An Empirical Study of Partial Deduction for MINIKANREN

Ekaterina Verbitskaia Daniil Berezun Dmitry Boulytchev
JetBrains Research Saint Petersburg State University Saint Petersburg State University
Saint Petersburg, Russia JetBrains Research JetBrains Research
kajigor@gmail.com Saint Petersburg, Russia Saint Petersburg, Russia
d.berezun@2009.spbu.ru dboulytchev@math.spbu.ru

We study conjunctive partial deduction, an advanced specialization technique aimed at improving the
performance of logic programs, in the context of relational programming language MINIKANREN.
We identify a number of issues, caused by MINIKANREN peculiarities, and describe a novel approach
to specialization based on partial deduction and supercompilation. The results of the evaluation
demonstrate successful specialization of relational interpreters. Although the project is at an early
stage, we consider it as the first step towards an efficient optimization framework for MINIK ANREN.

1 Introduction

A family of embedded domain-specific languages MINIKANRENEI implement relational programming —
a paradigm closely related to pure logic programming. The minimal core of the language, also known
as MICROKANREN, can be implemented in as little as 39 lines of SCHEME [11]. An introduction to the
language and some of its extensions in a series of examples can be found in the book [7]. The formal
certified semantics for MINIKANREN is described in [29]].

Relational programming is a paradigm based on the idea of describing programs as relations. The
core feature of relational programming is the ability to run a program in various directions by executing
goals with free variables. The distribution of free variable occurrences determines the direction of rela-
tional search. For example, having specified a relation for adding two numbers, one can also compute the
subtraction of two numbers or find all pairs of numbers which can be summed up to get the given one.
One of the most prominent applications of relational programming amounts to implementing interpreters
as relations. By running a relational interpreter for some language backwards one can do program syn-
thesis. In general, it is possible to create a solver from a recognizer by translating it into MINIKANREN
and running it in the appropriate direction [24]].

The search employed in MINIKANREN is complete which means that every answer will be found, al-
though it may take a long time. The promise of MINTKANREN falls short when speaking of performance.
The execution time of a program in MINIKANREN is highly unpredictable and varies greatly for various
directions. What is even worse, it depends on the order of the relation calls within a program. One order
can be good for one direction, but slow down the computation dramatically in the other direction.

Partial evaluation [13]] is a technique for specialization, i.e. improving the performance of a program
given some information about it beforehand. It may either be a known value of some argument, its
structure (e.g. the length of an input list) or, in case of a relational program, the direction in which the
relation is intended to be run. An earlier paper [24] has shown that conjunctive partial deduction [6] can
sometimes improve the performance of MINIKANREN programs. Depending on the particular control
decisions, it may also not affect the execution time of a program or even make it slower.

IMINIK ANREN language web site: http://minikanren.org. Access date: 28.02.2021

Alexei Lisitsa and Andrei Nemytykh (Eds.): 9th International Workshop © E. Verbitskaia, D. Berezun & D. Boulytchev
on Verification and Program Transformation (VPT 2021) This work is licensed under the
EPTCS 341, 2021, pp. 73 doii10.4204/EPTCS.341.5 Creative Commons| Attribution| License.

http://dx.doi.org/10.4204/EPTCS.341.5
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
http://minikanren.org

74 An Empirical Study of Partial Deduction for MINIKANREN

g = ZU {Cf’(tl, .. ty) |tj€ T} terms over the set of variables 2~
g = I=9 unification

GNYG conjunction

A% disjunction

fresh 2.9 fresh variable introduction

Rf."' (t,....t,,), tj €T relational symbol invocation
7 = {RV=2Ax.. X, 83} 8 specification

Figure 1: The syntax of the source language

Control issues in partial deduction of the logic programming language PROLOG have been studied
before [19]. Under the left-to-right evaluation strategy of PROLOG, atoms in the right-hand side of
a clause cannot be arbitrarily reordered without changing the observable behavior of a program. In
contrast, due to the completeness of the search, MINIKANREN is less sensitive to the order of conjuncts:
no answers can be added or lost, and the only difference caused by the order of conjuncts may be the
divergence/convergence of the search in the case when all answers are found. This opens yet another
possibility for optimization, not taken into account by the approaches initially developed in the context
of conventional logic programming.

In this paper we make the following contributions. We study issues which conjunctive partial deduc-
tion faces being applied for MINIKANREN. We also describe a novel approach to partial deduction for
relational programming, conservative partial deduction. We implemented this approach and compared
it with the existing specialization system (ECCE) for several programs. We report here the results of the
comparison and discuss why some MINIKANREN programs run slower after specialization.

2 Background

In this section we provide some background on relational programming and relational interpreters.

2.1 MINIKANREN

This paper considers the minimal relational core of the MINIKANREN language. The syntax of the lan-
guage is presented in Fig. 1| A specification of the MINIKANREN program consists of a set of relation
definitions accompanied by a top-level goal which plays the role of a query. Goals, being the central syn-
tactic category of the language, can take the form of either term unification, conjunction or disjunction of
goals, a fresh syntactic variable introduction, or a relation call. We consider the alphabet of constructors
{Cl{‘ '} and relational symbols {Rf" } to be predefined and accompanied with their arities.

The formal semantics of the language is best described in [29]. Here we only briefly introduce
the semantics. A stream of substitutions for free variables within the query goal is computed during the
execution of a MINIKANREN program. Depending on the kind of the goal, one of the following situations
is possible.

1. Term unification ¢; = f, computes the most-general unification in the context of the current substi-
tution. If it succeeds, the unifier is added into the current substitution and then it is returned as a
singleton stream. Otherwise, an empty stream is returned.

E. Verbitskaia, D. Berezun & D. Boulytchev 75

let rec add’ x y z = conde [
(x =zero A y=2z);
(fresh (p) (x =sucec p A add® p (succ y) z))]

let rec eval’ fm res = conde [fresh (x y xr yr) (
(fm = num res);
(eval? x xr A eval’ y yr A
conde [
(fm =sum x y A add’ xr yr res);
(fm=prod x y A ...);
1)

Listing 1: Evaluator of arithmetic expressions

2. Introduction of a fresh variable fresh x.g allocates a new semantic variable, substitutes it for all
fresh occurrences of x within g, then evaluates the goal.

3. An execution of a relational call Rf-"' (t1,...,1,) is done by first substituting the terms ¢; for the
respective formal parameters and then running the resulting goal.

4. When executing a conjunction g A g2, first the goal g is run in the context of the current substitu-
tion which results in the stream of substitutions, in each of which g is run. The resulting stream
of streams is then concatenated.

5. Disjunction g1 V g, applies both goals to the current substitution, incrementally switching evalua-
tion steps between the subgoals until all results (if any) are found.

Consider the relation add’ in Listing [I] It defines the relation between three Peano
numbers x, y and z, such that x +y = z, using the OCANREN languageﬂ The key-
word conde provides syntactic sugar for a disjunction, while zero and succ are construc-
tors. The query fresh (z) (add’ (succ zero) (succ zero) z) results in the only substitution
[z > succ (suce zero)], while the query fresh (x y) (add’ xy (succ (succ zero))) executes
to three valid substitutions: [x + zero, y — succ (succ zero)], [x — succ zero, y — succ zero],
[x +—> succ (succ zero), y +—> zero].

The interleaving search [135] is at the core of MINIKANREN. It evaluates disjuncts incrementally,
passing control from one to the other. This search strategy is what makes the search in MINIKANREN
complete. It also allows for reordering of both disjuncts and conjuncts within a goal which may improve
the efficiency of a program. This reordering generally leads to the reordering of the answers computed by
a MINIKANREN program. The denotational semantics of MINIKANREN ignores the order of the answers
because the search is complete and thus all possible answers will be found eventually.

2.2 Relational Interpreters

The kind of relational programs most interesting to us is relational interpreters. They may be used to
solve complex problems such as generating quines [4] or to solve search problems by only implementing

20CANREN: statically typed MINIKANREN embedding in OCAML. The repository of the project: https://github.com/
JetBrains-Research/0Canren. Access date: 28.02.2021

https://github.com/JetBrains-Research/OCanren
https://github.com/JetBrains-Research/OCanren

76 An Empirical Study of Partial Deduction for MINIKANREN

programs which check that a solution is correct [24)]. The latter application is the focus of our research
project thus we provide a brief description of it.

