Distilling Programs to Prove Termination

G.W. Hamilton

School of Computing
Dublin City University
Ireland

hamilton@computing.dcu.ie

The problem of determining whether or not any program terminates was shown to be undecidable
by Turing, but recent advances in the area have allowed this information to be determined for a large
class of programs. The classic method for deciding whether a program terminates dates back to
Turing himself and involves finding a ranking function that maps a program state to a well-order, and
then proving that the result of this function decreases for every possible program transition. More
recent approaches to proving termination have involved moving away from the search for a single
ranking function and toward a search for a set of ranking functions; this set is a choice of ranking
functions and a disjunctive termination argument is used. In this paper, we describe a new technique
for determining whether programs terminate. Our technique is applied to the output of the distillation
program transformation that converts programs into a simplified form called distilled form. Programs
in distilled form are converted into a corresponding labelled transition system and termination can
be demonstrated by showing that all possible infinite traces through this labelled transition system
would result in an infinite descent of well-founded data values. We demonstrate our technique on a
number of examples, and compare it to previous work.

1 Introduction

The program termination problem, or halting problem, can be defined as follows: using only a finite
amount of time, determine whether a given program will always finish running or could execute for-
ever. This problem rose to prominence before the development of stored program computers, in the
time of Hilbert’s Entscheidungs problem: the challenge to formalise all of mathematics and use algorith-
mic means to determine the validity of all statements. The halting problem was famously shown to be
undecidable by Turing [26].

Although it is not possible to prove program termination in all cases, there are many programs for
which this can be proved. The classic method for doing this dates back to Turing himself [27]] and
involves finding a ranking function that maps a program state to a well-order, and then proving that
the result of this function decreases for every possible program transition. This has a number of useful
applications, such as in program verification, where partial correctness is often proved using deductive
methods and a separate proof of termination is given to show fotal correctness, as originally done by
Floyd [11]. More recent approaches to proving termination have involved moving away from the search
for a single ranking function and toward a search for a set of ranking functions; this set is a choice
of ranking functions and a disjunctive termination argument is used. Program termination techniques
have been developed for functional programs [[12, 17, 14} [19], logic programs [20} [7,[18]], term rewriting
systems [10, 2, 24] and imperative programs [11} 15} (3 I8, [1} 23} |9, [13]].

In this paper, we describe a new approach to the termination analysis of functional programs that is
applied to the output of the distillation program transformation [15} [16]. Distillation converts programs
into a simplified form called distilled form, and to prove that programs in this form terminate, we con-
vert them into a corresponding labelled transition system and then show that all possible infinite traces

© G.W. Hamilton
This work is licensed under the
Creative Commons Attribution License.

L. Fribourg and M. Heizmann (Eds.): VPT/HCVS 2020
EPTCS ??, 2020, pp. 140-154] doi:10.4204/EPTCS.??.10

http://dx.doi.org/10.4204/EPTCS.??.10
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

G.W. Hamilton 141

through the labelled transition system would result in an infinite descent of well-founded data values.
This proof of termination is similar to that described in [|6] using cyclic proof techniques. However, we
are able to prove termination for a wider class of programs.

The language used throughout this paper is a call-by-name higher-order functional language with the
following syntax.

Definition 1.1 (Language Syntax) The syntax of this language is as shown in Fig. O
prog ::=ep where h; =e;,...,hy =e; Program
e =X Variable
|cej...e, Constructor Application
| Ax.e A-Abstraction
| f Function Call
| e e; Application
| case eg of p; = e; |---| p» = e, Case Expression
| let x = ¢p in ¢; Let Expression
h a=fxr..x Function Header
p N=CXp... X, Pattern

Figure 1: Language Syntax

Programs in the language consist of an expression to evaluate and a set of function definitions. An
expression can be a variable, constructor application, A-abstraction, function call, application, case or
let. Variables introduced by function headers, A-abstractions, case patterns and lets are bound, all other
variables are free. An expression that contains no free variables is said to be closed. We write e = ¢’ if e
and ¢ differ only in the names of bound variables.

