic Model Checking without
BDDs. In W. Rance Cleaveland, editor: Tools and Algorithms for the Construction and Analysis of Systems,
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 193–207, doi:10.1007/3-540-49059-0 14.

[2] Nikolaj Bjørner, Arie Gurfinkel, Kenneth L. McMillan & Andrey Rybalchenko (2015): Horn Clause Solvers
for Program Verification. In: Fields of Logic and Computation II - Essays Dedicated to Yuri Gurevich on the
Occasion of His 75th Birthday, pp. 24–51, doi:10.1007/978-3-319-23534-9 2.

[3] Martin Blicha, Antti E. J. Hyvärinen, Jan Kofroň & Natasha Sharygina (2019): Decomposing Farkas Inter-
polants. In Tomáš Vojnar & Lijun Zhang, editors: Tools and Algorithms for the Construction and Analysis
of Systems, Springer International Publishing, Cham, pp. 3–20, doi:10.1007/978-3-030-17462-0 1.

[4] Martin Blicha, Antti E. J. Hyvärinen, Matteo Marescotti & Natasha Sharygina (2020): A Cooperative Par-
allelization Approach for Property-Directed k-Induction. In Dirk Beyer & Damien Zufferey, editors: Verifi-
cation, Model Checking, and Abstract Interpretation, Springer International Publishing, Cham, pp. 270–292,
doi:10.1007/978-3-030-39322-9 13.

[5] Aaron R. Bradley (2011): SAT-Based Model Checking without Unrolling. In: VMCAI, LNCS 6538, Springer,
pp. 70–87, doi:10.1007/978-3-642-18275-4 7.

[6] Alessandro Cimatti, Alberto Griggio, Sergio Mover & Stefano Tonetta (2016): Infinite-state invariant check-
ing with IC3 and predicate abstraction. Formal Methods Syst. Des. 49(3), pp. 190–218, doi:10.1007/s10703-
016-0257-4.

[7] Alessandro Cimatti, Alberto Griggio, Bastiaan Schaafsma & Roberto Sebastiani (2013): The MathSAT5
SMT Solver. In Nir Piterman & Scott Smolka, editors: Proceedings of TACAS, LNCS 7795, Springer,
doi:10.1007/978-3-642-36742-7 7.

[8] Daniel Dietsch, Matthias Heizmann, Jochen Hoenicke, Alexander Nutz & Andreas Podelski (2019): Ulti-
mate TreeAutomizer (CHC-COMP Tool Description). In: HCVS/PERR@ETAPS, EPTCS 296, pp. 42–47,
doi:10.4204/EPTCS.296.7.

[9] Bruno Dutertre (2014): Yices 2.2. In Armin Biere & Roderick Bloem, editors: Computer-Aided Verification
(CAV’2014), LNCS 8559, Springer, pp. 737–744, doi:10.1007/978-3-319-08867-9 49.

[10] Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea & Andrey Rybalchenko (2012): Synthesizing Soft-
ware Verifiers from Proof Rules. In: PLDI, ACM, pp. 405–416, doi:10.1145/2254064.2254112.

[11] Alberto Griggio (Accessed 2020): Open-source IC3 Modulo Theories with Implicit Predicate Abstraction.
Available at https://es-static.fbk.eu/people/griggio/ic3ia/index.html.

[12] Matthias Heizmann, Yu-Fang Chen, Daniel Dietsch, Marius Greitschus, Jochen Hoenicke, Yong Li, Alexan-
der Nutz, Betim Musa, Christian Schilling, Tanja Schindler & Andreas Podelski (2018): Ultimate Automizer
and the Search for Perfect Interpolants - (Competition Contribution). In: TACAS (2), LNCS 10806, Springer,
pp. 447–451, doi:10.1007/978-3-319-89963-3 30.

[13] Matthias Heizmann, Jochen Hoenicke & Andreas Podelski (2013): Software Model Checking for People Who
Love Automata. In: CAV, LNCS 8044, Springer, pp. 36–52, doi:10.1007/978-3-642-39799-8 2.

