
G.W. Hamilton, A. Lisitsa, A.P. Nemytykh (Eds): VPT 2016
EPTCS 216, 2016, pp. 118–136, doi:10.4204/EPTCS.216.7

c© V. Kannan and G. W. Hamilton

Program Transformation to Identify List-Based Parallel
Skeletons

Venkatesh Kannan G. W. Hamilton

School of Computing, Dublin City University, Ireland

{vkannan, hamilton}@computing.dcu.ie

Algorithmic skeletons are used as building-blocks to ease the task of parallel programming by ab-
stracting the details of parallel implementation from the developer. Most existing libraries provide
implementations of skeletons that are defined over flat data types such as lists or arrays. However,
skeleton-based parallel programming is still very challenging as it requires intricate analysis of the
underlying algorithm and often uses inefficient intermediate data structures. Further, the algorithmic
structure of a given program may not match those of list-based skeletons. In this paper, we present
a method to automatically transform any given program to one that is defined over a list and is more
likely to contain instances of list-based skeletons. This facilitates the parallel execution of a trans-
formed program using existing implementations of list-based parallel skeletons. Further, by using an
existing transformation called distillation in conjunction with our method, we produce transformed
programs that contain fewer inefficient intermediate data structures.

1 Introduction

In today’s computing systems, parallel hardware architectures that use multi-core CPUs and GPUs
(Graphics Processor Units) are ubiquitous. On such hardware, it is essential that the programs developed
be executed in parallel in order to effectively utilise the computing power that is available. To enable
this, the parallelism that is inherent in a given program needs to be identified and exploited. However,
parallel programming is tedious and error-prone when done by hand and is very difficult for a compiler
to do automatically to the desired level.

To ease the task of parallel programming, a collection of algorithmic skeletons [5, 6] are often used
for program development to abstract away from the complexity of implementing the parallelism. In
particular, map, reduce and zipWith are primitive parallel skeletons that are often used for parallel pro-
gramming [20, 8]. Most libraries such as Eden [18], SkeTo [22], Data Parallel Haskell (DPH) [3], and
Accelerate [2] provide parallel implementations for these skeletons defined over flat data types such as
lists or arrays. However, there are two main challenges in skeleton-based programming:

1. Using multiple skeletons in a program often introduces inefficient intermediate data structures
[21, 23].

2. There may be a mismatch in data structures and algorithms used by the skeletons and the program
[27, 12].

For example, consider the matrix multiplication program shown in Example 1.1, where mMul com-
putes the product of two matrices xss and yss. The function map is used to compute the dot-product
(dot p) of each row in xss and those in the transpose of yss, which is computed by the function transpose.
Note that this definition uses multiple intermediate data structures, which is inefficient.

http://dx.doi.org/10.4204/EPTCS.216.7

V. Kannan and G. W. Hamilton 119

Example 1.1 (Matrix Multiplication – Original Program)
mMul :: [[a]] → [[a]] → [[a]]

mMul xss yss
where
mMul [] yss = []
mMul (xs : xss) yss = (map (transpose yss) (dot p xs)) : (mMul xss yss)
dot p xs ys = f oldr (+) 0 (zipWith (∗) xs ys)
transpose xss = transpose′ xss []
transpose′ [] yss = yss
transpose′ (xs : xss) yss = transpose′ xss (rotate xs yss)
rotate [] yss = yss
rotate (x : xs) [] = [x] : (rotate xs yss)
rotate (x : xs) (ys : yss) = (ys++[x]) : (rotate xs yss)

A version of this program defined using the built-in map, reduce and zipWith skeletons is shown in
Example 1.2.

Example 1.2 (Hand-Parallelised Matrix Multiplication)
mMul xss yss
where
mMul [] yss = []
mMul (xs : xss) yss = (map (dot p xs) (transpose yss)) : (mMul xss yss)
dot p xs ys = reduce (+) 0 (zipWith (∗) xs ys)
transpose xss = transpose′ xss []
transpose′ [] yss = yss
transpose′ (xs : xss) yss = transpose′ xss (rotate xs yss)
rotate xs yss = zipWith (λx.λys.(ys++[x])) xs yss

As we can observe, though defined using parallel skeletons, this implementation still employs mul-
tiple intermediate data structures. For instance, the matrix constructed by the transpose function is
subsequently decomposed by map. It is challenging to obtain a program that uses skeletons for parallel
evaluation and contains very few intermediate data structures.

Therefore, it is desirable to have a method to automatically identify potential parallel computations in
a given program, transform them to operate over flat data types to facilitate their execution using parallel
skeletons provided in existing libraries, and reduce the number of inefficient intermediate data structures
used.

In this paper, we present a transformation method with the following aspects:

1. Reduces inefficient intermediate data structures in a given program using an existing transforma-
tion technique called distillation [11]. (Section 3)

2. Automatically transforms the distilled program by encoding its inputs into a single cons-list, re-
ferred to as the encoded list. (Section 4)

3. Allows for parallel execution of the encoded program using efficient implementations of map and
map-reduce skeletons that operate over lists. (Section 5)

In Section 6, we discuss the results of evaluating our proposed transformation method using two example
programs. In Section 7, we present concluding remarks on possible improvements to our transformation
method and discuss related work.