Each constructor has a fixed arity; for example Nil has arity 0 and Cons has arity 2. In an expression
cej...e,, n must equal the arity of c. The patterns in case expressions may not be nested. No variable
may appear more than once within a pattern. We assume that the patterns in a case expression are non-
overlapping and exhaustive. It is also assumed that erroneous terms such as (c e;...e,) e where c is of
arity n and case (Ax.e) of p; = e; |---| p» = e, cannot occur.

Example 1 Consider the program from [4] shown in Figure [2] for calculating the greatest common di-
visor of two numbers x and y. Proving the termination of this program is tricky as there is no clear
continued decrease in the size of either of the parameters of the gcd function (even though a number is
subtracted from one of the arguments in each recursive call, it is difficult to determine that the number
subtracted must be non-zero). We show how the termination of this program can be proved using our
approach.

The remainder of this paper is structured as follows. In Section 2, we give some preliminary definitions
that are used throughout the paper. In Section 3, we define the labelled transition systems that are used in
our termination proofs. In Section 4, we show how to prove termination of programs using our technique,
and apply this technique to the program in Figure[2] In Section 5, we give some examples of programs
that cause difficulties in termination analysis using other techniques, but are shown to terminate using
our technique. Section 6 concludes and considers related work.

142 Distilling Programs to Prove Termination

ged xy
where
ged xy = case (gr x y) of
True — ged (subxy)y
| False — case (gt y x) of
True — ged x (sub 'y x)
| False — x
gtxy = casexof
Zero — False
| Succ x — case y of
Zero — True
| Succy — gtxy
sub x y = case y of
Zero — x
| Succ y — case x of
Zero — Zero
| Succ x — sub x y

Figure 2: Example Program

2 Preliminaries

In this section, we complete the presentation of our programming language and give a brief overview of
the distillation program transformation algorithm.

2.1 Language Definition

Definition 2.1 (Substitution) We use the notation 6 = {x; — ey,...,x, —> e, } to denote a substitution.
If e is an expression, then €@ = e{x; — ej,...,x, — e,} is the result of simultaneously substituting the
expressions ey,...,e, for the corresponding variables xi,...,x,, respectively, in the expression e while
ensuring that bound variables are renamed appropriately to avoid name capture. O

Definition 2.2 (Language Semantics) The call-by-name operational semantics of our language is stan-
dard: we define an evaluation relation } between closed expressions and values, where values are expres-
sions in weak head normal form (i.e. constructor applications or A-abstractions). We define a one-step
reduction relation ~> inductively as shown in Fig. , where the reduction r can be f (unfolding of func-
tion f), ¢ (elimination of constructor ¢) or B (B-substitution). O

Definition 2.3 (Context) A context C is an expression with a “hole” [] in the place of one sub-expression.
Cle] is the expression obtained by replacing the hole in context C with the expression e. The free variables
within e may become bound within Cle]; if Cle] is closed then we call it a closing context for e.

We use the notation e ~ if the expression e reduces, e 1} if e diverges, e || if e converges and e |} v if e
*
evaluates to the value v. These are defined as follows, where ~» denotes the reflexive transitive closure
r
of ~:

G.W. Hamilton 143

r
fxl...xn:e 60’\266

((Ax.e9) e1) ’A (eo{x+—e1}) f«f» AXxy...xp.e (eg e1) > (e er)

Pi=CX|...X,

(case (cey...ep) of pr:ei|...|px:e})~5 (ei{xi—er,....x, > en})

ro

(case eg of py :eq|...pr:er) L (case ey of py:er|...px:ep)
(let x = ¢g in el)'@ (er{x—eo})

Figure 3: One-Step Reduction Relation

e, iff el e i e ell,iff dve v

ellv,iffe«r»*v/\—'(v«r») e iff Vele -l e = ¢ s

Definition 2.4 (Contextual Equivalence) Contextual equivalence, denoted by ~, equates two expres-
sions if and only if they exhibit the same termination behaviour in all closing contexts i.e. e; ~ e iff
VC . Clei]| |} iff Clea] | .

2.2 Distillation

Distillation [[15}16] is a powerful program transformation technique that builds on top of the positive su-
percompilation transformation algorithm [25} [22]]. The following theorems have previously been proved
about the distillation transformation Z.