Search problems are notoriously complicated. In fact, they are much more complex than verifica-
tion — checking that some candidate solution is indeed a solution. The ability of MINTKANREN programs
to be evaluated in different directions along with the complete semantics of the language allows for au-
tomatic generation of a solver from a verifier using relational conversion [25]. Unfortunately, generated
relational interpreters are often inefficient, since the conversion introduces a lot of extra unifications and
boilerplate. This kind of inefficiency is a prime candidate for specialization.

Consider the relational interpreter eval’ fm res in Listing It evaluates an arithmetic ex-
pression fm which can take the form of a number (num res) or a binary expression such as the
sum x y or prod x y. Running the interpreter backwards synthesizes expressions which evaluate to
the given number. For example one possible answer to the query eval’ fm (succ (succ zero)) is
sum (num (succ zero)) (sum (num zero) (num (succ Zzero))).

3 Related Work

Specialization is an attractive technique aimed to improve the performance of a program making use
of its static properties such as known arguments or its environment. Specialization is studied for func-
tional, imperative, and logic programing and comes in different forms: partial evaluation [13]] and partial
deduction [23], supercompilation [32,|31], distillation [[10], and many others.

The heart of supercompilation-based techniques is driving — a symbolic execution of a program
through all possible execution paths. The result of driving is a possibly infinite process tree where nodes
correspond to configurations which represent computation states. For example, in the case of pure func-
tional programming languages, the computational state might be a term. Each path in the tree corresponds
to some concrete program execution. The two main sources for supercompilation optimizations are ag-
gressive information propagation about variables’ values, equalities and disequalities, and precomputing
of deterministic semantic evaluation steps. The latter process, also known as deforestation [37]], means
combining of consecutive process tree nodes with no branching. Of course, the process tree can contain
infinite branches. Whistles — heuristics to identify possibly infinite branches — are used to ensure su-
percompilation termination. If a whistle signals during the construction of some branch, then something
should be done to ensure termination. The most common approaches are either to stop driving the infinite
branch completely (no specialization is done in this case and the source code is blindly copied into the
residual program) or to fold the process tree to a process graph. When the process graph is constructed,
the resulting, or residual, program can be extracted from the graph by the process called residualization.
The main instrument to perform folding is some form of generalization. Generalization, abstracting
away some computed data about the current term, makes folding possible. For example, one source of
infinite branches is consecutive recursive calls to the same function with an accumulating parameter: by
unfolding such a call further one can only increase the term size which leads to nontermination. The
accumulating parameter can be removed by replacing the call with its generalization. There are several
ways to ensure correctness and termination of a program transformer [30], most-specific generalization
(anti-unification) and homeomorphic embedding [12,116] as a whistle being common.

While supercompilation generally improves the behaviour of input programs and distillation can even
provide superlinear speedup, there are no ways to predict the effect of specialization on a given program
in general. What is worse, the efficiency of a residual program from the target language evaluator point of
view is rarely considered in the literature. The main optimization source is computing in advance all pos-

E. Verbitskaia, D. Berezun & D. Boulytchev 77

sible intermediate and statically-known semantics steps at program transformation-time. Other criteria,
like the size of the generated program or possible optimizations and execution cost of different language
constructions by the target language evaluator, are usually out of consideration [13]. Partial evaluation in
logic programming should be done with care to not interfere with the compiler optimizations [33]]. It is
also known that supercompilation may adversely affect GHC optimizations making standalone compila-
tion more powerful [2, [14] and cause code explosion [26]]. Moreover, it may be hard to predict the real
speedup of any given program using concrete benchmarks even disregarding the problems above because
of the complexity of the transformation algorithm. The worst-case for partial evaluation is when all static
variables are used in a dynamic context, and there is some advice on how to implement a partial evaluator
as well as a target program so that specialization indeed improves its performance [13}3]. There is a lack
of research in determining the classes of programs which transformers would definitely speed up.

Conjunctive partial deduction [6] makes an effort to provide reasonable control for the left-to-right
evaluation strategy of PROLOG. CPD constructs a tree which models goal evaluation and is similar to
an SLDNF tree; then a residual program is generated from the tree. Partial deduction itself resembles
driving in supercompilation [9]. The specialization is done in two levels of control: the local control
determines the shape of the residual programs, while the global control ensures that every relation which
can be called in the residual program is defined. The leaves of local control trees become nodes of the
global control tree. CPD analyses these nodes at the global level and runs local control for all those nodes
which are new.

At the local level, CPD examines a conjunction of atoms by considering each atom one-by-one from
left to right. An atom is unfolded if it is deemed safe, i.e. a whistle based on homeomorphic embedding
does not signal for the atom. When an atom is unfolded, a clause whose head can be unified with the
atom is found, and a new node is added into the tree where the atom in the conjunction is replaced with
the body of that clause. If there is more than one suitable head, then several branches are added into
the tree which corresponds to the disjunction in the residualized program. An adaptation of CPD for the
MINIKANREN programming language is described in [24]].

ECCE partial deduction system [18, 20] is the most mature implementation of CPD for PROLOG.
ECCE provides various implementations of both local and global control as well as several degrees of
post-processing. Unfortunately there is no automatic procedure to choose what control setting is likely
to improve input programs the most. The choice of the proper control is left to the user.

An empirical study has shown that the most well-behaved strategy of local control in CPD for PRO-
LOG is deterministic unfolding [[17)]. An atom is unfolded only if precisely one suitable clause head exists
for it with the one exception: it is allowed to unfold an atom non-deterministically once for each local
control tree. This means that if a non-deterministic atom is the leftmost one within a conjunction, it
is most likely to be unfolded, introducing many new relation calls within the conjunction. We believe
this is the core problem of CPD which limits its power when applied to MINIKANREN. The strategy of
unfolding atoms from left to right is reasonable in the context of PROLOG because it mimics the way
programs in PROLOG execute. Special care should be taken when unfolding non-leftmost atoms in PRO-
LOG: one should ensure that it does not duplicate code, as well as that no side-effects are done out of
order [1, 22]]. However in MINIKANREN leftmost unfolding often leads to larger global control trees
and, as a result, bigger, less efficient programs. On the contrary, according to the denotational semantics,
the results of evaluation of a MINIKANREN program do not depend on the order of relation calls (atoms)
within conjunctions, thus we believe a better result can be achieved by selecting a relation call which can
restrict the number of branches in the tree. We describe our approach, which implements this idea, in the
next section.

78 An Empirical Study of Partial Deduction for MINIKANREN
1 | conspd goal = residualize o drive_disj o normalize(goal, empty_substitution)
2
3 |drive_disj :: [(Disjunction, Substitution)] — Process_Graph
4 | drive_disj [(c1, substi), ..., (cn, substn)] = \/?:1 t; < drive conj(c;, subst;)
5
6 |drive_conj :: (Conjunction, Substitution) — Process_Graph
7 | drive_conj ([], subst) = create_success_node (subst)

8 |drive_conj ([r1, ..., rn], subst) =
9 cQ(ry, ..., rp) « propagate_substitution subst onto ri, ..., rp

10 case whistle(C) of

11 | instance(C’, subst’) = create_fold_node(C’, subst’)

12 | embedded_but_not_instance = create_stop_node(C , subst)

13 | otherwise =

14 | | case heuristically__select__a_call(ry, ..., rn) of

15 | | | Just r =

16 | | | | t « unfold in_isolation(r, subst)

17 | | | | 1s « leaves(t)

18 | | | | if trivial(ls)

19 | | | | then

20 | [] \/f:1 t; < drive_conj(C[r — get_call(i, ls)], get_subst(i, ls))

21 | | | | | else

22 | ||t /\ drive__conj(C \ r, subst)

23 | | | | Nothing = /\?:1 t;i « drive_disj o normalize o unfold(r;, subst)

24

25 | heuristically_ select__a_ call :: Conjunction — Maybe Call

26 | heuristically__select__a_ call C =

27 find isStatic C <|> find isDeterministic C <|> find isLessBranching C

Figure 2: Conservative partial deduction pseudo code

4 Conservative Partial Deduction

In this section, we describe a novel approach to relational program specialization. This approach draws
inspiration from both conjunctive partial deduction and supercompilation. The aim was to create a spe-
cialization algorithm which would be simpler than conjunctive partial deduction and use properties of
MINIKANREN to improve the performance of the input programs.