120 Program Transformation to Identify List-Based Parallel Skeletons

2 Language

We focus on the automated parallelisation of functional programs because pure functional programs are
free of side-effects, which makes them easier to analyse, reason about, and manipulate using program
transformation techniques. This facilitates parallel evaluation of independent sub-expressions in a pro-
gram. The higher-order functional language used in this work is shown in Definition 2.1.
Definition 2.1 (Language Grammar)
data T α1 . . .αM ::= c1 t1

1 . . . t
1
N | . . . | cK tK

1 . . . tK
N Type Declaration

t ::= αm | T t1 . . . tM Type Component

e ::= x Variable
| c e1 . . .eN Constructor Application
| e0 Function Definition

where
f p1

1 . . . p1
M x1

(M+1) . . .x
1
N = e1 . . . f pK

1 . . . pK
M xK

(M+1) . . .x
K
N = eK

| f Function Call
| e0 e1 Application
| let x1 = e1 . . . xN = eN in e0 let–expression
| λx.e λ–Abstraction

p ::= x | c p1 . . . pN Pattern
A program can contain data type declarations of the form shown in Definition 2.1. Here, T is the

name of the data type, which can be polymorphic, with type parameters α1, . . . ,αM. A data constructor
ck may have zero or more components, each of which may be a type parameter or a type application. An
expression e of type T is denoted by e :: T .

A program in this language can also contain an expression which can be a variable, constructor
application, function definition, function call, application, let-expression or λ -expression. Variables
introduced in a λ -expression, let-expression, or function definition are bound, while all other variables
are free. Each constructor has a fixed arity. In an expression c e1 . . .eN , N must be equal to the arity
of the constructor c. Patterns in a function definition header are grouped into two – pk

1 . . . pk
M are inputs

that are pattern-matched, and xk
(M+1) . . .x

k
N are inputs that are not pattern-matched. The series of patterns

p1
1 . . . p1

M, . . . , pK
1 . . . pK

M in a function definition must be non-overlapping and exhaustive. We use [] and
(:) as short notations for the Nil and Cons constructors of a cons-list and ++ for list concatenation. The
set of free variables in an expression e is denoted as f v(e).

Definition 2.2 (Context)
A context E is an expression with holes in place of sub-expressions. E[e1, . . . ,eN] is the expression
obtained by filling holes in context E with the expressions e1, . . . ,eN .

The call-by-name operational semantics of our language is defined using the one-step reduction re-
lation shown in Definition 2.3.

Definition 2.3 (One-Step Reduction Relation)

(
(λx.e0) e1

) β

(
e0{x 7→ e1}

) e0
r
 e′0

(e0 e1)
r
 (e′0 e1)

e1
r
 e′1

(e0 e1)
r
 (e0 e′1)(

f p1 . . . pN = e
)
∧
(
∃θ · ∀n ∈ {1, . . . ,N} · en = pnθ

)
(f e1 . . .eN)

f
 eθ(

let x1 = e1 . . . xN = eN in e0
) β

(
e0{x 7→ e1, . . . ,xN 7→ eN}

)

V. Kannan and G. W. Hamilton 121

3 Distillation

Objective: A given program may contain a number of inefficient intermediate data structures. In order
to reduce them, we use an existing transformation technique called distillation.

Distillation [11] is a technique that transforms a program to remove intermediate data structures and
yields a distilled program. It is an unfold/fold-based transformation that makes use of well-known trans-
formation steps – unfold, generalise and fold [25] – and can potentially provide super-linear speedups
to programs. The syntax of a distilled program de{} is shown in Definition 3.1. Here, ρ is the set of
variables introduced by let–expressions; these are not decomposed by pattern-matching. Consequently,
de{} is an expression that has fewer intermediate data structures.

Definition 3.1 (Distilled Form Grammar)
deρ ::= x deρ

1 . . .deρ

N Variable Application
| c deρ

1 . . .deρ

N Constructor Application
| deρ

0 Function Definition
where
f p1

1 . . . p1
M x1

(M+1) . . .x
1
N = deρ

1 . . . f pK
1 . . . pK

M xK
(M+1) . . .x

K
N = deρ

K
| f x1 . . .xM x(M+1) . . .xN Function Application

s.t. ∀x ∈ {x1, . . . ,xM} · x 6∈ ρ

∀n ∈ {1, . . . ,N} ·
(
xn ∈ ρ ⇒ ∀k ∈ {1, . . . ,K} · pk

n = xk
n
)

| let x1 = deρ

1 . . . xN = deρ

N in deρ ∪ {x1,...,xN}
1 let–expression

| λx.deρ λ–Abstraction
p ::= x | c p1 . . . pN Pattern

Example 3.1 shows the distilled form of the example matrix multiplication program in Example 1.1.
Here, we have lifted the definitions of functions mMul2 and mMul3 to the top level using lambda lifting
for ease of presentation.

Example 3.1 (Matrix Multiplication – Distilled Program)
mMul xss yss
where
mMul xss yss = mMul1 xss yss yss
mMul1 [] zss yss = []
mMul1 xss [] yss = []
mMul1 (xs : xss) (zs : zss) yss = let v = λxs.g xs

where
g [] = 0
g (x : xs) = x

in (mMul2 zs xs yss v) : (mMul1 xss zss yss)
mMul2 [] xs yss v = []
mMul2 (z : zs) xs yss v = let v′ = λxs.g xs

where
g [] = 0
g (x : xs) = v xs

in (mMul3 xs yss v) : (mMul2 zs xs yss v′)
mMul3 [] yss v = 0
mMul3 (x : xs) [] v = 0
mMul3 (x : xs) (ys : yss) v = (x∗ (v ys))+(mMul3 xs yss v)

In this distilled program, function mMul1 computes the product of matrices xss and yss, and func-
tions mMul2 and mMul3 compute the dot-product of a row in xss and those in the transpose of yss. This
version of matrix multiplication is free from intermediate data structures. In particular, distillation re-
moves data structures that are constructed and subsequently decomposed as a part of the algorithm that
is implemented in a given program.

122 Program Transformation to Identify List-Based Parallel Skeletons

Consequence: Using the distillation transformation, we obtain a semantically equivalent version of the
original program that has fewer intermediate data structures.