Theorem 2.5 (Correctness of Transformation) Vp € Prog: Z[p]| ~ p

Thus, the resulting program will have the same termination properties as the original program in all
contexts.

Theorem 2.6 (On The Form of Expressions Produced by Distillation) For all possible input programs,
distillation terminates and the form of expressions it produces (after all function arguments that are not
variables are extracted using lets), which we call distilled form, is described by e? where ¢” is defined as
follows:

e = xe’;...eﬁ
| cél...eh
| Ax.ef
| fx;...x, (Where f is defined by f x;...x, = eP)
| case(xe’;...eﬁ)ofp1:>e£+1|---\pk:>e5+k(x§ép)
|

let x = ¢} in eSp Ui

The particular property of expressions in distilled form that makes them easier to analyse for termination
is that no sub-expression that has been extracted using a let expression can be an intermediate data
structure; let variables are added to the set p, and cannot be used in the selectors of case expressions.
This means that once a parameter has increased in size it cannot subsequently decrease, which makes it
much easier to identify parameters that decrease in size.

144 Distilling Programs to Prove Termination

Due to space considerations, we are not able to include a full definition of the distillation algorithm
here. However, we can simply treat this as a black box that does not alter the termination properties of a
program and will always convert it into distilled form, so this paper is still reasonably self-contained.

Example 2 The result of transforming the example program in Figure 2]is shown in Figure d] We can
see that this program is indeed in distilled form.

foxyxy
where
fO0abcd= caseaof
Zero — case b of
Zero —c
| Succb —flcbceb
| Succ a — case b of
Zero —f3adad
| Succb - f0abcd
fl abcd= case aof
Zero —f0cbcb
| Succa—f2abced
f2abcd= caseaof
Zero — case b of
Zero —c
| Succb - flcbeb
| Succ a — case b of
Zero —fSadad
| Succb - f2abcd
f3abcd=casebof
Zero —f3adad
| Succb — f4abcd
f4abcd= caseaof
Zero — case b of
Zero — Succ c
| Succb - fScbeb
| Succ a — case b of
Zero —f3adad
| Succb - f4abcd
fSabcd= caseaof
Zero — case b of
Zero — Succ c
| Succb - f5cbeb
| Succ a — case b of
Zero —fSadad
| Succb - fSabcd

Figure 4: Example Program Distilled

G.W. Hamilton 145

3 Labelled Transition Systems

In this section, we define the labelled transition systems used in our termination analysis.
Definition 3.1 (Labelled Transition System) A labelled transition system (LTS) is a 4-tuple
(&,ep,Act,—) where:
e & is a set of states of the LTS. Each is an expression or the end-of-action state 0.
e ¢(€ & is the start state.
e Act is a set of actions which can be one of the following:
— x, a variable;

— ¢, a constructor;

— Ax, a A-abstraction;

f, a function unfolding;

@, the function in an application;

#i, the i'" argument in an application;

case, a case selector;

p, a case pattern;

let x, a let variable

in, a let body.

o — C &xAct x & is a transition relation. We write e > ¢’ for a transition from state e to state ¢’
via action . O

We also write e — (Q,t1),...,(0,1,) for a LTS with start state e where ¢, .. .1, are the LTSs obtained by
following the transitions labelled «; ... o, respectively from e.

Definition 3.2 (Renaming) We use the notation 6 = {x; — x},...,x, — x,} to denote a renaming. If
e is an expression, then ec = e{x; — x|,...,x, — x,} is the result of simultaneously replacing the
free variables x; ...x, with the corresponding variables x| ...x], respectively, in the expression e while
ensuring that bound variables are renamed appropriately to avoid name capture. O

Definition 3.3 (Folded LTS) A folded LTS is a LTS which also contains renamings of the form e O ,
where 0 is a renaming s.t. ¢ = €'0. O

We now show how to generate the LTS representation of a program. It is assumed here that all function
arguments in the program are variables; it is always possible to extract non-variable function arguments
using lets to ensure that this is the case.