The algorithm pseudocode is shown in Fig.[2l We use the following notation in the pseudocode. The
circle, o, represents function composition. The at sign, @, is used to name a pattern matched value. The
arrow, <—, is used to bind a variable on the left-hand side. The arrow can also be used to pattern match the
value on the right-hand side (see line 9). We use symbols A and \/ to represent creating, respectively, a
conjunction and a disjunction node in a process graph. The data type Maybe a = Just a | Nothing
is taken from HASKELL and represents optional value. The binary function x <|> y combines two
optional values: Just x <|> y = Just x, while Nothing <[> y = y.

Functions drive_disj and drive_conj describe how to process disjunctions and conjunctions
respectively. Hereafter, we consider all goals and relation bodies to be in canonical normal form — a
disjunction of conjunctions of either calls or unifications. Moreover, we assume all fresh variables to be
introduced into the scope and all unifications to be computed at each step. Thus driving is declared to be
the function drive_disj (line 4).

A driving process (along with generalization and folding) creates a process graph, from which a

E. Verbitskaia, D. Berezun & D. Boulytchev 79

residual program is later created. The process graph is meant to mimic the execution of the input program.
The nodes of the process graph include a configuration which describes the state of program evaluation
at some point. In our case a configuration is a conjunction of relation calls. The substitution computed at
each step is also stored in the graph node, although it is not included in the configuration. This means that
only the goal, and not the substitution, is passed into the whistle to determine potential non-termination.

Residualization is done by the function residualize. Residualization traverses the process graph
and generates the MINIKANREN goal as well as new relations whenever needed. A conjunction is created
from a conjunction node, a disjunction — from a disjunction node, while substitutions are generated into
a conjunction of unifications. Transient nodes — the nodes which have a single child node — correspond
to intermediate functions in residual programs and are removed during residualization to improve the
performance of programs. We also employ redundant argument filtering as described in [21]].

Those disjuncts in which unifications fail are removed while driving. Each other disjunct takes the
form of a possibly empty conjunction of relation calls accompanied with a substitution computed from
unifications. Any MINIKANREN term can be trivially transformed into the described form. The function
normalize in Fig. [2|is assumed to perform term normalization. The code is omitted for brevity but can
be found in the implementation of the approach on Githubﬂ

There are several core ideas behind this algorithm. The first is to select an arbitrary relation to
unfold, not necessarily the leftmost which is safe. The second idea is to use a heuristic which decides if
unfolding a relation call can lead to discovery of contradictions between conjuncts which in turn leads
to restriction of the answer set at specialization-time (line 14; heuristically_select_a_call stands
for heuristics combination, see Section @] for details). If those contradictions are found, then they are
exposed by considering the conjunction as a whole and replacing the selected relation call with the result
of its unfolding thus joining the conjunction back together instead of using split as in CPD (lines 15-22).
Joining instead of splitting is why we call our transformer conservative partial deduction. Finally, if the
heuristic fails to select a potentially good call, then the conjunction is split into individual calls which
are driven in isolation and are never joined (line 23).

When the heuristic selects a call to unfold (line 15), a process tree is constructed for the selected
call in isolation (line 16). This is done by driving the call until all leaves of the process tree are either
substitutions, failures or recursive calls to the relations unfolded within the tree (example process tree is
provided in Figure d)). No folding is performed by unfold_in_isolation and each recursive call is
unfolded at most once. The leaves of the computed tree are examined. If all leaves are either computed
substitutions or are instances of some relations accompanied with non-empty substitutions, then the
leaves are collected and each of them replaces the considered call in the root conjunction (line 20). If
the selected call does not suit the criteria, the results of its unfolding are not propagated onto other
relation calls within the conjunction, instead, the next suitable call is selected (line 22). According to the
denotational semantics of MINIKANREN it is safe to compute individual conjuncts in any order, thus it is
okay to drive any call and then propagate its results onto the other calls.

This process creates branchings whenever a disjunction is examined (lines 4, 20). When a goal is
fully computed to a substitution (line 7), then a success node is created and driving stops. At each step,
we make sure to not drive a conjunction which has already been examined. To do this, we check if the
current conjunction is a renaming of any other configuration in the graph (line 11). If it is, then we fold
by creating a special node which is then residualized into a call to the corresponding relation.

In this approach, we do not generalize in the same fashion as CPD or supercompilation. This decision
was motivated by keeping the complexity of the approach to the minimum. Our conjunctions are always

3The project repository: https://github.com/kajigor/uKanren_transformations/. Access date: 28.02.2021

https://github.com/kajigor/uKanren_transformations/

80 An Empirical Study of Partial Deduction for MINIKANREN

split into individual calls and are joined back together only if it is meaningful, for example, leads to
contradictions. If the need for generalization arises, i.e. homeomorphic embedding of conjunctions [6]]
is detected, then we immediately stop driving this conjunction (line 12). When residualizing such a
conjunction, we just generate a conjunction of calls to the input program before specialization.

4.1 Unfolding

Unfolding in our case is done by substitution of some relation call by its body with simultaneous nor-
malization and computation of unifications. The unfolding itself is straightforward; however it is not
always clear what to unfold and when to sfop unfolding. Unfolding in the context of specialization of
functional programming languages, as well as inlining in specialization of imperative languages, is usu-
ally considered to be safe from the residual program efficiency point of view. It may only lead to code
explosion or code duplication which is mostly left to a target program compiler optimization or even is
out of consideration at all if a specializer is considered as a standalone tool [13]].

Unfortunately, this is not the case for the specialization of a relational programming language. Un-
like functional and imperative languages, in logic and relational programming languages unfolding may
easily affect the target program’s efficiency [19, 8]. Unfolding too much may create extra unifications,
which is by itself a costly operation, or even introduce duplicated computations by propagating the results
of unfolding onto neighbouring conjuncts.

There is a fine edge between too much unfolding and not enough unfolding. The former is maybe
even worse than the latter. We believe that the following heuristic provides a reasonable approach to
unfolding control.

4.2 Less Branching Heuristic

This heuristic is aimed at selecting a relation call within a conjunction which is both safe to unfold
and may lead to discovering contradictions within the conjunction. An unsafe unfolding leads to an
uncontrollable increase of the number of relation calls in a conjunction. It is best to first unfold those
relation calls which can be fully computed up to substitutions.

We deem every static (non-recursive) conjunct to be safe because they never lead to growth in the
number of conjunctions. Those calls which unfold deterministically, meaning there is only one disjunct
in the unfolded relation, are also considered to be safe.

Those relation calls which are neither static nor deterministic are examined with what we call the
less-branching heuristic. It identifies the case when the unfolded relation contains fewer disjuncts than it
could possibly have. This means that we found some contradiction, some computations were gotten rid
of, and thus the answer set was restricted, which is desirable when unfolding. To compute this heuristic
we precompute the maximum possible number of disjuncts in each relation and compare this number
with the number of disjuncts when unfolding a concrete relation call. The maximum number of disjuncts
is computed by unfolding the body of the relation in which all relation calls were replaced by a unification
which always succeeds.

The pseudocode describing our heuristic is shown in Fig. 2] (lines 25-27). Selecting a good relation
call can fail. We express this by using Maybe data type for the result (line 25). The implementation works
as follows: we first select those relation calls which are static, and only if there are none, we proceed to
consider deterministic unfoldings and then we search for those which are less branching. We believe this
heuristic provides a good balance in unfolding.