4 Encoding Transformation

Objective: The data types and the algorithm of a distilled program, which we want to parallelise, may
not match with those of the skeletons defined over lists. This would inhibit the potential identification
of parallel computations that could be encapsulated using the map or map-reduce skeletons. To resolve
this, we define a transformation that encodes the inputs of a distilled program into a single cons-list. The
resulting encoded program is defined in a form that facilitates identification of list-based parallel skeleton
instances.

To perform the encoding transformation, we first lift the definitions of all functions in a distilled program
to the top-level using lambda lifting. Following this, for each recursive function f defined in the top-level
where-expression of the distilled program, we encode the inputs p1, . . . , pM that are pattern-matched
in the definition of f . Other inputs x(M+1), . . . ,xN that are never pattern-matched in the definition of
f are not encoded. Further, we perform this encoding only for the recursive functions in a distilled
program because they are potential instances of parallel skeletons, which are also defined recursively.
The three steps to encode inputs x1, . . . ,xM of function f into a cons-list, referred to as the encoded list,
are illustrated in Figure 1 and described below. Here, we encode the pattern-matched inputs x1, . . . ,xM

into a cons-list of type [Tf], where Tf is a new type created to contain the pattern-matched variables in
x1, . . . ,xM.

x1 . . . xM -
f

out put

�
�

�
�

?

encode f

?

Transformation using
Encoded List Type [Tf]

x -
f ′

out put

�
�

�
�

Figure 1: Steps to Encode Inputs of Function f

Consider the definition of a recursive function f , with inputs x1, . . . ,xM,x(M+1), . . . ,xN , of the form
shown in Definition 4.1 in a distilled program. Here, for each body ek corresponding to function header
f pk

1 . . . pk
M xk

(M+1) . . .x
k
N in the definition of f , we use one of the recursive calls to function f that may

appear in ek. All other recursive calls to f in ek are a part of the context Ek.

Definition 4.1 (General Form of Recursive Function in Distilled Program)
f x1 . . .xM x(M+1) . . .xN
where
f p1

1 . . . p1
M x(M+1) . . .xN = e1

...
...

f pK
1 . . . pK

M x(M+1) . . .xN = eK

where ∃k ∈ {1, . . . ,K} · ek = Ek

[
f xk

1 . . .x
k
M xk

(M+1) . . .x
k
N

]
The three steps to encode the pattern-matched inputs are as follows:

V. Kannan and G. W. Hamilton 123

1. Declare a new encoded data type Tf :
First, we declare a new data type Tf for elements of the encoded list. This new data type corresponds
to the data types of the pattern-matched inputs of function f that are encoded. The rules to declare
type Tf are shown in Definition 4.2.
Definition 4.2 (Rules to Declare Encoded Data Type for List)
data Tf α1 . . .αG ::= c1 T 1

1 . . .T 1
L | . . . | cK T K

1 . . .T K
L

where
α1, . . . ,αG are the type variables of the data types of the pattern-matched inputs
∀k ∈ {1, . . . ,K}·
ck is a fresh constructor for Tf corresponding to pk

1 . . . pk
M of the pattern-matched inputs{

(z1 :: T k
1), . . . ,(zL :: T k

L)
}
=

{
f v(Ek)\{x(M+1), . . . ,xN}, if ek = Ek

[
f xk

1 . . .x
k
M xk

(M+1) . . .x
k
N

]
f v(ek)\{x(M+1), . . . ,xN}, otherwise

where f pk
1 . . . pk

M x(M+1) . . .xN = ek

Here, a new constructor ck of the type Tf is created for each set pk
1 . . . pk

M of the pattern-matched inputs
x1 . . .xM of function f that are encoded. As stated above, our objective is to encode the inputs of a
recursive function f into a list, where each element contains the pattern-matched variables consumed
in an iteration of f . To achieve this, the variables bound by constructor ck correspond to the variables
z1, . . . ,zL in pk

1 . . . pk
M that occur in the context Ek (if ek contains a recursive call to f) or the expression

ek (otherwise). Consequently, the type components of constructor ck are the data types of the variables
z1, . . . ,zL.

2. Define a function encode f :
For a recursive function f of the form shown in Definition 4.1, we use the rules in Definition 4.3 to
define function encode f to build the encoded list, in which each element is of type Tf .
Definition 4.3 (Rules to Define Function encode f)
encode f x1 . . .xM
where
encode f p1

1 . . . p1
M = e′1

...
...

encode f pK
1 . . . pK

M = e′K
where

∀k ∈ {1, . . . ,K} · e′k =



[
ck zk

1 . . .z
k
L
]
++(encode f xk

1 . . .x
k
M), if ek = Ek

[
f xk

1 . . .x
k
M xk

(M+1) . . .x
k
N

]
where {zk

1, . . . ,z
k
L}= f v(Ek)\{x(M+1), . . . ,xN}[

ck zk
1 . . .z

k
L
]
, otherwise

where {zk
1, . . . ,z

k
L}= f v(ek)\{x(M+1), . . . ,xN}

where f pk
1 . . . pk

M x(M+1) . . .xN = ek

Here, for each pattern pk
1 . . . pk

M of the pattern-matched inputs, the encode f function creates a list
element. This element is composed of a fresh constructor ck of type Tf that binds zk

1, . . . ,z
k
L, which

are the variables in pk
1 . . . pk

M that occur in the context Ek (if ek contains a recursive call to f) or the
expression ek (otherwise). The encoded input of the recursive call f xk

1 . . .x
k
M xk

(M+1) . . .x
k
N is then

computed by encode f xk
1 . . .x

k
M and appended to the element to build the complete encoded list for

function f .

3. Transform the distilled program :
After creating the data type Tf for the encoded list and the encode f function for each recursive function
f , we transform the distilled program using the rules in Definition 4.4 by defining a recursive function
f ′, which operates over the encoded list, corresponding to function f .