Definition 3.4 (Generating LTS From Program) A LTS can be generated from a program p as .2, [p]]
using the rules as shown in Fig. [5| The rules .Z, generate a LTS from an expression where the parameter
p is the set of previously encountered function calls and the parameter A is the set of function definitions.
If a renaming of a previously memoised function call is encountered, no further transitions are added to
the constructed LTS. Thus, the constructed LTS will always be a finite representation of the program. O

Example 3 The LTS generated for the distilled gcd program in Figure dis shown in Figure [6]

146 Distilling Programs to Prove Termination

ZP[[EO wheref; =e;,....[u :en]] 29%[[60]] p (Au{fl =€l--sJn :en})
Zle=x]pA e (10)
Zle=cer...e p A =e—(c,0),(#1, Zfes] p A),....(#n, ZLoflen]l p A)
Zlle=Axe] p A — e (Ax,Z[e] p A

e—fx x _ e e, if3de ep.do=e
Zele=fxi--xlpa e— (f, %] (pU{e}) A), otherwise (f = Ax;...x,.€/ €A)
Zele=eper] pA =e— (@, Z[eo] p A),(#1, Zfesl p A)
Z.e=caseegofp;=e;|---|pp=en] pA

=e— (case,.iﬂe[[eo]] p A)v(plv'iﬂe[[elﬂ p A),...,(p,,,i”e[[en]] P A)

Ze=letx=epine;]] p A =e — (letx, Z.[eo]] p A),(in, Z.[e;]] p A)

Figure 5: LTS Representation of a Program

4 Proving Termination

In order to prove that a program terminates, we analyse the labelled transition system generated from
the result of transforming the program using distillation. We need to show that within every cycle in
this labelled transition system, at least one parameter is decreasing. We define a decreasing parameter as
follows.

Definition 4.1 (Decreasing Parameter) A parameter is considered to decrease in size if it is the subject
of a case selector. O

A parameter that is the subject of a case selector is deconstructed into smaller components and therefore
decreases in size. We define an increasing parameter as follows.

Definition 4.2 (Increasing Parameter) A parameter is considered to increase in size if any expression
other than a variable is assigned to it. O

Note that this is a conservative criterion for an increase in size based on the syntactic size of the parameter
rather than the semantic size. Thus, for example, in the call gcd (sub x y) y , the first parameter would be
considered to be increasing syntactically, even though it is actually decreasing semantically. However,
such potentially increasing parameters are often transformed by distillation to reveal that they are in fact
decreasing, as we have seen is the case for this example.

Lemma 4.3 (On Decreasing Parameters) Every parameter that has decreased in size cannot previously
have increased in size. O

Proof. This can be proved quite straightforwardly from the definition of distilled form in Theorem
Within the distilled form e, if any expression other than a variable is assigned to a parameter using a let,
then the parameter is added to the set p and cannot subsequently be the subject of a case selector. Thus,
if a parameter has increased in size, it cannot subsequently decrease. O

In order to prove that a program terminates, we need to show that all possible traces through the la-
belled transition system generated from the result of distilling the program are infinitely progressing. We
now define what these terms mean.

Definition 4.4 (Trace) A trace within a labelled transition system (&, eg,Act, —) is a sequence of states
eo, €1, ... where Vi.3x.e; LN eir1 €E—. O

147

Tp=pe=op=qe=:p)/ p=po=1' g=ge=:p),

oo/ 14)

Hﬁﬁﬂiﬂéég

{p=po=ng=:

B

G.W. Hamilton

e] easa

{g=iko=x

{p=po=o' 4= B

9

{a=:90=0 0n2

CEREN]

CES

i)

{a=q9=0 q

ase0| e oons/ {p=pa=0g=: qre=),

e] (51 29 [0 (5] b

dvn:g

o= 4= =)

{g=po=0g=: go=} {p=p' p=0p=q p=r),

Qoo aseof 0k

{p=qre=0)

q q

HEE

q00ng aseg, ased~_q o

onzecons,” e

{p=pio='g=: qe=iE.