E. Verbitskaia, D. Berezun & D. Boulytchev 81

let rec eval’ s fm res = conde [fresh (x y z v w) (
(fm=conj x y A eval? s xv A eval’ syw A and’ v w res);
(fm=disj xy A eval? s xv A eval? syw A or’ v wres);
(fm = neg x A eval® s x v A not’ v res);
(fm=var v A elem’ s v res))]

let not” x y =nand’ x x y

let or° x y z =nand’ x x xx A nand’ y y yy Anand’ xx yy z
let and® x y z = nand® x y xy A nand’ xy xy z
let nand® a b ¢ = conde [

(a= false A b= false A c = true);

(a= false A b=true A c = true);

(a=true A b= false A c = true);

(a=true A b=true A c = false)]

let elem’° n s v = conde [fresh (h t m) (
(n=zero AN s=h : t AN h=v);
(n=succem AN s=h :t A elem’mt v))]

Listing 2: Evaluator of propositional formulas

5 Example

In this section we demonstrate by example how conservative partial deduction works. The example
program is a relational interpreter of propositional formulas under given variable assignments. The
complete code of the example program is provided in Listing

The relation eval® has three arguments. The first argument, s, is a list of boolean values which
plays the role of variable assignments. The i-th value of the substitution is the value of the i-th variable.
The second argument, fm, is a formula with the following abstract syntax. A formula is either a variable
represented with a Peano number, a negation of a formula, a conjunction of two formulas or a disjunction
of two formulas. The third argument, res, is the value of the formula under the given assignment.

The relation eval? is in canonical normal form: it is a single disjunction which consists of 4 con-
junctions of unifications and relation calls, and all its fresh variables are introduced at the top level. The
unification in each conjunction determines the shape of the input formula and binds variables to the cor-
responding subformulas. For each of the subformulas, the relation eval? is called recursively. Then the
results of the evaluation of the subformulas are combined by the corresponding boolean connective to
get the result for the input formula. For example, when the formula is a conjunction of two subformulas
x and y, the results of their execution v and w are combined by the call to the relation and® to compute
the result: and’ v w res. If the input formula is a variable, then its value is looked up in the substitution
list by means of the relation elem’.

Consider the goal fresh (s fm) (eval’s fm true). The partially constructed process graph for
this goal is presented in Fig.[3] The following notation is used. Rectangle nodes contain configurations,
while diamond nodes correspond to splitting. Each configuration contains a goal along with a substitution
in angle brackets. To visually differentiate constructors from variables within goals, we made them bold.
For brevity, we only put a fragment of the substitution computed at each step in the corresponding node.

82 An Empirical Study of Partial Deduction for MINIKANREN

_ - --Jeval’fm s true

eval’x s aA

eval’ x s al
eval’y s bA

eval%y s b A
and”a b true or’a b true

(£ — conj x y) (fm — disj x y)
7 a

eval’x s aA elem’x s true
not’a true (fm — var v)
(fm — neg x)

I
/
!
/ leval®x s true A / %val’x s true Al |eval®x s true A| |eval’x s false A eval’x s false (s —h:t, elem’y t true
/ eval’y s true |/ /| eval’y s true eval’y s false eval’y s true (a— false) X — zero (s > h:t,
/I (a — true, " /’ (a— true, (a— true, (a— false, h — true) X — succ y)
I
f b — true) i b — true) b — false) b — true) |
I il /
I W /
1 \ /
I I /
\ /
/

l
I
[’
N

! -
1

N
eval’x s true eval’y s true "~ - ‘{eval" X s true| |eval’y s false }(— --7

1
I
I
I
|

Figure 3: Partially constructed process graph for the relation eval®.

[nand” X y xy Anand’ xy xy true]

nand’ false false true

nand’ true true true nand’ true true true nand’ true true true

(x — false,

(x — false, (x — true, (x — true,
y — false, y — true,

y — true,
xy — false)

y — false,
Xy — true) Xy — true)

Xy — true)

fail fail [(x — true, y — true, xy — false)}

fail
Figure 4: Unfolding of and®’.

The leaf node which contains only the substitution and no goal in its configuration is a success node.
The call selected to be unfolded is underlined in a conjunction. Nodes corresponding to failures are not
present within the process graph. Dashed arrows mark renamings.

Conservative partial deduction starts by unfolding the single relation call in this goal once. Besides
introducing fresh variables into the context, unifications in each conjunct are computed into substitutions.
This produces 4 branches, each of which is processed further.

Consider the first branch, in which the input formula fm is a conjunction of subformulas x and y.
First, each relation call within a conjunction is examined separately to select one of the calls to unfold.
To do so, we unfold each of them in isolation and use the less branching heuristic. Both recursive calls
to eval? are done with three distinct fresh variables, and are not selected according to the less branching
heuristic. By unfolding the call to and’ several times, we determine that it has a single non-failing branch
(see Fig. , which is less than the same relation would have if called on all free and distinct variables,
thus this call is selected to be unfolded. The result of unfolding the call is a single substitution which

E. Verbitskaia, D. Berezun & D. Boulytchev 83

let rec eval) 6 s fm = conde [fresh (x y z v w) (

(fm=conj xy A eval?,, s x Aeval}, sy);
(fm =disj x y A (conde [
(eval}, sx A eval?, sy);

true
(eval? , s x A eval;’palse Sy);

true
(evalf,, s x Aevall, sy);

D
(fm = neg x A evaljialse S XV);
(fm=var v A elem), s v))]

let rec eval?alse s fm = conde [fresh (x y z v w) (
(fm =conj x y A (conde [

(eval?alse s x A eval;.alse Sy);

o

(evaltrue

s x A evalj,, sy);
(evalf,, s x Aevall, sy);

D:

(fm=disj xy A evalj,, s x Aeval}, sy);

(fm =neg x A eval?, s x Vv);

(fm =var v A elemj’,alse s v))]

o

let elem!,, n s = conde [fresh (h t m) (
(n=1zero N s =true : t);
(n=succem A s=h:t A elemf,, mt))]

let elem‘}a,se n s = conde [fresh (h t m) (
(n=1zero N s = false : t);
(n=succm AN s=h :t A elem‘]ialsemt 1]

Listing 3: Specialized evaluator of propositional formulas

associates the variables a and b with true. By applying the computed substitution to the goal we get
a conjunction of two calls to the eval® relation with the last argument being true. This conjunction
embeds the root goal, thus we split the conjunction and both calls become leaves which rename the root.
This finishes the processing of the first branch.

Consider the second branch, in which the input formula fm is a disjunction of subformulas x and y.
Similarly to the first branch, the heuristic selects the call to the boolean relation to be unfolded which
produces three possible substitutions for variables a and b. The substitutions are propagated into the
goals and three branches, each of which embeds the root goal, are added into the process graph. Each
goal is then split, and the calls with the last argument being true rename the root. Finally, the call
eval?y s false is processed, which creates 4 branches similar to the branches of the root goal.

The third branch is driven until a call with the last argument being false is encountered. Since it
renames one of the nodes which is already present in the process graph, we stop exploring this branch
and add the back edge.

The last branch, in which the input formula fm is a variable v, contains the single call to the relation

84 An Empirical Study of Partial Deduction for MINIKANREN

elem’. The unfolding of this call produces two leaves: a success node and a renaming of the parent node.
This finishes the construction of the process graph.

The process graph is then residualized into a specialized version of the eval? relation (see Listing[3).
This program does not contain any calls to boolean connectives. Neither does the program contain the
original, not specialized, relation eval®.

It is worth noting that the result produced by the Conservative Partial Deduction is not ideal. For
example, in the definition of the eval? ,, when the input formula fm is a disjunction of subformulas x and

true’
y, the recursive call evaly,,, s x is done twice in two disjuncts. The ideal version of the relation evaly,

true
should contain this recursive call only once. This can be done, for example, by common subexpression
elimination [27]]. However, ideally, y should not be evaluted at all, since the value of the formula fm
does not depend on it. It is unclear if and how this kind of transformation can be done automatically.
Such transformation would require, first, realising that a disjunction of two relation calls eval?,, sy
and eval} . sy exhaust all possible values for y. Secondly, the transformation would have to examine

if a relation restricts values of a given argument regardless of the other arguments’ values.