124 Program Transformation to Identify List-Based Parallel Skeletons

Definition 4.4 (Rules to Define Encoded Function Over Encoded List)
f ′ x x(M+1) . . .xN
where
f ′
(
(c1 z1

1 . . .z
1
L) : x1

)
x(M+1) . . .xN = e′1

...
...

f ′
(
(cK zK

1 . . .zK
L) : xK

)
x(M+1) . . .xN = e′K

where

∀k ∈ {1, . . . ,K} · e′k =

{
Ek

[
f ′ xk xk

(M+1) . . .x
k
N

]
, if ek = Ek

[
f xk

1 . . .x
k
M xk

(M+1) . . .x
k
N

]
ek, otherwise

where f pk
1 . . . pk

M x(M+1) . . .xN = ek

Here,

• In each function definition header of f , replace the pattern-matched inputs with a pattern to de-
compose the encoded list, such that the first element in the encoded list is matched with the cor-
responding pattern of the encoded type. For instance, a function header f p1 . . . pM x(M+1) . . .xN

is transformed to f ′ p x(M+1) . . .xN , where p is a pattern to match the first element in the encoded
list with a pattern of the type Tf .

• In each call to function f , replace the pattern-matched inputs with their encoding. For instance,
a call f x1 . . .xM x(M+1) . . .xN is transformed to f ′ x x(M+1) . . .xN , where x is the encoding of the
pattern-matched inputs x1, . . . ,xM.

The encoded data types, encode functions and encoded program obtained for the distilled matrix
multiplication program from Example 3.1 are shown in Example 4.1.

Example 4.1 (Matrix Multiplication – Encoded Program)
data TmMul1 a ::= c1 | c2 | c3 [a] [a]
data TmMul2 a ::= c4 | c5
data TmMul3 a ::= c6 | c7 | c8 a [a]
encodemMul1 [] zss = [c1]
encodemMul1 xss [] = [c2]
encodemMul1 (xs : xss) (zs : zss) = [c3 xs zs]++(encodemMul1 xss zss)
encodemMul2 [] = [c4]
encodemMul2 (z : zs) = [c5]++(encodemMul2 xs yss zs)
encodemMul3 [] yss = [c6]
encodemMul3 (x : xs) [] = [c7]
encodemMul3 (x : xs) (ys : yss) = [c8 x ys]++(encodemMul3 xs yss)
mMul′ xss yss
where
mMul′ xss yss = mMul′1 (encodemMul1 xss yss) yss
mMul′1 (c1 : w) yss = []
mMul′1 (c2 : w) yss = []
mMul1

(
(c3 xs zs) : w

)
yss = let v = λxs.g xs

where
g [] = 0
g (x : xs) = x

in (mMul′2 (encodemMul2 zs) xs yss v) : (mMul′1 w yss)
mMul′2 (c4 : w) xs yss v = []
mMul′2 (c5 : w) xs yss v = let v′ = λxs.g xs

where
g [] = 0
g (x : xs) = v xs

in (mMul′3 (encodemMul3 xs yss) v) : (mMul′2 w xs yss v′)

V. Kannan and G. W. Hamilton 125

mMul′3 (c6 : w) v = 0
mMul′3 (c7 : w) v = 0
mMul′3

(
(c8 x ys) : w

)
v = (x∗ (v ys))+(mMul′3 w v)

4.1 Correctness

The correctness of the encoding transformation can be established by proving that the result computed by
each recursive function f in the distilled program is the same as the result computed by the corresponding
recursive function f ′ in the encoded program. That is,(

f x1 . . .xM x(M+1) . . .xN
)
=
(

f ′ x x(M+1) . . .xN
)

where x = encode f x1 . . .xM

Proof:
The proof is by structural induction over the encoded list type [Tf].

Base Case:
For the encoded list xk =

(
(ck zk

1 . . .z
k
L) : []

)
computed by encode f pk

1 . . . pk
M,

1. By Definition 4.1, L.H.S. evaluates to ek.

2. By Definition 4.4, R.H.S. evaluates to ek.

Inductive Case:
For the encoded list xk =

(
(ck zk

1 . . .z
k
L) : xk

)
computed by encode f pk

1 . . . pk
M,

1. By Definition 4.1, L.H.S. evaluates to Ek

[
f xk

1 . . .x
k
M xk

(M+1) . . .x
k
N

]
.

2. By Definition 4.4, R.H.S. evaluates to Ek

[
f ′ xk xk

(M+1) . . .x
k
N

]
.

3. By inductive hypothesis,
(

f x1 . . .xM x(M+1) . . .xN
)
=
(

f ′ x x(M+1) . . .xN
)
.

Consequence: As a result of the encoding transformation, the pattern-matched inputs of a recursive
function are encoded into a cons-list by following the recursive structure of the function. Parallelisation
of the encoded program produced by this transformation by identifying potential instances of map and
map-reduce skeletons is discussed in Section 5.

5 Parallel Execution of Encoded Programs

Objective: An encoded program defined over an encoded list is more likely to contain recursive func-
tions that resemble the structure of map or map-reduce skeletons. This is because the encode f function
constructs the encoded list in such a way that it reflects the recursive structure of the map and map-reduce
skeletons defined over a cons-list. Therefore, we look for instances of these skeletons in our encoded
program.

In this work, we identify instances of only map and map-reduce skeletons in an encoded program. This
is because, as shown in Property 5.1, any function that is an instance of a reduce skeleton in an en-
coded program that operates over an encoded list cannot be efficiently evaluated in parallel because the
reduction operator will not be associative.

