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The problem of determining whether or not any program terminates was shown to be undecidable
by Turing, but recent advances in the area have allowed this information to be determined for a large
class of programs. The classic method for deciding whether a program terminates dates back to
Turing himself and involves finding a ranking function that maps a program state to a well-order, and
then proving that the result of this function decreases for every possible program transition. More
recent approaches to proving termination have involved moving away from the search for a single
ranking function and toward a search for a set of ranking functions; this set is a choice of ranking
functions and a disjunctive termination argument is used. In this paper, we describe a new technique
for determining whether programs terminate. Our technique is applied to the output of the distillation
program transformation that converts programs into a simplified form called distilled form. Programs
in distilled form are converted into a corresponding labelled transition system and termination can
be demonstrated by showing that all possible infinite traces through this labelled transition system
would result in an infinite descent of well-founded data values. We demonstrate our technique on a
number of examples, and compare it to previous work.

1 Introduction

The program termination problem, or halting problem, can be defined as follows: using only a finite
amount of time, determine whether a given program will always finish running or could execute for-
ever. This problem rose to prominence before the development of stored program computers, in the
time of Hilbert’s Entscheidungs problem: the challenge to formalise all of mathematics and use algorith-
mic means to determine the validity of all statements. The halting problem was famously shown to be
undecidable by Turing [26].

Although it is not possible to prove program termination in all cases, there are many programs for
which this can be proved. The classic method for doing this dates back to Turing himself [27] and
involves finding a ranking function that maps a program state to a well-order, and then proving that
the result of this function decreases for every possible program transition. This has a number of useful
applications, such as in program verification, where partial correctness is often proved using deductive
methods and a separate proof of termination is given to show total correctness, as originally done by
Floyd [11]. More recent approaches to proving termination have involved moving away from the search
for a single ranking function and toward a search for a set of ranking functions; this set is a choice
of ranking functions and a disjunctive termination argument is used. Program termination techniques
have been developed for functional programs [12, 17, 14, 19], logic programs [20, 7, 18], term rewriting
systems [10, 2, 24] and imperative programs [11, 5, 3, 8, 1, 23, 9, 13].

In this paper, we describe a new approach to the termination analysis of functional programs that is
applied to the output of the distillation program transformation [15, 16]. Distillation converts programs
into a simplified form called distilled form, and to prove that programs in this form terminate, we con-
vert them into a corresponding labelled transition system and then show that all possible infinite traces

http://dx.doi.org/10.4204/EPTCS.??.10
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


G.W. Hamilton 141

through the labelled transition system would result in an infinite descent of well-founded data values.
This proof of termination is similar to that described in [6] using cyclic proof techniques. However, we
are able to prove termination for a wider class of programs.

The language used throughout this paper is a call-by-name higher-order functional language with the
following syntax.
Definition 1.1 (Language Syntax) The syntax of this language is as shown in Fig. 1. 2

prog ::= e0 where h1 = e1, . . . ,hk = ek Program

e ::= x Variable
| c e1 . . .en Constructor Application
| λx.e λ -Abstraction
| f Function Call
| e0 e1 Application
| case e0 of p1⇒ e1 | · · · | pn⇒ en Case Expression
| let x = e0 in e1 Let Expression

h ::= f x1 . . .xn Function Header

p ::= c x1 . . .xn Pattern

Figure 1: Language Syntax

Programs in the language consist of an expression to evaluate and a set of function definitions. An
expression can be a variable, constructor application, λ -abstraction, function call, application, case or
let. Variables introduced by function headers, λ -abstractions, case patterns and lets are bound; all other
variables are free. An expression that contains no free variables is said to be closed. We write e≡ e′ if e
and e′ differ only in the names of bound variables.