] [

z
[T o]

{p=p'p=tp:

p=po=00=:q'p=2)

nﬁzm a0/ 0m7,

{p=pe=p

f Example Program

10n O

LTS Representati

6

Figure

148 Distilling Programs to Prove Termination

Definition 4.5 (Infinitely Progressing Trace) An infinitely progressing trace is a trace that contains an
infinite number of decreases in parameter size. O

Theorem 4.6 (Termination) If all traces through the labelled transition system generated from the result
of distilling a program are infinitely progressing, then the program terminates. O

Proof. From Lemma4.3] every parameter that has decreased in size cannot previously have increased in
size. If the trace is infinitely progressing, then there must be an infinite number of decreases in parameter
size. As these parameters cannot have increased in size elsewhere within the trace, there must be infinite
descent. O

Since a decreasing parameter must be the subject of a case selector, to show that a program terminates
it is sufficient to show that in the labelled transition system generated from the result of distilling the
program there is a case expression between every renamed state and its renaming.

Example 4 In the LTS generated from the distilled program in Figure]is shown in Figure[6] we can see
that there is a case expression between every renamed state and its renaming, so this program is indeed
terminating. Proving the termination of the original program is tricky as there is no clear continued
decrease in the size of either of the parameters of the gcd function (even though a number is subtracted
from one of the arguments in each recursive call, it is difficult to determine that the number subtracted
must be non-zero).

5 Examples

We now give some examples of programs that cause difficulties in termination analysis using other
techniques, but can be shown to terminate using the technique described here. None of these examples
can be proven to terminate using the size-change principle described in [[17].
Example 5 Consider the following program:
fn
where
f n = case n of
Zero — Zero
| Succ ' — g (Succ n)
g n = case n of
Zero — Zero
| Succ ' — case n’ of
Zero — Zero
| Suce n” — f n”

This has mutually recursive functions f and g, where the parameter is increasing in the call from f to
g, and decreasing in the call from g to f and therefore causes difficulties for other termination checkers.
The result of transforming this program using distillation is as follows:

fn

where

f n = case n of

Zero — Zero
| Sucen’ — fn'

G.W. Hamilton 149

The LTS generated for this transformed program is shown in Figure[/| We can now quite easily see that
this program terminates as there is a case expression between the function call f n and its renaming f n’.

fn

/

case {n:=n"}
%se éero&:cc n
n Zero fr
n Zero
0 0

Figure 7: LTS Representation of Program in Example 3]

Example 6 Consider the following program:
fmn
where
fmn = casem of
Zero — Zero
| Succ m’ — f (sub mn) (Succ n)
sub x y = case y of
Zero —x
| Succ y — case x of
Zero — Zero
| Succ x — subxy

This causes problems for other termination checkers as the size of the second parameter is increasing and
the size of the first parameter will not decrease if the value of the second parameter is Zero. The result
of transforming this program using distillation is as follows:
fmn
where
f mn = case m of
Zero — Zero
| Succ m" — case n of
Zero —gm
| Sucen’ — f m' n’
gm = case m of
Zero — Zero
| Suce m’ — g m’

150 Distilling Programs to Prove Termination

The LTS generated for this transformed program is shown in Figure [§] We can see that there is a case
expression between every renamed state and its renaming, so this program is indeed terminating.

fmn
case
case /Zero \Succm’ m:=m’,n:=n'}
| m | Zero | | case |
F R Fos
S 0 o] T

<]

n
0 case {m':=m'}

case [Zero \Succm’

|m||Zero

El

m Zero

Y Y
Lo L]
Figure 8: LTS Representation of Program in Example 3]

Example 7 Consider the following program:

fmn
where
f mn = case m of
Zero — Zero
| Succ m" — case n of
Zero —fm'n
| Succ n' — case (gt mn) of
True —fm'n
| False — f (Succ m) n’
gt x y = case x of
Zero — False
| Succ x — case y of
Zero — True
| Succy — gtxy

In the function f, the first parameter both increases and decreases, so this causes problems for other
termination checkers. The result of transforming this program using distillation is as follows:

G.W. Hamilton 151

fmn
where
f mn = case m of
Zero — Zero
| Succ m" — case n of
Zero —gm
| Succn’ — fm' n'
gm = case m of
Zero — Zero
| Suce m’ — g m'’

The LTS generated for this transformed program is shown in Figure[0] We can see that there is a case
expression between every renamed state and its renaming, so this program is indeed terminating.