126 Program Transformation to Identify List-Based Parallel Skeletons

Property 5.1 (Non-Associative Reduction Operator for Encoded List)
Given an encoded program defined over an encoded list, the reduction operator ⊕ in any instance of a
reduce skeleton is not associative, that is ∀x,y,z · (x⊕ (y⊕ z)) 6= ((x⊕ y)⊕ z).

Proof:

1. From Definition 4.4, given an encoded function f ′,

f ′ :: [Tf] → T(M+1) . . . TN → b

where [Tf] is the encoded list data type.
T(M+1), . . . ,TN are data types for inputs that are not encoded.
b is the output data type.

2. If f ′ is an instance of a reduce skeleton, then the type of the binary reduction operator is given by
⊕ :: Tf → b→ b.

3. Given that Tf is a newly created data type, it follows from (2) that the binary operator ⊕ is not
associative because the two input data types Tf and b cannot not be equal.

5.1 Identification of Skeletons

To identify skeleton instances in a given program, we use a framework of labelled transition systems
(LTSs), presented in Definition 5.1, to represent and analyse the encoded programs and skeletons. This
is because LTS representations enable matching the recursive structure of the encoded program with that
of the skeletons rather than finding instances by matching expressions.

Definition 5.1 (Labelled Transition System (LTS))
A LTS for a given program is given by l = (S , s0, Act, →) where:

• S is the set of states of the LTS, where each state has a unique label s.

• s0 ∈S is the start state denoted by start(l).

• Act is one of the following actions:

– x, a free variable or let-expression variable,
– c, a constructor in an application,
– λ , a λ -abstraction,
– @, an expression application,
– #i, the ith argument in an application,
– p, the set of patterns in a function definition header,
– let, a let-expression body.

• →⊆ S ×Act×S relates pairs of states by actions in Act such that if s ∈S and s α−→ s′ then s′ ∈S where
α ∈ Act.

The LTS corresponding to a given program e can be constructed by L JeK s0 /0 /0 using the rules L
shown in Definition 5.2. Here, s0 is the start state, φ is the set of previously encountered function calls
mapped to their corresponding states, and ∆ is the set of function definitions. A LTS built using these
rules is always finite because if a function call is re-encountered, then the corresponding state is reused.

V. Kannan and G. W. Hamilton 127

Definition 5.2 (LTS Representation of Program)
L JxK s φ ∆ = s→ (x,0)
L Jc e1 . . .eNK s φ ∆ = s→ (c,0),(#1,L Je1K s1 φ ∆), . . . ,(#N,L JeNK sN φ ∆)
L Je0 where δ1 . . .δJK s φ ∆ = L Je0K s φ

(
∆∪{ f1 7→ δ1, . . . , fJ 7→ δJ}

)
where ∀ j ∈ {1, . . . ,J} ·δ j = f j p1

1 . . . p1
M x1

(M+1) . . .x
1
N = e1 . . . f j pK

1 . . . pK
M xK

(M+1) . . .x
K
N = eK

L J f K s φ ∆ =

{
l where φ(f) = start(l), if f ∈ dom(φ)
L J∆(f)K s (φ ∪{ f 7→ s}) ∆, otherwise

L

u

w
v

f p1
1 . . . p1

M x1
(M+1) . . .x

1
N = e1

...
...

f pK
1 . . . pK

M xK
(M+1) . . .x

K
N = eK

}

�
~s φ ∆ =


s→ (p1

1 . . . p1
M x1

(M+1) . . .x
1
N , l1), . . . ,

(pK
1 . . . pK

M xK
(M+1) . . .x

K
N , lK)

where ∀k ∈ {1, . . . ,K} · lk =
(
L JekK sk φ ∆

)
L Je0 e1K s φ ∆ = s→ (@,L Je0K s0 φ ∆),(#1,L Je1K s1 φ ∆)
L Jlet x1 = e1 . . . xN = eN in e0K s φ ∆ = s→

(
let,L Je0K s0 φ ∆),
(x1,L Je1K s1 φ ∆), . . . ,(xN ,L JeNK sN φ ∆)

L Jλx.eK s φ ∆ = s→ (λ ,L JeK s1 φ ∆)

Definition 5.3 (LTS Substitution)
A substitution is denoted by θ = {x1 7→ l1, . . . ,xN 7→ lN}. If l is an LTS, then lθ = l{x1 7→ l1, . . . ,xN 7→ lN}
is the result of simultaneously replacing the LTSs sn→ (xn,0) with the corresponding LTS ln in the LTS
l while ensuring that bound variables are renamed appropriately to avoid name capture.

Potential instances of skeleton LTSs can be identified and replaced with suitable calls to correspond-
ing skeletons in the LTS of an encoded program l by S JlK /0 〈〉 ω using the rules presented in Definition
5.4.
Definition 5.4 (Extraction of Program from LTS with Skeletons)

S JlK ρ σ ω =



f e1 . . .eN , if ∃(f x1 . . .xN , l′) ∈ ω,θ · l′θ = l
where
θ = {x1 7→ l1, . . . ,xN 7→ lN}
∀n ∈ {1, . . . ,N} · en = (S JlnK ρ σ ω)

f e1 . . .eN , if ∃(s, f) ∈ ρ · start(l) = s
where σ = 〈e1, . . . ,eN〉
S ′JlK ρ σ ω , otherwise


, if ∃s ∈ states(l),α · s α→ start(l)

S ′JlK ρ σ ω , otherwise
S ′Js→ (x,0)K ρ σ ω = x e1 . . .eN where σ = 〈e1, . . . ,eN〉
S ′Js→ (c,0),(#1, l1), . . . ,(#N, lN)K ρ σ ω = c (S Jl1K ρ σ ω) . . .(S JlNK ρ σ ω)