Each constructor has a fixed arity; for example Nil has arity 0 and Cons has arity 2. In an expression
c e1 . . .en, n must equal the arity of c. The patterns in case expressions may not be nested. No variable
may appear more than once within a pattern. We assume that the patterns in a case expression are non-
overlapping and exhaustive. It is also assumed that erroneous terms such as (c e1 . . .en) e where c is of
arity n and case (λx.e) of p1⇒ e1 | · · · | pn⇒ en cannot occur.
Example 1 Consider the program from [4] shown in Figure 2 for calculating the greatest common di-
visor of two numbers x and y. Proving the termination of this program is tricky as there is no clear
continued decrease in the size of either of the parameters of the gcd function (even though a number is
subtracted from one of the arguments in each recursive call, it is difficult to determine that the number
subtracted must be non-zero). We show how the termination of this program can be proved using our
approach.
The remainder of this paper is structured as follows. In Section 2, we give some preliminary definitions
that are used throughout the paper. In Section 3, we define the labelled transition systems that are used in
our termination proofs. In Section 4, we show how to prove termination of programs using our technique,
and apply this technique to the program in Figure 2. In Section 5, we give some examples of programs
that cause difficulties in termination analysis using other techniques, but are shown to terminate using
our technique. Section 6 concludes and considers related work.
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gcd x y
where
gcd x y = case (gt x y) of

True → gcd (sub x y) y
| False→ case (gt y x) of

True → gcd x (sub y x)
| False→ x

gt x y = case x of
Zero → False
| Succ x→ case y of

Zero → True
| Succ y→ gt x y

sub x y = case y of
Zero → x
| Succ y→ case x of

Zero → Zero
| Succ x→ sub x y

Figure 2: Example Program

2 Preliminaries

In this section, we complete the presentation of our programming language and give a brief overview of
the distillation program transformation algorithm.

2.1 Language Definition

Definition 2.1 (Substitution) We use the notation θ = {x1 7→ e1, . . . ,xn 7→ en} to denote a substitution.
If e is an expression, then eθ = e{x1 7→ e1, . . . ,xn 7→ en} is the result of simultaneously substituting the
expressions e1, . . . ,en for the corresponding variables x1, . . . ,xn, respectively, in the expression e while
ensuring that bound variables are renamed appropriately to avoid name capture. 2

Definition 2.2 (Language Semantics) The call-by-name operational semantics of our language is stan-
dard: we define an evaluation relation ⇓ between closed expressions and values, where values are expres-
sions in weak head normal form (i.e. constructor applications or λ -abstractions). We define a one-step
reduction relation r; inductively as shown in Fig. 3, where the reduction r can be f (unfolding of func-
tion f ), c (elimination of constructor c) or β (β -substitution). 2

Definition 2.3 (Context) A context C is an expression with a “hole” [] in the place of one sub-expression.
C[e] is the expression obtained by replacing the hole in context C with the expression e. The free variables
within e may become bound within C[e]; if C[e] is closed then we call it a closing context for e.

We use the notation e r; if the expression e reduces, e ⇑ if e diverges, e ⇓ if e converges and e ⇓ v if e
evaluates to the value v. These are defined as follows, where r;

∗
denotes the reflexive transitive closure

of r;:
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((λx.e0) e1)
β
; (e0{x 7→ e1})

f x1 . . .xn = e

f
f

; λx1 . . .xn.e

e0
r; e′0

(e0 e1)
r; (e′0 e1)

pi = c x1 . . .xn

(case (c e1 . . .en) of p1 : e′1| . . . |pk : e′k)
c; (ei{x1 7→ e1, . . . ,xn 7→ en})

e0
r; e′0

(case e0 of p1 : e1| . . . pk : ek)
r; (case e′0 of p1 : e1| . . . pk : ek)

(let x = e0 in e1)
β
; (e1{x 7→ e0})

Figure 3: One-Step Reduction Relation

e r;, iff ∃e′.e r; e′ e ⇓, iff ∃v.e ⇓ v
e ⇓ v, iff e r;

∗
v∧¬(v r;) e ⇑, iff ∀e′.e r;

∗
e′⇒ e′ r;

Definition 2.4 (Contextual Equivalence) Contextual equivalence, denoted by ', equates two expres-
sions if and only if they exhibit the same termination behaviour in all closing contexts i.e. e1 ' e2 iff
∀C . C[e1] ⇓ iff C[e2] ⇓ .

2.2 Distillation

Distillation [15, 16] is a powerful program transformation technique that builds on top of the positive su-
percompilation transformation algorithm [25, 22]. The following theorems have previously been proved
about the distillation transformation D .

Theorem 2.5 (Correctness of Transformation) ∀p ∈ Prog : D [[p]]' p

Thus, the resulting program will have the same termination properties as the original program in all
contexts.