6 Evaluation

We implementecﬂ the conservative partial deduction for MINIKANREN and compared it with the ECCE
partial deduction system. ECCE is designed for the PROLOG programming language and cannot be
directly applied for programs written in MINIKANREN. Nevertheless, the languages show resemblance,
and it is valuable to check if the existing methods for PROLOG can be used directly in the context of
relational programming. To be able to compare our approach with ECCE, we converted each input
program first to the pure subset of PROLOG, then specialized it with ECCE, and then we converted
the result back to MINIKANREN. The conversion to PROLOG is a simple syntactic conversion. In the
conversion from PROLOG to MINIKANREN, for each Horn clause a conjunction is generated in which
unifications are placed before any relation call. All programs are run as MINIKANREN programs in our
experiments. In the final subsection we discuss some limitations of both our approach and ECCE.

We chose two problems for our study: evaluation of a subset of propositional formulas and type-
checking for a simple language. The problems illustrate the approach of using relational interpreters to
solve search problems [24]]. For both these problems we considered several possible implementations in
MINTIKANREN which highlight different aspects relevant in specialization.

The eval? relation implements an evaluator of a subset of propositional formulas described in Sec-
tion[5] We consider four different implementations of this relation to explore how the way the program
is implemented can affect the quality of specialization. Depending on the implementation, ECCE gen-
erates programs of varying performance, while the execution times of the programs generated by our
approach are similar.

The typecheck? relation implements a typechecker for a tiny expression language. We consider two
different implementations of this relation: one written by hand and the other generated from a functional
program, which implements the typechecker, as described in [24]. We demonstrate how much these
implementations differ in terms of performance before and after specialization.

In this study we measured the execution time for the sample queries, averaging them over multiple
runs. All examples of MINIKANREN relations in this paper are written in OCANREN. The queries were
run on a laptop running Ubuntu 18.04 with quad core Intel Core i5 2.30GHz CPU and 8 GB of RAM.

4The project repository: https://github.com/kajigor/uKanren_transformations/. Access date: 28.02.2021

https://github.com/kajigor/uKanren_transformations/

E. Verbitskaia, D. Berezun & D. Boulytchev 85

let rec eval’ s fm res = conde [fresh (x y z v w) (
(fm=conj xy A eval? s xv A eval? s yw A and’ v w res);

(fm=disj xy A eval° sxv A eval’ syw A or’ v w res);
(fm = neg x A eval® s x v A not? v res));
(fm = var v A elem’ s v res)]

Listing 4: Evaluator of formulas with boolean operation last

let rec eval® s fm res = conde [fresh (x y z v w) (
(fm=conj x y A and’ v w res A eval’ s x v A eval’ s y w);
(fm =disj x y A or°
(fm = neg x A not’ v res A eval® s x Vv);
(fm = var v A elem’ s v res))]

vwres A eval’ s x v A eval® s y w);

Listing 5: Evaluator of formulas with boolean operation second

The tables and graphs use the following denotations. Original represents the execution time of a
program before any transformations were applied; ECCE — of the program specialized by ECCE with
the default conjunctive control setting; ConsPD — of the program specialized by our approach.

6.1 Evaluator of Logic Formulas

The relation eval® describes an evaluation of a propositional formula under given variable assignments
presented in Section[5] We specialize the eval? relation to synthesize formulas which evaluate to true.
To do so, we run the specializer for the goal with the last argument fixed to true, while the first two
arguments remain free variables. Depending on the way eval? is implemented, different specializers
generate significantly different residual programs.

6.1.1 The Order of Relation Calls

One possible implementation of the eval® relation is presented in Listing] Here the relation
elem’ s v res unifies res with the value of the variable v in the list s. The relations and’, or?, and
not’ encode corresponding boolean connectives.

Note, the calls to boolean relations and®, or®, and not® are placed last within each conjunction.
This poses a challenge for the CPD-based specializers such as ECCE. Conjunctive partial deduction
unfolds relation calls from left to right, so when specializing this relation for running backwards (i.e.
considering the goal eval’ s fm true), it fails to propagate the direction data onto recursive calls of
eval?. Knowing that res is true, we can conclude that the variables v and w have to be true as well in
the call and’ v w res. There are three possible options for these variables in the call or® v w res and
one for the call not® v res. These variables are used in recursive calls of eval? and thus restrict the
result of its execution. CPD fails to recognize this, and thus unfolds recursive calls of eval? applied to
fresh variables. It leads to over-unfolding, large residual programs and poor performance.

The conservative partial deduction first unfolds those calls which are selected according to the heuris-
tic. Since exploring the implementations of boolean connectives makes more sense, they are unfolded
before the recursive calls of eval®. The way conservative partial deduction treats this program is the
same as it treats the other implementation in which boolean connectives are moved to the left, as shown

86 An Empirical Study of Partial Deduction for MINIKANREN

let not® x y = conde [
(x = true A y = false;
x = false A y = true)]

Listing 6: Implementation of boolean not° as a table

let not° x y =nand’ x x y

let or° x y z =nand’ x x xx A nand’ y y yy Anand’ xx yy z
let and® x y z = nand’ x y xy A nand’ xy xy z

let nand’ a b ¢ = conde [

(a= false A b= false A c = true);
(a= false A b=true A c = true);
(a=true A b= false A c = true);
(a=true A b=true A c = false)]

Listing 7: Implementation of boolean operations via nand®

in Listing [5] This program is easier for ECCE to specialize which demonstrates how unequal the be-
haviour of CPD for similar programs is.

6.1.2 Unfolding of Complex Relations

Depending on the way a relation is implemented, it may take a different number of driving steps to
reach the point when any useful information is derived through its unfolding. Partial deduction tries to
unfold every relation call unless it is unsafe, but not all relation calls serve to restrict the search space
and thus should be unfolded. In the implementation of eval® boolean connectives can effectively restrict
variables within the conjunctions and should be unfolded until they do. But depending on the way they
are implemented, the different number of driving steps should be performed for that. The simplest way to
implement these relations is by mimicking a truth table as demonstrated by the implementation of not?
in Listing [6] It is enough to unfold such relation calls once to derive useful information about variables.

The other way to implement boolean connectives is to express them using a single basic boolean
relation such as nand” which, in turn, has a table-based implementation (see Listing [7). It takes sev-
eral sequential unfoldings to derive that the variables v and w should be true when considering a call
and’ v w true implemented via a basic relation. Conservative partial deduction drives the selected call
until it derives useful substitutions for the variables involved while CPD with deterministic unfolding
may fail to do so.

6.1.3 Evaluation Results

In our study we considered 4 implementations of eval® summarised in the Table 1| They differ in the
way the boolean connectives are implemented (see column Implementation) and whether they are placed
before or after the recursive calls to eval® (see column Placement). These four implementations are
very different from the standpoint of ECCE. We measured the time necessary to generate 1000 formulas
over two variables which evaluate to true (averaged over 10 runs). The results are presented in Fig. [5
Conservative partial deduction generates programs with comparable performance for all four imple-
mentations, while the quality of ECCE specialization differs significantly. ECCE worsens performance

E. Verbitskaia, D. Berezun & D. Boulytchev 87

H Implementation H Placement

FirstPlain table-based before
LastPlain table-based after
FirstNando via nand’ before
LastNando via nand’ after

Table 1: Different implementations of eval®

2.5 T
Original m—

H Original | ECCE | ConsPD coECcE —

. 2+ N
First 1 sos | 1.61s | 0925
Plain sl |
First- ’
Nando 1.43s 2.24s 0.96s _ | |
Last-/ 6 98¢ | 1436 | 0.97s
Plain os L |
Last-
Nando 1.09s 1.54s 0.91s .

FirstPlain FirstNando LastPlain LastNando

Implementation

Time (s)

Figure 5: Execution time of eval®

for every implementation as compared to the original program. ConsPD does not worsen performance
for any implementation. Its effect is most significant for the implementations in which the boolean
connectives are placed first within conjunctions.