S ′

t
s→ (p1

1 . . . p1
M x1

(M+1) . . .x
1
N , l1), . . . ,

(pK
1 . . . pK

M xK
(M+1) . . .x

K
N , lK)

|

ρ σ ω =



f e1 . . .eN
where
f p1

1 . . . p1
M x1

(M+1) . . .x
1
N = e′1

...
...

f pK
1 . . . pK

M xK
(M+1) . . .x

K
N = e′K

where f is fresh, σ = 〈e1, . . . ,eN〉
∀k ∈ {1, . . . ,K} · e′k =

(
S JlkK ρ ′ 〈〉 ω

)
ρ ′ = ρ ∪{(s, f)}

S ′Js→ (@, l0),(#1, l1)K ρ σ ω = S Jl0K ρ 〈(S Jl1K ρ ω 〈〉) : σ〉 ω

S ′Js→ (let, l0),(x1, l1), . . . ,(xN , lN)K ρ σ ω = let x1 = (S Jl1K ρ σ ω) . . . xN = (S JlNK ρ σ ω)
in (S Jl0K ρ σ ω)

S ′Js→ (λ , l)K ρ σ ω = λx.(S JlK ρ σ ω) where x is fresh
Here, the parameter ρ contains the set of new functions that are created and associates them with

their corresponding states in the LTS. The parameter σ contains the sequence of arguments of an appli-
cation expression. The set ω is initialised with pairs of application expression and corresponding LTS
representation of each parallel skeleton to be identified in a given LTS; for example, (map xs f , l) is a
pair in ω where map xs f is the application expression for map and l is its LTS representation.

128 Program Transformation to Identify List-Based Parallel Skeletons

The definitions of list-based map and map-reduce skeletons whose instances we identify in an en-
coded program are as follows:

map :: [a]→ (a→ b)→ [b]
map [] f = []
map (x : xs) f = (f x) : (map xs f)

mapReduce :: [a]→ (b→ b→ b)→ b→ (a→ b)→ b
mapReduce [] g v f = v
mapReduce (x : xs) g v f = g (f x) (mapReduce xs g v f)

Property 5.2 (Non-Empty Encoded List)
Given rules in Definition 4.3 to encode inputs into a list, ∀ f ,x1, . . . ,xM ·

(
encode f x1 . . .xM

)
6= [].

Proof:
From Definition 4.3, ∃k ∈ {1, . . . ,K} · pk

1 . . . pk
M that matches inputs x1 . . .xM.

Consequently,
(
encode f x1 . . .xM

)
= [ck zk

1 . . .z
k
L] ++

(
encode f xk

1 . . .x
k
M
)
. Therefore, the list computed

by encode f x1 . . .xM is at least a singleton.

From Property 5.2, it is evident that the encoded programs produced by our transformation will
always be defined over non-empty encoded list inputs. Consequently, to identify instances of map and
mapReduce skeletons in an encoded program, we represent only the patterns corresponding to non-empty
inputs, i.e. (x : xs), in the LTSs built for the skeletons.

As an example, the LTSs built for the map skeleton and the mMul′1 function in the encoded program
for matrix multiplication in Example 4.1 are illustrated in Figures 2 and 3, respectively. Here, we observe
that the LTS of mMul′1 is an instance of the LTS of map skeleton. Similarly, the LTS of mMul′3 is an
instance of the LTS of mapReduce skeleton.

@

@

(x : xs) f

(:) #1

@

3

#1

2

#2

@

@(map)

#1

1

#1

3

#1

xs

#1

f

Figure 2: LTS for map Skeleton.

@

@

(c1 : w) yss

[]

(c2 : w) yss

[]

((c3 xs zs) : w) yss

let

(:) #1

. . .

#2

@

#1

@(mMul′1)
2

#1

1

v

. . .

#1

w

#1

yss

Figure 3: LTS for mMul′1 Function.

V. Kannan and G. W. Hamilton 129

5.2 Parallel Implementation of Skeletons

In order to evaluate the parallel programs obtained by our method presented in this chapter, we require
efficient parallel implementations of the map and map-reduce skeletons. For the work presented in this
paper, we use the Eden library [18] that provides parallel implementations of the map and map-reduce
skeletons in the following forms:

farmB :: (Trans a, Trans b) ⇒ Int→ (a→ b)→ [a]→ [b]
parMapRedr :: (Trans a, Trans b) ⇒ (b→ b→ b)→ b→ (a→ b)→ [a]→ b
parMapRedl :: (Trans a, Trans b) ⇒ (b→ b→ b)→ b→ (a→ b)→ [a]→ b

The farmB skeleton implemented in Eden divides a given list into N sub-lists and creates N parallel
processes, each of which applies the map computation on a sub-list. The parallel map-reduce skeletons,
parMapRedr and parMapRedr, are implemented using the parMap skeleton which applies the map op-
eration in parallel on each element in a given list. The result of parMap is reduced sequentially using the
conventional foldr and foldl functions, respectively.

Currently, the map-reduce skeletons in the Eden library are defined using the foldr and foldl functions
that require a unit value for the reduction/fold operator to be provided as an input. However, it is evident
from Property 5.2 that the skeletons that are potentially identified will always be applied on non-empty
lists. Therefore, we augment the skeletons provided in Eden by adding the following parallel map-reduce
skeletons that are defined using the foldr1 and foldl1 functions, which are defined for non-empty lists,
thereby avoiding the need to obtain a unit value for the reduction operator.

parMapRedr1 :: (Trans a, Trans b) ⇒ (b→ b→ b)→ (a→ b)→ [a]→ b
parMapRedl1 :: (Trans a, Trans b) ⇒ (b→ b→ b)→ (a→ b)→ [a]→ b

To execute the encoded program produced by our transformation in parallel, we replace the identified
skeleton instances with suitable calls to the corresponding skeletons in the Eden library. For example,
by replacing functions mMul′1 and mMul′3, which are instances of map and mapReduce skeletons respec-
tively, with suitable calls to parMap and parMapRedr1, we obtain the transformed matrix multiplication
program mMul′′ shown in Example 5.1.