Theorem 2.6 (On The Form of Expressions Produced by Distillation) For all possible input programs,
distillation terminates and the form of expressions it produces (after all function arguments that are not
variables are extracted using lets), which we call distilled form, is described by e /0 where eρ is defined as
follows:

eρ ::= x eρ

1 . . .e
ρ
n

| c eρ

1 . . .e
ρ
n

| λx.eρ

| f x1 . . .xn (where f is defined by f x1 . . .xn = eρ )
| case (x eρ

1 . . .e
ρ
n ) of p1⇒ eρ

n+1 | · · · | pk⇒ eρ

n+k (x /∈ ρ)

| let x = eρ

0 in e(ρ∪{x})1

The particular property of expressions in distilled form that makes them easier to analyse for termination
is that no sub-expression that has been extracted using a let expression can be an intermediate data
structure; let variables are added to the set ρ , and cannot be used in the selectors of case expressions.
This means that once a parameter has increased in size it cannot subsequently decrease, which makes it
much easier to identify parameters that decrease in size.
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Due to space considerations, we are not able to include a full definition of the distillation algorithm
here. However, we can simply treat this as a black box that does not alter the termination properties of a
program and will always convert it into distilled form, so this paper is still reasonably self-contained.

Example 2 The result of transforming the example program in Figure 2 is shown in Figure 4. We can
see that this program is indeed in distilled form.

f0 x y x y
where
f0 a b c d = case a of

Zero → case b of
Zero → c
| Succ b→ f1 c b c b

| Succ a→ case b of
Zero → f3 a d a d
| Succ b→ f0 a b c d

f1 a b c d = case a of
Zero → f0 c b c b
| Succ a→ f2 a b c d

f2 a b c d = case a of
Zero → case b of

Zero → c
| Succ b→ f1 c b c b

| Succ a→ case b of
Zero → f5 a d a d
| Succ b→ f2 a b c d

f3 a b c d = case b of
Zero → f3 a d a d
| Succ b→ f4 a b c d

f4 a b c d = case a of
Zero → case b of

Zero → Succ c
| Succ b→ f5 c b c b

| Succ a→ case b of
Zero → f3 a d a d
| Succ b→ f4 a b c d

f5 a b c d = case a of
Zero → case b of

Zero → Succ c
| Succ b→ f5 c b c b

| Succ a→ case b of
Zero → f5 a d a d
| Succ b→ f5 a b c d

Figure 4: Example Program Distilled
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3 Labelled Transition Systems

In this section, we define the labelled transition systems used in our termination analysis.

Definition 3.1 (Labelled Transition System) A labelled transition system (LTS) is a 4-tuple
(E ,e0,Act,→) where:

• E is a set of states of the LTS. Each is an expression or the end-of-action state 0.

• e0 ∈ E is the start state.

• Act is a set of actions which can be one of the following:

– x, a variable;
– c, a constructor;
– λx, a λ -abstraction;
– f , a function unfolding;
– @, the function in an application;
– #i, the ith argument in an application;
– case, a case selector;
– p, a case pattern;
– let x, a let variable
– in, a let body.

• → ⊆ E ×Act×E is a transition relation. We write e α−→ e′ for a transition from state e to state e′

via action α . 2

We also write e→ (α1, t1), . . . ,(αn, tn) for a LTS with start state e where t1 . . . tn are the LTSs obtained by
following the transitions labelled α1 . . .αn respectively from e.

Definition 3.2 (Renaming) We use the notation σ = {x1 7→ x′1, . . . ,xn 7→ x′n} to denote a renaming. If
e is an expression, then eσ = e{x1 7→ x′1, . . . ,xn 7→ x′n} is the result of simultaneously replacing the
free variables x1 . . .xn with the corresponding variables x′1 . . .x

′
n respectively, in the expression e while

ensuring that bound variables are renamed appropriately to avoid name capture. 2

Definition 3.3 (Folded LTS) A folded LTS is a LTS which also contains renamings of the form e σ−→ e′,
where σ is a renaming s.t. e≡ e′σ . 2

We now show how to generate the LTS representation of a program. It is assumed here that all function
arguments in the program are variables; it is always possible to extract non-variable function arguments
using lets to ensure that this is the case.