6.1.4 The Order of Answers

It is important to note that different implementations of the same MINIKANREN relation produce an-
swers in different orders. Nevertheless, since MINIKANREN search is complete, all answers will be
found eventually. Unfortunately, it is not guaranteed that the first 1000 formulas generated with differ-
ent implementations of eval? will be the same. For example, 983 formulas are the same among the
first 1000 formulas generated by the Original FirstPlain relation and the same relation after the ConsPD
transformation. At the same time, only 405 formulas are the same between the Original and ECCE
LastNando relations.

The reason why implementations differ so much in the order of the answers stems from the canonical
search strategy employed in MINIKANREN. Most MINIKANREN implementations employ interleaving
search [15] which is left-biased. It means that the leftmost disjunct in a relation is being executed
longer than the disjunct on the right. This property is not local which makes it very hard to estimate the
performance of a given relation.

In practice it means that if a specializer reorders disjuncts, then the performance of relations after
specialization may be unpredictable. For example, by putting the disjuncts of the eval? relation in
the opposite order, one produces a relation which runs much faster than the original, but it generates
completely different formulas at the same time. Most of the first 1000 formulas in this case are multiple
negations of a variable, while the original relation produces more diverse set of answers. Computing

88 An Empirical Study of Partial Deduction for MINIKANREN

a negation of a formula only takes one recursive eval® call thus finding such answers is faster than
conjunctions and disjunctions. Meanwhile, the formulas generated by the reordered relation are less
diverse and may be of less interest.

Although neither ECCE nor ConsPD reorder disjuncts, they remove disjuncts which cannot succeed.
Thus they influence the order of answers and performance of relations. Both methods reduce the number
of unifications needed to compute each individual answer thus performing specialization. In general,
it is not possible to guarantee the same order of answers after specialization. Exploring how different
specializations influence the execution order is a fascinating direction for future research.

6.2 Typechecker-Term Generator

This relation implements a typechecker for a tiny expression language. Being executed in the backward
direction it serves as a generator of terms of the given type. The abstract syntax of the language is
presented below. The variables are represented with de Bruijn indices, thus let-binding does not specify
which variable is being bound.

type term = BConst of Bool |IConst of Int | Var of Int
| term+term | termxterm | term =term |term <term
| let term interm | if term then term else term

The typing rules are straightforward and are presented in Fig. [6] Boolean and integer constants
have the corresponding types regardless of the environment. Only terms of type integer can be added,
multiplied or compared by the less-than operator. Any terms of the same type can be checked for equality.
Addition and multiplication of two terms of suitable types have integer type, while comparisons have
boolean type. The if-then-else expression typechecks only if its condition is of type boolean, while both
then- and else-branches have the same type. An environment I is a list, in which the i-th element is the
type of the variable with the i-th de Bruijn index. To typecheck a let-binding, first, the term being bound
is typechecked and is added in the beginning of the environment I', and then the body is typechecked in
the context of the new environment. Typechecking a variable with the index i boils down to getting an
i-th element of the list.

I'FIConst i: Int I'F BConst b : Bool I'EVarv:~t b=
I'tt:Int,TkEs:Int I'ct:t,I'ks:t I'tvig, (nul)Fb:tT
I'tt+s:Int I'Ht=s:Bool I'tletvb:t
I'bt:Int,I'+s:Int I'bt:Int,I's:Int I'c:Bool,T'Ft:t,TFs:7T
I'ktxs:Int 'kt <s:Bool I'kif cthentelses:t

Figure 6: Typing rules implemented in typecheck® relation

We compared two implementations of these typing rules. The first one is obtained by unnesting
of a functional program, which implements the typechecker, as described in [24]] (Generated). 1t is
worth noting that the unnesting introduces a lot of redundancy in the form of extra unifications and thus
creates programs which are very inefficient. Thus we contrast this implementation with the program
hand-written in OCANREN (Hand-written). Each implementation has been specialized with ConsPD
and ECCE. We measured the time needed to generate 1000 closed terms of type integer (see Fig.[7).

E. Verbitskaia, D. Berezun & D. Boulytchev 89

102 ¢ :
E Original m—
. ECCE mmmm]
101 & ConsPD =

N L
101

Hand-written Generated

H Original | ECCE | ConsPD

Hand-written 0.92s 0.22s 0.34s
Generated 11.46s 0.38s 0.29s

Time (s)

Figure 7: Execution time of generating 1000 closed terms of type integer

let rec typecheck’ gamma term res = conde [

fresh (x y) ((term=x+y A
typecheck’ gamma x (some integer) A
typecheck’ gamma y (some integer) A
res = (some integer)));

-]

Listing 8: A fragment of the hand-written typechecker

let rec typecheck’ gamma term res = conde |

fresh (x y t1 t2) ((term=x +y A

conde [
typecheck’ gamma x none A Tres = none;
typecheck’ gamma x (some t1) A
typecheck’ gamma y none A res = none;

typecheck’ gamma x (some tl) A typecheck’ gamma y (some t2) A
typeEq’ t1 integer true A typeEq’ t2 integer true A
res = (some integer);
D
o]

Listing 9: A fragment of the generated typechecker

As expected, the generated program is far slower than the hand-written one. The principal differ-
ence between these two implementations is that the generated program contains a certain redundancy
introduced by unnesting. For example, typechecking of the sum of two terms in the hand-written im-
plementation consists of a single conjunction (see Listing [8)) while the generated program is far more
complicated and also uses a special relation typeEq” to compare types (see Listing[9). This relation has
to be unfolded early to determine types of the subterms, much like the boolean relations implemented
via a basic relation had to be unfolded in the previous problem.

Most redundancy of the generated program is removed by specialization with respect to the known
type. This is why both implementations have comparable speed after specialization. ECCE shows bigger

90 An Empirical Study of Partial Deduction for MINIKANREN

let doubleAppend’ x y z res = fresh (t) (
append’ x y t Aappend’ t z res)

let append’ x y res = conde [fresh (h t r) (
(x [1] AN res=y);
(x=h:t A append® t yr Ares=h : r))]

Listing 10: Inefficient implementation of concatenation of three lists

let maxLength’ x m 1 = fresh (t) (
max’ x m A length® x 1)

let length’ x 1 = conde [fresh (h t r) (
(x=1[] N 1=zero);
(x=h:t A length® t r Al=sucecr))]

let max’ x m = max{ x zero m
let rec max{ x n m = fresh (h t) (conde [
(x=1[] N m=n);
(x=h : t) A (conde [
(le’ h n true A max{ t nm);
(gt h n true A max{ t hm)])])

Listing 11: Inefficient implementation of maxLength®

speedup for the hand-written program than ConsPD and vice versa for the generated implementation. We
believe that this difference can be explained by too much unfolding. ECCE performs a lot of excessive
unfolding for the generated program and only barely changes the hand-written program. At the same
time ConsPD specializes both implementations to comparable programs performing an average amount
of unfolding. This shows that the heuristic we presented gives more stable, although not the best, results.

6.3 Discussion: Tupling and Deforestation

Tupling [28} 5] and deforestation are among the important transformations conjunctive partial deduc-
tion is capable of. Deforestation is often demonstrated by the doubleAppend® program which concate-
nates three lists by calling the concatenation relation append” twice in a conjunction (see Listing [T0).
The two calls to append lead to double traversal of the first list, which is inefficient. The program may be
transformed in such a way so as to only traverse the first list once (see [6] for details), which conjunctive
partial deduction does.

Conjunctive partial deduction achieves this effect by considering the conjunction of two append®
calls as a whole. At the local control level, it first unfolds the leftmost call, propagates the computed sub-
stitutions onto the rightmost call, and then unfolds the rightmost call in the context of the substitutions.
When the first list is not empty, this leads to discovering a renaming of a conjunction of two append’
calls. By renaming this conjunction into a new predicate, deforestation is achieved in this example.

Unfortunately, conservative partial deduction does not succeed at this transformation on this example.