Example 5.1 (Matrix Multiplication – Encoded Parallel Program)
mMul′′ xss yss
where
mMul′′ xss yss = mMul′′1 (encodemMul1 xss yss) yss
mMul′′1 w yss = farmB noPe f w

where
f c1 = []
f c2 = []
f (c3 xs zs) = let v = λxs.g xs

where
g [] = 0
g (x : xs) = x

in mMul′′2 (encodemMul2 zs) xs yss v
mMul′′2 (c4 : w) xs yss v = []
mMul′′2 (c5 : w) xs yss v = let v′ = λxs.g xs

where
g [] = 0
g (x : xs) = v xs

in (mMul′′3 (encodemMul3 xs yss) v) : (mMul′′2 w xs yss v′)

130 Program Transformation to Identify List-Based Parallel Skeletons

mMul′′3 w v = parMapRedr1 g f w
where
g x y = x+ y
f c6 = 0
f c7 = 0
f (c8 x ys) = x∗ (v ys)

Consequence: By automatically identifying instances of list-based map and map-reduce skeletons, we
produce a program that is defined using these parallelisable skeletons. Using parallel implementations
for these skeletons that are available in existing libraries such as Eden, it is possible to execute the
transformed program on parallel hardware.

6 Evaluation

In this paper, we present the evaluation of two benchmark programs – matrix multiplication and dot-
product of binary trees – to illustrate interesting aspects of our transformation. The programs are evalu-
ated on a Mac Pro computer with a 12-core Intel Xeon E5 processor each clocked at 2.7 GHz and 64 GB
of main memory clocked at 1866 MHz. GHC version 7.10.2 is used for the sequential versions of the
benchmark programs and the latest Eden compiler based on GHC version 7.8.2 for the parallel versions.

For all parallel versions of a benchmark program, only those skeletons that are present in the top-
level expression are executed using their parallel implementations. That is, nesting of parallel skeletons is
avoided. The nested skeletons that are present inside top-level skeletons are executed using their sequen-
tial versions. The objective of this approach is to avoid uncontrolled creation of too many threads which
we observe to result in inefficient parallel execution where the cost of thread creation and management
is greater than the cost of parallel execution.

6.1 Example – Matrix Multiplication

The original sequential version, distilled version, encoded version and encoded parallel version of the
matrix multiplication program are presented in Examples 1.1, 3.1, 4.1 and 5.1 respectively.

A hand-parallel version of the original matrix multiplication program in Example 1.1 is presented in
Example 6.1. We identify that function mMul is an instance of the map skeleton and therefore define it
using a suitable call to the farmB skeleton available in the Eden library.

Example 6.1 (Matrix Multiplication – Hand-Parallel Program)
mMul xss yss
where
mMul xss yss = f armB noPe f xss

where
f xs = map (dot p xs) (transpose yss)

dot p xs ys = f oldr (+) 0 (zipWith (∗) xs ys)
transpose xss = transpose′ xss []
transpose′ [] yss = yss
transpose′ (xs : xss) yss = transpose′ xss (rotate xs yss)
rotate [] yss = yss
rotate (x : xs) [] = [x] : (rotate xs yss)
rotate (x : xs) (ys : yss) = (ys++[x]) : (rotate xs yss)

Figure 4 presents the speedups achieved by the encoded parallel version of the matrix multiplication
program in comparison with the original, distilled and hand-parallel versions. Since we avoid nested

V. Kannan and G. W. Hamilton 131

parallel skeletons as explained earlier, the encoded parallel program used in this evaluation contains only
the mMul′′1 function defined using the farmB skeleton and uses the sequential definition for mMul′′3 . An
input size indicated by NxM denotes the multiplication of matrices of sizes NxM and MxN.

When compared to the original program, we observe that the encoded parallel version achieves a
positive speedup of 3x-8x for all input sizes except for 100x1000. In the case with input size 100x1000,
the speedup achieved is 6x-20x more than the speedups achieved for the other input sizes. This is due
to the intermediate data structure transpose yss, which is of the order of 1000 elements for input size
100x1000 and of the order of 100 elements for the other inputs, that is absent in the encoded parallel
program. This can be verified from the comparison with the distilled version, which is also free of
intermediate data structures. Hence, the encoded parallel program has a linear speedup compared to the
distilled version. From Examples 6.1 and 5.1, we observe that both the hand-parallel and encoded parallel

Figure 4: Evaluation of Speedup for Matrix Multiplication

versions parallelise the equivalent computations that multiply rows in the first matrix with columns in
the second matrix using the farmB skeleton. However, the encoded parallel version is marginally faster
than the hand-parallel version for input sizes 100x100 and 1000x100, and 4x faster for other input sizes
except 100x1000. This is due to the use of intermediate data structures in the hand-parallel version which
is of the order of 100 for all input sizes except 100x1000 for which the speedup achieved is 48x-18x

132 Program Transformation to Identify List-Based Parallel Skeletons

more than the hand-parallel version. Also, the hand-parallel version scales better with a higher number
of cores than the encoded parallel version for the input size 100x1000. This is because the encoded
parallel version achieves better speedup even with fewer cores due to the elimination of intermediate
data structures, and hence does not scale as impressively as the hand-parallel version.

6.2 Example – Dot-Product of Binary Trees

Example 6.2 presents a sequential program to compute the dot-product of binary trees, where dotP
computes the product of values at the corresponding branch nodes of trees xt and yt, and adds the dot-
products of the left and right sub-trees. The distilled version of this program remains the same as there
are no intermediate data structures and a hand-parallel version cannot be defined using list-based parallel
skeletons.