[14] Jochen Hoenicke & Tanja Schindler (2018): Efficient Interpolation for the Theory of Arrays. In: IJCAR,
LNCS 10900, Springer, pp. 549–565, doi:10.1007/978-3-319-94205-6 36.

[15] Hossein Hojjat & Philipp Rümmer (2018): The ELDARICA Horn Solver. In Nikolaj Bjørner &
Arie Gurfinkel, editors: 2018 Formal Methods in Computer Aided Design, FMCAD, IEEE, pp. 1–7,
doi:10.23919/FMCAD.2018.8603013.

[16] Antti E. J. Hyvärinen, Matteo Marescotti, Leonardo Alt & Natasha Sharygina (2016): OpenSMT2: An SMT
Solver for Multi-core and Cloud Computing. In Nadia Creignou & Daniel Le Berre, editors: Theory and
Applications of Satisfiability Testing – SAT 2016, Springer International Publishing, Cham, pp. 547–553,
doi:10.1007/978-3-319-40970-2 35.

http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1007/978-3-319-23534-9_2
http://dx.doi.org/10.1007/978-3-030-17462-0_1
http://dx.doi.org/10.1007/978-3-030-39322-9_13
http://dx.doi.org/10.1007/978-3-642-18275-4_7
http://dx.doi.org/10.1007/s10703-016-0257-4
http://dx.doi.org/10.1007/s10703-016-0257-4
http://dx.doi.org/10.1007/978-3-642-36742-7_7
http://dx.doi.org/10.4204/EPTCS.296.7
http://dx.doi.org/10.1007/978-3-319-08867-9_49
http://dx.doi.org/10.1145/2254064.2254112
https://es-static.fbk.eu/people/griggio/ic3ia/index.html
http://dx.doi.org/10.1007/978-3-319-89963-3_30
http://dx.doi.org/10.1007/978-3-642-39799-8_2
http://dx.doi.org/10.1007/978-3-319-94205-6_36
http://dx.doi.org/10.23919/FMCAD.2018.8603013
http://dx.doi.org/10.1007/978-3-319-40970-2_35

Philipp Rümmer 123

[17] Dejan Jovanović & Bruno Dutertre (2016): Property-directed k-induction. In: 2016 Formal Methods in
Computer-Aided Design (FMCAD), pp. 85–92, doi:10.1109/FMCAD.2016.7886665.

[18] Hari Govind V K, YuTing Chen, Sharon Shoham & Arie Gurfinkel (2020): Global Guidance for Local
Generalization in Model Checking. In: Computer Aided Verification - 32nd International Conference, CAV
2020. To appear.

[19] Anvesh Komuravelli, Arie Gurfinkel & Sagar Chaki (2016): SMT-based model checking for recursive pro-
grams. Formal Methods Syst. Des. 48(3), pp. 175–205, doi:10.1007/s10703-016-0249-4.

[20] Daniel Kroening, Alex Groce & Edmund M. Clarke (2004): Counterexample Guided Abstraction Refinement
Via Program Execution. In: ICFEM, LNCS 3308, Springer, pp. 224–238, doi:10.1007/978-3-540-30482-1 -
23.

[21] Matteo Marescotti, Antti Hyv\”arinen & Natasha Sharygina (2018): SMTS: Distributed, Visualized Con-
straint Solving. In Gilles Barthe, Geoff Sutcliffe & Margus Veanes, editors: LPAR-22. 22nd International
Conference on Logic for Programming, Artificial Intelligence and Reasoning, EPiC Series in Computing 57,
EasyChair, pp. 534–542, doi:10.29007/fhgn.

[22] Philipp Rümmer (2008): A Constraint Sequent Calculus for First-Order Logic with Linear Integer Arith-
metic. In: Proceedings, 15th International Conference on Logic for Programming, Artificial Intelligence and
Reasoning, LNCS 5330, Springer, pp. 274–289, doi:10.1007/978-3-540-89439-1 20.