Figure 9: LTS Representation of Program in Example[3]

Example 8 The final example shown in Figure [I0]is McCarthy’s 91 function, which is nested recursive
and has often been used as a test case for proving termination. Although the result of transforming this
program using distillation (and the corresponding LTS) are too large to show here, we are also able to
prove the termination of this program.

6 Conclusion and Related Work

In this paper, we have described a new approach to the termination analysis of functional programs
that is applied to the output of the distillation program transformation [[15} [16]]. Distillation converts
programs into a simplified form called distilled form, and to prove that programs in this form terminate,
we convert them into a corresponding labelled transition system and then show that all possible infinite
traces through the labelled transition system would result in an infinite descent of well-founded data
values.

152 Distilling Programs to Prove Termination

fn
where
fn = case (gt n (100)) of
True — subn 10
| False — f (f (plusn (11)))
gtxy = casexof

Zero — False
| Succ x — case y of
Zero — True
| Succy — gtxy
sub xy = casey of
Zero —x
| Succ y — case x of
Zero — Zero
| Succ x — subxy
plus x y = case x of
Zero —y
| Succ x — Succ (plus x y)

Figure 10: McCarthy’s 91 Function

We argue that our termination analysis is simple and straightforward. We do not need to treat nested
function calls, mutual recursion or permuted arguments as special cases, we do not need to search for
appropriate ranking functions and we do not need to define a size ordering on values. Most recent
approaches to proving termination have involved searching for a set of possible ranking functions and
using a disjunctive termination argument [3 8, (19, |9]. We avoid the need for such involved analysis here.

The most closely related work to that described here is that described in [6]] which makes use of cyclic
proof techniques. In [6]], a cyclic pre-proof form is defined that is a finite derivation tree in which every
leaf that is not the conclusion of an axiom is closed by a backlink to a syntactically identical interior node.
A global soundness condition is defined on pre-proofs so they can be verified as genuine cyclic proofs.
This involves proving that every trace through the pre-proof is infinitely progressing and that there must
therefore be infinite descent of the data values, in much the same way as is done in the work described
here. The structure of a pre-proof is similar to the form of the labelled transition systems generated from
programs that are in distilled form. However, a pre-proof does not contain any instances of the cut rule
(which correspond to lets in distilled form) and therefore cannot have any accumulating parameters, so
this technique is not applicable to as wide a range of programs as the technique described here. Also,
because our programs have first been transformed into the form required to facilitate our proof, we are
able to prove termination for an even wider class of programs.

Another closely related work to that described in this paper is the work on the size-change principle
for termination [17]. In [1'/l], size-change graphs are created that indicate definite information about
the change of size of parameters in function calls. These graphs indicate whether a parameter is either
decreasing or non-increasing. To prove termination of a program, it is then necessary to show that
every possible thread within a program is infinitely descending, meaning that it contains infinitely many
occurrences of a decreasing parameter. This is similar to the approach taken in this paper, where we also

G.W. Hamilton 153

try to show that there are infinitely many occurrences of a decreasing parameter. Both techniques can
handle nested function calls. In [[17], these are handled directly and in this work they are transformed
to remove this nesting prior to analysis. However, there are also a number of differences between these
two techniques. Firstly, in [[17], if a parameter can possibly increase at any point in a thread, then it is
not possible to determine whether it is infinitely descending. In this work, we can ignore this possibility
as any parameter that decreases in size cannot previously have increased. However, in [17], a more
precise measure of parameter size is employed based on their semantic value with a well-founded partial
ordering. In this work, a more conservative measure of the syntactic size of parameters is used, where
a parameter that is assigned to any expression other than a variable is considered to increase in size. In
our running example, in the call ged (sub x y) y, it is difficult to determine that the first parameter is
semantically decreasing as we need to show that the number being subtracted is non-zero, so we cannot
prove that it terminates using the size-change principle. Using our technique, even though we initially
assume that this parameter is increasing as the syntactic size is increasing, the program is transformed by
distillation to reveal that it is in fact decreasing, so we are able to prove termination. Also, our technique
is directly applicable to higher-order languages, while the size-change principle originally described in
[L7] is not. An extension of the size-change principle to higher-order languages is described in [21],
but it is far from straightforward. We have not been able to find any examples of programs that can be
found to terminate using this size-change principle and cannot be found to terminate using the technique
described here, but we have found many examples of the opposite being true. For example, none of the
example programs in this paper can be shown to terminate using the size-change principle.