E. Verbitskaia, D. Berezun & D. Boulytchev 91

This happens because ConsPD splits the conjunction of two calls to append?, since none of them is
selected by the less branching heuristic. Splitting the conjunction leads to information loss and makes it
so there is no renaming of the whole conjunction in the process graph.

A similar thing happens when considering the common example on which tupling is demonstrated in
literature on CPD: the maxLength® program. The original implementation of this program computes the
maximum element of the list along with the length of the list by conjunction of two calls to the relations
max’ and length’ respectively (see Listing. [TT). This implementation also traverses the input list twice
when run in the forward direction. By tupling, this program may be transformed so that the list is
traversed once while both the maximum value and the length of the list are computed simultaneously, and
CPD is capable to achieve this transformation with the default settings. Conservative partial deduction
also splits much too early and thus fails to yield any useful transformation for this program.

It is worth noting that determinate unfolding performed by CPD plays a huge role in these exam-
ples. The default unfolding strategy implemented in ECCE allows for only a single non-determinate un-
folding per a local control tree. When considering conjunctions append® x y t A append’t z res
and max’ xm A length’x 1, it unfolds the leftmost call which produces several branches in the tree.
The rightmost call is only considered, if unfolding of its conjunction with the result of unfolding of the
leftmost call produces only one result. This indeed happens in these two examples. If it was not to
happen, then the conjunction would have been split at the global level and no deforestation or tupling
would have been achieved. It is not that hard to modify the examples in such a way so that CPD fails
to transform them in a meaningful way. For example, one extra disjunct can be added into the append’
relation, or the calls to max® and length® may be reordered. This is evidence of how non-trivial and
fragile these transformers are. More research should be done to make sure useful transformations are
possible for many input programs.

7 Conclusion

In this paper we discussed some issues which arise in the area of partial deduction techniques for the
relational programming language MINIKANREN. We presented a novel approach to partial deduction —
conservative partial deduction — which uses a heuristic to select a suitable relation call to unfold at each
step of driving. We compared this approach with the most sophisticated implementation of conjunctive
partial deduction — ECCE partial deduction system — on 6 relations which solve 2 different problems.

Our specializer improved the execution time of all queries. ECCE worsened the performance of all
4 implementations of the propositional evaluator relation, while improving the other queries. Conser-
vative partial deduction is more stable with regards to the order of relation calls than ECCE which is
demonstrated by the similar performance of all 4 implementations of the evaluator of logic formulas.

Some queries to the same relation were improved more by ConsPD, while others — by ECCE. We
conclude that there is still not one good technique which definitively speeds up every relational program.
More research is needed to develop models capable of predicting the performance of a relation which
can be used in specialization of MINIKANREN. There are some papers which estimate the efficiency of
partial evaluation in the context of logic and functional logic programming languages [34,35], and may
facilitate achieving this goal. Employing a combination of offline and online transformations as done
in [36]] may also be the step towards more effective and predictable partial evaluation. Other directions for
future research include exploring how specialization influences the execution order of a MINIKANREN
program, improving ConsPD so that it succeeds at deforestation and tupling more often, and coming up
with a larger, more impressive, set of benchmarks.

92

An Empirical Study of Partial Deduction for MINIKANREN

Acknowledgements

We gratefully acknowledge the anonymous referees and the participants of VPT-2021 workshop for
fruitful discussions and many useful suggestions.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Elvira Albert, German Puebla & John P. Gallagher (2006): Non-leftmost Unfolding in Partial Evaluation of
Logic Programs with Impure Predicates. In Patricia M. Hill, editor: Logic Based Program Synthesis and
Transformation, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 115-132, doi:10.1007/11680093_8|

Maximilian C. Bolingbroke & Simon L. Peyton Jones (2010): Supercompilation by evaluation. In Jeremy
Gibbons, editor: Proceedings of the 3rd ACM SIGPLAN Symposium on Haskell, Haskell 2010, Baltimore,
MD, USA, 30 September 2010, ACM, pp. 135-146, doi;10.1145/1863523.1863540.

Mikhail A. Bulyonkov (1984): Polyvariant Mixed Computation for Analyzer Programs. Acta Informatica
21(5), pp. 473484, doi:10.1007/BF00271642.

William E. Byrd, Eric Holk & Daniel P. Friedman (2012): miniKanren, Live and Untagged: Quine Gener-
ation via Relational Interpreters (Programming Pearl). In: Proceedings of the 2012 Annual Workshop on
Scheme and Functional Programming, pp. 8-29, doi110.1145/2661103.2661105|

Wei-Ngan Chin (1993): Towards an Automated Tupling Strategy. In: Proceedings of the 1993 ACM SIG-
PLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation, PEPM ’93, Associa-
tion for Computing Machinery, New York, NY, USA, pp. 119—-132, doi;10.1145/154630.154643|

Danny De Schreye, Robert Gliick, Jesper Jgrgensen, Michael Leuschel, Bern Martens & Morten Heine B.
Sgrensen (1999): Conjunctive Partial Deduction: Foundations, Control, Algorithms, and Experiments. The
Journal of Logic Programming 41(2-3), pp. 231-277, doi;10.1016/S0743-1066(99)00030-8.

Daniel P. Friedman, William E. Byrd & Oleg Kiselyov (2005): The Reasoned Schemer. The MIT Press,
doi:10.7551/mitpress/5801.001.0001.

John P. Gallagher (1993): Tutorial on Specialisation of Logic Programs. In: Proceedings of the 1993 ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation, PEPM °93, New
York, NY, USA, pp. 88-98, doi:10.1145/154630.154640.

Robert Gliick & Morten Heine B. Sgrensen (1994): Partial Deduction and Driving are Equivalent. In:
International Symposium on Programming Language Implementation and Logic Programming, Springer, pp.
165-181, doi310.1007/3-540-58402-1_13,

Geoff W. Hamilton (2007): Distillation: Extracting the Essence of Programs. In: Proceedings of the 2007
ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation, PEPM *07,
Association for Computing Machinery, New York, NY, USA, pp. 61-70, doi:10.1145/1244381.1244391.

Jason Hemann & Daniel P. Friedman (2013): puKanren: A Minimal Functional Core for Relational Pro-
gramming. In: Proceedings of the 2013 Workshop on Scheme and Functional Programming (Scheme’13).
Auvailable athttp://webyrd.net/scheme-2013/papers/HemannMuKanren2013. pdfl

Graham Higman (1952): Ordering by Divisibility in Abstract Algebras. In: Proceedings of the London
Mathematical Society, 2, pp. 326336, doi:10.1112/plms/s3-2.1.326.

Neil D. Jones, Carsten K. Gomard & Peter Sestoft (1993): Partial Evaluation and Automatic Program Gen-
eration. Prentice Hall international series in computer science, Prentice Hall, Inc, USA.

Peter A. Jonsson & Johan Nordlander (2011): Taming Code Explosion in Supercompilation. In Siau-Cheng
Khoo & Jeremy G. Siek, editors: Proceedings of the 20th ACM SIGPLAN Workshop on Partial Evaluation
and Program Manipulation, PEPM °11, Association for Computing Machinery, New York, NY, USA, pp.
33-42, doi310.1145/1929501.1929507.

http://dx.doi.org/10.1007/11680093_8
http://dx.doi.org/10.1145/1863523.1863540
http://dx.doi.org/10.1007/BF00271642
http://dx.doi.org/10.1145/2661103.2661105
http://dx.doi.org/10.1145/154630.154643
http://dx.doi.org/10.1016/S0743-1066(99)00030-8
http://dx.doi.org/10.7551/mitpress/5801.001.0001
http://dx.doi.org/10.1145/154630.154640
http://dx.doi.org/10.1007/3-540-58402-1_13
http://dx.doi.org/10.1145/1244381.1244391
http://webyrd.net/scheme-2013/papers/HemannMuKanren2013.pdf
http://dx.doi.org/10.1112/plms/s3-2.1.326
http://dx.doi.org/10.1145/1929501.1929507

E. Verbitskaia, D. Berezun & D. Boulytchev 93

[15]

[16]

[17]

[18]

[19]

(20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
(28]

[29]

[30]

(31]

Oleg Kiselyov, Chung-chieh Shan, Daniel P. Friedman & Amr Sabry (2005): Backtracking, Interleaving,
and Terminating Monad Transformers: (Functional Pearl). In: Proceedings of the Tenth ACM SIGPLAN
International Conference on Functional Programming, ICFP ’05, Association for Computing Machinery,
New York, NY, USA, pp. 192—-203, doi;10.1145/1086365.1086390.