Definition 3.4 (Generating LTS From Program) A LTS can be generated from a program p as Lp[[p]]
using the rules as shown in Fig. 5. The rules Le generate a LTS from an expression where the parameter
ρ is the set of previously encountered function calls and the parameter ∆ is the set of function definitions.
If a renaming of a previously memoised function call is encountered, no further transitions are added to
the constructed LTS. Thus, the constructed LTS will always be a finite representation of the program. 2

Example 3 The LTS generated for the distilled gcd program in Figure 4 is shown in Figure 6.
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Lp[[e0 where f1 = e1, . . . , fn = en]] = Le[[e0]] ρ (∆∪{ f1 = e1, . . . , fn = en})

Le[[e = x]] ρ ∆ = e→ (x,0)
Le[[e = c e1 . . .en]] ρ ∆ = e→ (c,0),(#1,Le[[e1]] ρ ∆), . . . ,(#n,Le[[en]] ρ ∆)
Le[[e = λx.e]] ρ ∆ = e→ (λx,Le[[e]] ρ ∆)

Le[[e = f x1 . . .xn]] ρ ∆ =
{

e σ−→ e′, if ∃e′ ∈ ρ.e′σ ≡ e
e→ ( f ,Le[[e′]] (ρ ∪{e}) ∆), otherwise ( f ≡ λx1 . . .xn.e′ ∈ ∆)

Le[[e = e0 e1]] ρ ∆ = e→ (@,Le[[e0]] ρ ∆),(#1,Le[[e1]] ρ ∆)
Le[[e = case e0 of p1⇒ e1 | · · · | pn⇒ en]] ρ ∆

= e→ (case,Le[[e0]] ρ ∆),(p1,Le[[e1]] ρ ∆), . . . ,(pn,Le[[en]] ρ ∆)
Le[[e = let x = e0 in e1]] ρ ∆ = e→ (let x,Le[[e0]] ρ ∆),(in,Le[[e1]] ρ ∆)

Figure 5: LTS Representation of a Program

4 Proving Termination

In order to prove that a program terminates, we analyse the labelled transition system generated from
the result of transforming the program using distillation. We need to show that within every cycle in
this labelled transition system, at least one parameter is decreasing. We define a decreasing parameter as
follows.

Definition 4.1 (Decreasing Parameter) A parameter is considered to decrease in size if it is the subject
of a case selector. 2

A parameter that is the subject of a case selector is deconstructed into smaller components and therefore
decreases in size. We define an increasing parameter as follows.

Definition 4.2 (Increasing Parameter) A parameter is considered to increase in size if any expression
other than a variable is assigned to it. 2

Note that this is a conservative criterion for an increase in size based on the syntactic size of the parameter
rather than the semantic size. Thus, for example, in the call gcd (sub x y) y , the first parameter would be
considered to be increasing syntactically, even though it is actually decreasing semantically. However,
such potentially increasing parameters are often transformed by distillation to reveal that they are in fact
decreasing, as we have seen is the case for this example.

Lemma 4.3 (On Decreasing Parameters) Every parameter that has decreased in size cannot previously
have increased in size. 2

Proof. This can be proved quite straightforwardly from the definition of distilled form in Theorem 2.6.
Within the distilled form eρ , if any expression other than a variable is assigned to a parameter using a let,
then the parameter is added to the set ρ and cannot subsequently be the subject of a case selector. Thus,
if a parameter has increased in size, it cannot subsequently decrease. 2

In order to prove that a program terminates, we need to show that all possible traces through the la-
belled transition system generated from the result of distilling the program are infinitely progressing. We
now define what these terms mean.