References

[1] Albert, E. and Arenas, P. and Genaim, S. and Puebla, G. and Zanardini, D. (2008): COSTA: Design and
Implementation of a Cost and Termination Analyzer for Java Bytecode. In: Formal Methods for Components
and Objects: 6th International Symposium, FMCO 2007, Amsterdam, The Netherlands, October 24-26,
2007, Revised Lectures, Springer-Verlag, pp. 113—132 doi;10.1007/978-3-540-92188-2_5,

[2] T. Arts (1997): Automatically Proving Termination and Innermost Normalisation of Term Rewriting Systems.
Ph.D. thesis, Universiteit Utrecht.

[3] J. Berdine, B. Cook, D. Distefano & P. W. O’Hearn (2006): Automatic Termination Proofs for Programs
with Shape-Shifting Heaps. In: International Conference on Computer Aided Verification, pp. 386—400
doii10.1007/11817963_35.

[4] A. Bradley, Z. Manna & H.B. Sipma (2005): Linear Ranking with Reachability. In: 17th International
Conference on Computer Aided Verification,, pp. 491-504 doi;10.1007/11513988_48,

[5] A. R. Bradley, Z. Manna & H. B. Sipma (2005): Termination of Polynomial Programs. In: International
Conference on Verification, Model Checking, and Abstract Interpretation, pp. 113-129 doii10.1007/978-3-
540-30579-8_8.

[6] J. Brotherston, R. Bornat & C. Calcagno (2008): Cyclic Proofs of Program Termination in Sep-
aration Logic. In: ACM Symposium on Principles of Programming Languages, pp. 101-112
doi:10.1145/1328897.1328453.

[7] M. Codish & C. Taboch (1997): A Semantic Basis for Termination Analysis of Logic Programs and its
Realization Using Symbolic Norm Constraints. In: International Joint Conference on Algebraic and Logic
Programming, Lecture Notes in Computer Science 1298, pp. 31-45 doi;10.1007/BFb0027001

[8] B. Cook, A. Podelski & A. Rybalchenko (2006): Termination Proofs for Systems Code. SIGPLAN Notices
41(6), pp. 415—426 doi:10.1145/1133255.1134029.

http://dx.doi.org/10.1007/978-3-540-92188-2_5
http://dx.doi.org/10.1007/11817963_35
http://dx.doi.org/10.1007/11513988_48
http://dx.doi.org/10.1007/978-3-540-30579-8_8
http://dx.doi.org/10.1007/978-3-540-30579-8_8
http://dx.doi.org/10.1145/1328897.1328453
http://dx.doi.org/10.1007/BFb0027001
http://dx.doi.org/10.1145/1133255.1134029

154

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Distilling Programs to Prove Termination

B. Cook, A. Podelski & A. Rybalchenko (2011): Proving Program Termination. Communications of the
ACM 54(5), pp. 88—98 doii10.1145/1941487.1941509.

N. Dershowitz (1987): Termination of Rewriting. Journal of Symbolic Computation 3, pp. 69-116
doii10.1016/S0747-7171(87)80022-6.

R.W. Floyd (1967): Assigning Meanings to Programs. In: Proceedings of the American Mathematical Soci-
ety Symposia on Applied Mathematics, 19, pp. 19-32 doii10.1007/978-94-011-1793-7_4,

J. Geisl (1995): Termination Analysis for Functional Programs Using Term Orderings. In: Second Interna-
tional Static Analysis Symposium, Lecture Notes in Computer Science 983, pp. 154—171 doi:10.1007/3-540-
60360-3_38.

J. Giesl, M. Brockschmidt, F. Emmes, C. Frohn, F. Fuhs, C. Otto, M. Pliicker, P. Schneider-Kamp, T. Stroder,
S. Swiderski & R Thiemann. (2014): Proving Termination of Programs Automatically with AProVE. In:
International Joint Conference on Automated Reasoning, pp. 184—-191 doi:10.1007/978-3-319-08587-6_13.