Joseph B. Kruskal (1960): Well-Quasi-Ordering, The Tree Theorem, and Vazsonyi’s Conjecture. Transactions
of the American Mathematical Society 95(2), pp. 210-225, doi;10.2307/1993287.

Michael Leuschel (1997): Advanced Techniques for Logic Program Specialisation. Available at https:
//lirias.kuleuven.be/retrieve/390873.

Michael Leuschel (1997): The Ecce Partial Deduction System. In: Proceedings of the ILPS’97 Workshop on
Tools and Environments for (Constraint) Logic Programming, German Puebla, Universidad Politécnica de
Madrid Tech. Rep. CLIP7/97.1.

Michael Leuschel & Maurice Bruynooghe (2002): Logic Program Specialisation through Partial
Deduction: Control Issues. Theory and Practice of Logic Programming 2(4-5), pp. 461-515,
doi:10.1017/S147106840200145X.

Michael Leuschel, Dan Elphick, Mauricio Varea, Stephen-John Craig & Marc Fontaine (2006): The Ecce
and Logen Partial Evaluators and Their Web Interfaces. In John Hatcliff & Frank Tip, editors: Proceedings
of the 2006 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation,
PEPM ’06, Association for Computing Machinery, pp. 88-94, doi:10.1145/1111542.1111557.

Michael Leuschel & Morten Heine B. Sgrensen (1996): Redundant Argument Filtering of Logic Programs.
In: International Workshop on Logic Programming Synthesis and Transformation, Springer, Berlin, Heidel-
berg, pp. 83-103, doi;10.1007/3-540-62718-9_6.

Michael Leuschel & German Vidal (2014): Fast Offline Partial Evaluation of Logic Programs. Information
and Computation 235, pp. 70-97, doii10.1016/j.ic.2014.01.005.

John W. Lloyd & John C. Shepherdson (1991): Partial Evaluation in Logic Programming. The Journal of
Logic Programming 11(3-4), pp. 217-242, doi:10.1016/0743-1066(91)90027-M.

Petr Lozov, Ekaterina Verbitskaia & Dmitry Boulytchev (2019): Relational Interpreters for Search Problems.
In: miniKanren and Relational Programming Workshop, p. 43. Available at http://minikanren.org/
workshop/2019/minikanren19-final3.pdfl

Petr Lozov, Andrei Vyatkin & Dmitry Boulytchev (2017): Typed Relational Conversion. In: International
Symposium on Trends in Functional Programming, Springer, pp. 39-58, doii10.1007/978-3-319-89719-6_3.

Neil Mitchell & Colin Runciman (2007): A Supercompiler for Core Haskell. In Olaf Chitil, Zoltan Horvath &
Viktéria Zsok, editors: Implementation and Application of Functional Languages, 19th International Work-
shop, Lecture Notes in Computer Science 5083, Springer, Freiburg, Germany, pp. 147-164, doi:10.1007/978-
3-540-85373-2.9.

Steven Muchnick (1997): Advanced Compiler Design Implementation. Morgan kaufmann.

Alberto Pettorossi (1984): A Powerful Strategy for Deriving Efficient Programs by Transformation. In:
Proceedings of the 1984 ACM Symposium on LISP and Functional Programming, LFP *84, Association for
Computing Machinery, New York, NY, USA, pp. 273-281, doi:10.1145/800055.802044,

Dmitry Rozplokhas, Andrey Vyatkin & Dmitry Boulytchev (2020): Certified Semantics for Relational Pro-
gramming. In Bruno C. d. S. Oliveira, editor: Asian Symposium on Programming Languages and Systems,
Springer, Springer International Publishing, Cham, pp. 167-185, doi:10.1007/978-3-030-64437-6_9.

Morten Heine B. Sgrensen (1998): Convergence of Program Transformers in the Metric Space of Trees. In:
International Conference on Mathematics of Program Construction, Springer, Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 315-337, doi:10.1007/BFb0054297,

Morten Heine B. Sgrensen, Robert Gliick & Neil D. Jones (1996): A Positive Supercompiler. Journal of
functional programming 6(6), pp. 811-838, doii10.1017/S0956796800002008.

http://dx.doi.org/10.1145/1086365.1086390
http://dx.doi.org/10.2307/1993287
https://lirias.kuleuven.be/retrieve/390873
https://lirias.kuleuven.be/retrieve/390873
http://dx.doi.org/10.1017/S147106840200145X
http://dx.doi.org/10.1145/1111542.1111557
http://dx.doi.org/10.1007/3-540-62718-9_6
http://dx.doi.org/10.1016/j.ic.2014.01.005
http://dx.doi.org/10.1016/0743-1066(91)90027-M
http://minikanren.org/workshop/2019/minikanren19-final3.pdf
http://minikanren.org/workshop/2019/minikanren19-final3.pdf
http://dx.doi.org/10.1007/978-3-319-89719-6_3
http://dx.doi.org/10.1007/978-3-540-85373-2_9
http://dx.doi.org/10.1007/978-3-540-85373-2_9
http://dx.doi.org/10.1145/800055.802044
http://dx.doi.org/10.1007/978-3-030-64437-6_9
http://dx.doi.org/10.1007/BFb0054297
http://dx.doi.org/10.1017/S0956796800002008

94

(32]

[33]

[34]

[35]

[36]

[37]

An Empirical Study of Partial Deduction for MINIKANREN

Valentin F. Turchin (1986): The Concept of a Supercompiler. ACM Transactions on Programming Languages
and Systems 8(3), pp. 292—-325, doij10.1145/5956.5957.

Raf Venken & Bart Demoen (1988): A Partial Evaluation System for Prolog: Some Practical Considerations.
New Generation Computing 6(2-3), pp. 279-290, doij10.1007/BF03037142,

German Vidal (2004): Cost-Augmented Partial Evaluation of Functional Logic Programs. Higher-Order and
Symbolic Computation 17(1), pp. 7-46, doi:10.1023/B:LISP.0000029447.02190.42.

German Vidal (2008): Trace Analysis for Predicting the Effectiveness of Partial Evaluation. In: International
Conference on Logic Programming, Springer, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 790-794,
doi:10.1007/978-3-540-89982-2_78.

Germdan Vidal (2011): A Hybrid Approach to Conjunctive Partial Evaluation of Logic Programs. In Maria
Alpuente, editor: Logic-Based Program Synthesis and Transformation, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 200-214, doij10.1007/978-3-642-20551-4_13.

Philip Wadler (1990): Deforestation: Transforming Programs to Eliminate Trees. Theoretical Computer
Science 73(2), pp. 231-248, doij10.1016/0304-3975(90)90147-A.

http://dx.doi.org/10.1145/5956.5957
http://dx.doi.org/10.1007/BF03037142
http://dx.doi.org/10.1023/B:LISP.0000029447.02190.42
http://dx.doi.org/10.1007/978-3-540-89982-2_78
http://dx.doi.org/10.1007/978-3-642-20551-4_13
http://dx.doi.org/10.1016/0304-3975(90)90147-A

	1 Introduction
	2 Background
	2.1 miniKanren
	2.2 Relational Interpreters

	3 Related Work
	4 Conservative Partial Deduction
	4.1 Unfolding
	4.2 Less Branching Heuristic

	5 Example
	6 Evaluation
	6.1 Evaluator of Logic Formulas
	6.1.1 The Order of Relation Calls
	6.1.2 Unfolding of Complex Relations
	6.1.3 Evaluation Results
	6.1.4 The Order of Answers

	6.2 Typechecker-Term Generator
	6.3 Discussion: Tupling and Deforestation

	7 Conclusion