[23] Yuki Satake, Hiroshi Unno & Hinata Yanagi (2020): Probabilistic Inference for Predicate Constraint Satis-
faction. In: Proceedings of AAAI 2020. To appear.

[24] Aaron Stump, Geoff Sutcliffe & Cesare Tinelli (2014): StarExec: A Cross-Community Infrastructure for
Logic Solving. In Stéphane Demri, Deepak Kapur & Christoph Weidenbach, editors: Automated Reasoning
- 7th International Joint Conference, IJCAR, LNCS 8562, Springer, pp. 367–373, doi:10.1007/978-3-319-
08587-6 28.

[25] Xiaozhen Zhang & Weiqiang Kong (2020): Facilitating CHC Solving with Improving Interpolation Abstrac-
tion Exploration. To appear.

http://dx.doi.org/10.1109/FMCAD.2016.7886665
http://dx.doi.org/10.1007/s10703-016-0249-4
http://dx.doi.org/10.1007/978-3-540-30482-1_23
http://dx.doi.org/10.1007/978-3-540-30482-1_23
http://dx.doi.org/10.29007/fhgn
http://dx.doi.org/10.1007/978-3-540-89439-1_20
http://dx.doi.org/10.1007/978-3-319-08587-6_28
http://dx.doi.org/10.1007/978-3-319-08587-6_28

124 Competition Report: CHC-COMP-20

Solver Score #sat #unsat CPU time (s) Wall-clock (s) Speedup SotAC
Spacer 554 292 262 6.03 6.11 0.99 0.28
Eldarica (HC) 513 265 248 43.58 19.10 2.28 0.23
Eldarica-abs 513 266 247 52.07 35.96 1.45 0.23
U. Unihorn 420 212 208 75.73 49.11 1.54 0.21
PCSat 331 156 175 92.10 29.54 3.12 0.20
U. TreeAutomizer 118 34 84 41.17 30.00 1.37 0.17
Any solver 560 298 262

2 40 78 11
6

15
4

19
2

23
0

26
8

30
6

34
4

38
2

42
0

45
8

49
6

53
4

0.01

0.1

1

10

100

1000

Eldarica-abs

PCSat

Spacer

TreeAutomizer

Unihorn

Eldarica (HC)

Problems solved

C
P

U
-t

im
e

(s
)

2 40 78 11
6

15
4

19
2

23
0

26
8

30
6

34
4

38
2

42
0

45
8

49
6

53
4

0.01

0.1

1

10

100

1000

Eldarica-abs

PCSat

Spacer

TreeAutomizer

Unihorn

Eldarica (HC)

Problems solved

W
al

l-
cl

oc
k

tim
e

(s
)

Figure 1: Solver performance on the 565 benchmarks of the LIA-nonlin track

Philipp Rümmer 125

Solver Score #sat #unsat CPU time (s) Wall-clock (s) Speedup SotAC
Spacer 518 330 188 11.94 12.03 0.99 0.22
Eldarica-abs 477 300 177 57.26 39.59 1.45 0.20
Eldarica (HC) 476 300 176 48.58 20.00 2.43 0.20
U. Unihorn 407 240 167 43.57 26.21 1.66 0.17
IC3IA 400 260 140 46.09 46.23 1.00 0.20
PCSat 329 191 138 37.91 12.23 3.10 0.17
U. TreeAutomizer 307 166 141 50.30 37.43 1.34 0.17
Any solver 558 356 202

2 44 86 12
8

17
0

21
2

25
4

29
6

33
8

38
0

42
2

46
4

50
6

54
8

59
0

0.01

0.1

1

10

100

1000

Eldarica-abs

ic3ia

PCSat

Spacer

TreeAutomizer

Unihorn

Eldarica (HC)

Problems solved

C
P

U
-t

im
e

(s
)

2 44 86 12
8

17
0

21
2

25
4

29
6

33
8

38
0

42
2

46
4

50
6

54
8

59
0

0.01

0.1

1

10

100

1000

Eldarica-abs

ic3ia

PCSat

Spacer

TreeAutomizer

Unihorn

Eldarica (HC)