J. Giesl, S. Swiderski, P. Schneider-Kamp & R. Thiemann (2006): Automated Termination Analysis for
Haskell: From Term Rewriting to Programming Languages. In: International Conference on Rewriting
Techniques and Applications, pp. 297-312 doi:10.1007/11805618_23|

G.W. Hamilton (2007): Distillation: Extracting the Essence of Programs. In: Proceedings of the ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation, pp. 61-70
doi:10.1145/1244381.1244391.

G.W. Hamilton & N.D. Jones (2012): Distillation With Labelled Transition Systems. In: Proceedings of the
ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation, ACM, pp.
15-24 doi:10.1145/2103746.2103753.

C.S. Lee, N.D. Jones & A.M. Ben-Amram (2001): The Size-Change Principle for Program Ter-
mination. In: The 28th ACM Symposium on Principles of Programming Languages, pp. 81-92
doii10.1145/360204.360210.

N. Lindenstrauss & Y. Sagiv (1997): Automatic Termination Analysis of Prolog Programs. In: International
Conference on Logic Programming, pp. 64—77.

P. Manolios & D. Vroon (2006): Termination Analysis with Calling Context Graphs. In: International Con-
ference on Computer Aided Verification, pp. 401-414 doi;10.1007/11817963_36.

Y. Sagiv (1991): A Termination Test for Logic Programs. In: International Symposium on Logic Program-
ming, pp. 518-532.

D. Sereni D. & N.D. Jones (2005): Termination Analysis of Higher-Order Functional Programs. In: Asian
Symposium on Programming Languages and Systems, Lecture Notes in Computer Science 3780, pp. 281—
297 doii10.1007/11575467_19.

M.H. Sgrensen, R. Gliick & N.D. Jones (1996): A Positive Supercompiler. Journal of Functional Program-
ming 6(6), pp. 811-838 doi:10.1017/50956796800002008.

Spoto, F. and Mesnard, F. and Payet, E. (2010): A Termination Analyzer for Java Bytecode Based
on Path-Length. =~ ACM Transaction on Programming Languages and Systems 32(3), pp. 8:1-8:70
doi:10.1145/1709093.1709095.

J. Steinbach (1995): Automatic Termination Proofs With Transformation Orderings. In: International Con-
ference on Rewriting Techniques and Applications, Lecture Notes in Computer Science 914, pp. 11-25
doi:10.1007/3-540-59200-8 _44.

V.E. Turchin (1986): The Concept of a Supercompiler. ACM Transactions on Programming Languages and
Systems 8(3), pp. 90-121 doi:10.1145/5956.5957.

AM. Turing (1936): On Computable Numbers, with an Application to the Entscheidungsproblem. Proceed-
ings of the London Mathematical Society, 2 42(1), pp. 230-265 doi310.1112/plms/s2-42.1.230.

AM. Turing (1948): Checking a Large Routine. In: The Early British Computer Conferences, pp. 70-72
doii10.5555/94938.94952|

http://dx.doi.org/10.1145/1941487.1941509
http://dx.doi.org/10.1016/S0747-7171(87)80022-6
http://dx.doi.org/10.1007/978-94-011-1793-7_4
http://dx.doi.org/10.1007/3-540-60360-3_38
http://dx.doi.org/10.1007/3-540-60360-3_38
http://dx.doi.org/10.1007/978-3-319-08587-6_13
http://dx.doi.org/10.1007/11805618_23
http://dx.doi.org/10.1145/1244381.1244391
http://dx.doi.org/10.1145/2103746.2103753
http://dx.doi.org/10.1145/360204.360210
http://dx.doi.org/10.1007/11817963_36
http://dx.doi.org/10.1007/11575467_19
http://dx.doi.org/10.1017/S0956796800002008
http://dx.doi.org/10.1145/1709093.1709095
http://dx.doi.org/10.1007/3-540-59200-8_44
http://dx.doi.org/10.1145/5956.5957
http://dx.doi.org/10.1112/plms/s2-42.1.230
http://dx.doi.org/10.5555/94938.94952

	1 Introduction
	2 Preliminaries
	2.1 Language Definition
	2.2 Distillation

	3 Labelled Transition Systems
	4 Proving Termination
	5 Examples
	6 Conclusion and Related Work