Definition 4.4 (Trace) A trace within a labelled transition system (E ,e0,Act,→) is a sequence of states
e0, e1, . . . where ∀i.∃α.ei

α−→ ei+1 ∈→. 2
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Figure 6: LTS Representation of Example Program
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Definition 4.5 (Infinitely Progressing Trace) An infinitely progressing trace is a trace that contains an
infinite number of decreases in parameter size. 2

Theorem 4.6 (Termination) If all traces through the labelled transition system generated from the result
of distilling a program are infinitely progressing, then the program terminates. 2

Proof. From Lemma 4.3, every parameter that has decreased in size cannot previously have increased in
size. If the trace is infinitely progressing, then there must be an infinite number of decreases in parameter
size. As these parameters cannot have increased in size elsewhere within the trace, there must be infinite
descent. 2

Since a decreasing parameter must be the subject of a case selector, to show that a program terminates
it is sufficient to show that in the labelled transition system generated from the result of distilling the
program there is a case expression between every renamed state and its renaming.
Example 4 In the LTS generated from the distilled program in Figure 4 is shown in Figure 6, we can see
that there is a case expression between every renamed state and its renaming, so this program is indeed
terminating. Proving the termination of the original program is tricky as there is no clear continued
decrease in the size of either of the parameters of the gcd function (even though a number is subtracted
from one of the arguments in each recursive call, it is difficult to determine that the number subtracted
must be non-zero).

5 Examples

We now give some examples of programs that cause difficulties in termination analysis using other
techniques, but can be shown to terminate using the technique described here. None of these examples
can be proven to terminate using the size-change principle described in [17].
Example 5 Consider the following program:

f n
where
f n = case n of

Zero → Zero
| Succ n′ → g (Succ n)

g n = case n of
Zero → Zero
| Succ n′ → case n′ of

Zero → Zero
| Succ n′′ → f n′′

This has mutually recursive functions f and g, where the parameter is increasing in the call from f to
g, and decreasing in the call from g to f and therefore causes difficulties for other termination checkers.
The result of transforming this program using distillation is as follows:

f n
where
f n = case n of

Zero → Zero
| Succ n′ → f n′
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The LTS generated for this transformed program is shown in Figure 7. We can now quite easily see that
this program terminates as there is a case expression between the function call f n and its renaming f n′.

f n

case

f

n

case

Zero

Zero

f n’

Succ n’

0

n

0

Zero

{n:=n’}

Figure 7: LTS Representation of Program in Example 5

Example 6 Consider the following program:
f m n
where
f m n = case m of

Zero → Zero
| Succ m′ → f (sub m n) (Succ n)

sub x y = case y of
Zero → x
| Succ y→ case x of

Zero → Zero
| Succ x→ sub x y

This causes problems for other termination checkers as the size of the second parameter is increasing and
the size of the first parameter will not decrease if the value of the second parameter is Zero. The result
of transforming this program using distillation is as follows:

f m n
where
f m n = case m of

Zero → Zero
| Succ m′ → case n of

Zero → g m′

| Succ n′ → f m′ n′

g m = case m of
Zero → Zero
| Succ m′ → g m′
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The LTS generated for this transformed program is shown in Figure 8. We can see that there is a case
expression between every renamed state and its renaming, so this program is indeed terminating.

f m n

case

f

m

case

Zero

Zero

case

Succ m’

0

m

0

Zero

n

case

g m’

Zero

f m’ n’

Succ n’

0

n

case

g

m

case

Zero

Zero

g m’

Succ m’

0

m

0

Zero

{m’:=m’}

{m:=m’,n:=n’}

Figure 8: LTS Representation of Program in Example 5

Example 7 Consider the following program:

f m n
where
f m n = case m of

Zero → Zero
| Succ m′ → case n of

Zero → f m′ n
| Succ n′ → case (gt m n) of

True → f m′ n
| False→ f (Succ m) n′

gt x y = case x of
Zero → False
| Succ x→ case y of

Zero → True
| Succ y→ gt x y

In the function f , the first parameter both increases and decreases, so this causes problems for other
termination checkers. The result of transforming this program using distillation is as follows:
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f m n
where
f m n = case m of

Zero → Zero
| Succ m′ → case n of

Zero → g m′

| Succ n′ → f m′ n′

g m = case m of
Zero → Zero
| Succ m′ → g m′

The LTS generated for this transformed program is shown in Figure 9. We can see that there is a case
expression between every renamed state and its renaming, so this program is indeed terminating.

f m n
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0

m

0

Zero

{m’:=m’}

{m:=m’,n:=n’}

Figure 9: LTS Representation of Program in Example 5

Example 8 The final example shown in Figure 10 is McCarthy’s 91 function, which is nested recursive
and has often been used as a test case for proving termination. Although the result of transforming this
program using distillation (and the corresponding LTS) are too large to show here, we are also able to
prove the termination of this program.