Problems solved

W
al

l-
cl

oc
k

tim
e

(s
)

Figure 2: Solver performance on the 596 benchmarks of the LIA-lin track

126 Competition Report: CHC-COMP-20

Solver Score #sat #unsat CPU time (s) Wall-clock (s) Speedup SotAC
Spacer 295 203 92 0.81 0.89 0.91 0.37
U. Unihorn 217 144 73 39.73 24.12 1.65 0.26
ProphIC3 214 140 74 38.24 19.17 1.99 0.34
IC3IA 147 92 55 9.17 9.30 0.99 0.24
U. TreeAutomizer 147 100 47 31.49 21.46 1.47 0.22
Eldarica (HC) 91 91 0 106.80 68.05 1.57 0.24
Any solver 350 250 100

1 35 69 10
3

13
7

17
1

20
5

23
9

27
3

30
7

34
1

37
5

40
9

44
3

47
7

0.01

0.1

1

10

100

1000

ic3ia

Prophic3

Spacer

TreeAutomizer

Unihorn

Eldarica (HC)

Problems solved

C
P

U
-t

im
e

(s
)

1 35 69 10
3

13
7

17
1

20
5

23
9

27
3

30
7

34
1

37
5

40
9

44
3

47
7

0.01

0.1

1

10

100

1000

ic3ia

Prophic3

Spacer

TreeAutomizer

Unihorn

Eldarica (HC)

Problems solved

W
al

l-
cl

oc
k

tim
e

(s
)

Figure 3: Solver performance on 500 benchmarks of the LIA-lin-arrays track (one benchmark on which
Spacer and Ultimate Unihorn give conflicting answers is not counted)

Philipp Rümmer 127

Solver Score #sat #unsat CPU time (s) Wall-clock (s) Speedup SotAC
IC3IA 468 378 90 136.94 137.05 1.00 0.29
Sally-parallel 439 360 79 138.81 47.37 2.93 0.24
Sally-decomposing-itp 438 357 81 107.61 107.68 1.00 0.24
Spacer 346 270 76 176.75 176.86 1.00 0.22
U. TreeAutomizer 168 131 37 239.75 202.11 1.19 0.19
U. Unihorn 160 103 57 213.33 158.57 1.35 0.18
Any solver 481 388 93

1 34 67 10
0

13
3

16
6

19
9

23
2

26
5

29
8

33
1

36
4

39
7

43
0

46
3

49
6

0.01

0.1

1

10

100

1000

ic3ia

Sally-decomp-itp

Sally-parallel

Spacer

TreeAutomizer

Unihorn

Problems solved

C
P

U
-t

im
e

(s
)

1 36 71 10
6

14
1

17
6

21
1

24
6

28
1

31
6

35
1

38
6

42
1

45
6

49
1

0.01

0.1

1

10

100

1000

ic3ia

Sally-decomp-itp

Sally-parallel

Spacer

TreeAutomizer

Unihorn

600s

Problems solved

W
al

l-c
lo

ck
 ti

m
e

(s
)

Figure 4: Solver performance on the 499 benchmarks of the LRA-TS track

	1 Introduction
	1.1 Acknowledgements

	2 Brief Overview of the Competition Design
	2.1 Competition Tracks
	2.2 Computing Nodes
	2.3 Test and Competition Runs
	2.4 Evaluation of the Competition Runs

	3 Competition Benchmarks
	3.1 File Format
	3.2 Benchmark Processing
	3.3 Handling of Benchmarks with Multiple Queries
	3.4 Benchmark Inventory

	4 Benchmark Rating and Selection
	5 Solvers Entering CHC-COMP-20
	6 Competition Results
	6.1 Overview
	6.2 Detailed Results
	6.3 Observed Inconsistencies in the Competition Runs, and Fixes
	6.4 Resource Budgets: CPU time vs. Wall-clock time

	7 Conclusions
	8 Solver Descriptions