6 Conclusion and Related Work

In this paper, we have described a new approach to the termination analysis of functional programs
that is applied to the output of the distillation program transformation [15, 16]. Distillation converts
programs into a simplified form called distilled form, and to prove that programs in this form terminate,
we convert them into a corresponding labelled transition system and then show that all possible infinite
traces through the labelled transition system would result in an infinite descent of well-founded data
values.
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f n
where
f n = case (gt n (100)) of

True → sub n 10
| False→ f (f (plus n (11)))

gt x y = case x of
Zero → False
| Succ x→ case y of

Zero → True
| Succ y→ gt x y

sub x y = case y of
Zero → x
| Succ y→ case x of

Zero → Zero
| Succ x→ sub x y

plus x y = case x of
Zero → y
| Succ x→ Succ (plus x y)

Figure 10: McCarthy’s 91 Function

We argue that our termination analysis is simple and straightforward. We do not need to treat nested
function calls, mutual recursion or permuted arguments as special cases, we do not need to search for
appropriate ranking functions and we do not need to define a size ordering on values. Most recent
approaches to proving termination have involved searching for a set of possible ranking functions and
using a disjunctive termination argument [3, 8, 19, 9]. We avoid the need for such involved analysis here.

The most closely related work to that described here is that described in [6] which makes use of cyclic
proof techniques. In [6], a cyclic pre-proof form is defined that is a finite derivation tree in which every
leaf that is not the conclusion of an axiom is closed by a backlink to a syntactically identical interior node.
A global soundness condition is defined on pre-proofs so they can be verified as genuine cyclic proofs.
This involves proving that every trace through the pre-proof is infinitely progressing and that there must
therefore be infinite descent of the data values, in much the same way as is done in the work described
here. The structure of a pre-proof is similar to the form of the labelled transition systems generated from
programs that are in distilled form. However, a pre-proof does not contain any instances of the cut rule
(which correspond to lets in distilled form) and therefore cannot have any accumulating parameters, so
this technique is not applicable to as wide a range of programs as the technique described here. Also,
because our programs have first been transformed into the form required to facilitate our proof, we are
able to prove termination for an even wider class of programs.

Another closely related work to that described in this paper is the work on the size-change principle
for termination [17]. In [17], size-change graphs are created that indicate definite information about
the change of size of parameters in function calls. These graphs indicate whether a parameter is either
decreasing or non-increasing. To prove termination of a program, it is then necessary to show that
every possible thread within a program is infinitely descending, meaning that it contains infinitely many
occurrences of a decreasing parameter. This is similar to the approach taken in this paper, where we also
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try to show that there are infinitely many occurrences of a decreasing parameter. Both techniques can
handle nested function calls. In [17], these are handled directly and in this work they are transformed
to remove this nesting prior to analysis. However, there are also a number of differences between these
two techniques. Firstly, in [17], if a parameter can possibly increase at any point in a thread, then it is
not possible to determine whether it is infinitely descending. In this work, we can ignore this possibility
as any parameter that decreases in size cannot previously have increased. However, in [17], a more
precise measure of parameter size is employed based on their semantic value with a well-founded partial
ordering. In this work, a more conservative measure of the syntactic size of parameters is used, where
a parameter that is assigned to any expression other than a variable is considered to increase in size. In
our running example, in the call gcd (sub x y) y, it is difficult to determine that the first parameter is
semantically decreasing as we need to show that the number being subtracted is non-zero, so we cannot
prove that it terminates using the size-change principle. Using our technique, even though we initially
assume that this parameter is increasing as the syntactic size is increasing, the program is transformed by
distillation to reveal that it is in fact decreasing, so we are able to prove termination. Also, our technique
is directly applicable to higher-order languages, while the size-change principle originally described in
[17] is not. An extension of the size-change principle to higher-order languages is described in [21],
but it is far from straightforward. We have not been able to find any examples of programs that can be
found to terminate using this size-change principle and cannot be found to terminate using the technique
described here, but we have found many examples of the opposite being true. For example, none of the
example programs in this paper can be shown to terminate using the size-change principle.
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