Example 6.2 (Dot-Product of Binary Trees – Original/Distilled Program)
data BTree a ::= E | B a (BTree a) (BTree a)
dotP :: (BTree a)→ (BTree a)→ (BTree a)
dotP xt yt
where
dotP E yt = 0
dotP (B x xt1 xt2) E = 0
dotP (B x xt1 xt2) (B y yt1 yt2) = (x∗ y)+(dotP xt1 yt1)+(dotP xt2 yt2)

By applying the encoding transformation, we obtain the encoded version for the dot-product program
as shown in Example 6.3.

Example 6.3 (Dot-Product of Binary Trees – Encoded Program)
data TdotP a ::= c1 | c2 | c3 a a (BTree a) (BTree a)

encodedotP E yt = [c1]
encodedotP (B x xt1 xt2) E = [c2]
encodedotP (B x xt1 xt2) (B y yt1 yt2) = [c3 x y xt1 yt1]++(encodedotP xt2 yt2)

dotP (encodedotP xt yt)
where
dotP (c1 : w) = 0
dotP (c2 : w) = 0
dotP

(
(c3 x y xt yt) : w

)
= (x∗ y)+(dotP (encodedotP xt yt))+(dotP w)

By applying the skeleton identification rule to this encoded program, we identify that the encoded
version of function dotP is an instance of the mapRedr skeleton. Example 6.4 shows the encoded parallel
version defined using a suitable call to the parMapRedr1 skeleton in the Eden library. As explained
before, we define only the top-level call to dotP′′ using the parallel skeleton and use the sequential for
the nested call to dotP because we avoid nested parallel skeletons in this evaluation.

Example 6.4 (Dot Product of Binary Trees – Encoded Parallel Program)
data TdotP a ::= c1 | c2 | c3 a a (BTree a) (BTree a)

encodedotP E yt = [c1]
encodedotP (B x xt1 xt2) E = [c2]
encodedotP (B x xt1 xt2) (B y yt1 yt2) = [c3 x y xt1 yt1]++(encodedotP xt2 yt2)

V. Kannan and G. W. Hamilton 133

dotP′′ (encodedotP xt yt)
where
dotP′′ w = parMapRedr1 g f w

where
g = (+)
f c1 = 0
f c2 = 0
f (c3 x y xt yt) = (x∗ y)+(dotP xt yt)

dotP E yt = 0
dotP (B x xt1 xt2) E = 0
dotP (B x xt1 xt2) (B y yt1 yt2) = (x∗ y)+(dotP xt1 yt1)+(dotP xt2 yt2)

Figure 5 presents the speedups of the encoded parallel version compared to the original version. An
input size indicated by N denotes the dot-product of two identical balanced binary trees with N nodes
each. We observe that the encoded parallel version achieves a positive speedup only upon using more
than 4 cores, resulting in a maximum speedup of 2.4x for input size 1,000,000 and 1.4x for input size
100,000,000. For all input sizes, the speedup factor does not improve when using more than 6 cores.
Further, we also observe that the speedup achieved scales negatively as the input size increases. The

Figure 5: Evaluation of Speedup for Dot-Product of Binary Trees

reason for this performance of the encoded parallel version is as follows: From Example 6.4, we observe
that each element in the encoded list contains the values at the branch nodes (x and y) and the sub-trees
(xt1 and yt1), which are arguments of the first recursive call dotP xt1 yt1 in Example 6.2. Consequently,
the sizes of the elements in the encoded list progressively decrease from the first to the last element
if the input trees are balanced. The encoded list is then split into sub-lists in round-robin fashion by
the parMapRedr1 skeleton and each thread in the parallel execution applies the sequential dot-product
computation dotP over a sub-list. As a result, the workloads of the parallel threads are not well-balanced
and this results in significant idle times for threads that process smaller sub-lists. We also note that,
left-skewed input binary trees would result in poorer performance, while right-skewed input binary trees
result in better performance of the encoded parallel versions.

7 Conclusion

7.1 Summary

We have presented a transformation method to efficiently parallelise a given program by automatically
identifying parallel skeletons and reducing the number of intermediate data structures used. By en-
coding the inputs of a program into a single input, we facilitate the identification of parallel skeletons,

134 Program Transformation to Identify List-Based Parallel Skeletons

particularly for map- and reduce-based computations. Additionally, we can automatically check skele-
ton operators for desired properties thereby allowing complete automation of the parallelisation process.
Importantly, our transformation does not place any restriction on the programs that can be transformed
using our method.

To evaluate our transformation method, we presented two interesting benchmark programs whose
inputs are encoded into a cons-list. From the results, we observe two possible extreme performances.
In one case, linear to super-linear speedups are achieved due to the distillation transformation, which
reduces the use of intermediate data structures, as well as our parallelisation transformation. In another
case, despite parallelising a program that cannot be defined using existing skeleton implementations in
libraries, the positive speedups achieved are limited and not as desired. Despite not being discussed here,
by employing additional skeletons such as accumulate [15], we are able to automatically parallelise
interesting programs such as maximum prefix sum.

The primary challenge lies in the efficient execution of the parallel programs produced that are de-
fined using skeletons. It is important to have efficient implementations of these parallel skeletons that
incorporate intelligent data-partitioning and load-balancing methods across the parallel threads created to
execute the skeletons. We believe that better load-balancing across threads can be facilitated by polytypic
parallel skeletons, list or array data structures that support nested parallelism, or dynamic load-balancing
at run-time.

7.2 Related Work

Previously, following the seminal works by Cole [5] and Darlington et. al. [6] on skeleton-based program
development, a majority of the work that followed [20, 21, 19, 2] catered to manual parallel program-
ming. To address the difficulties in choosing appropriate skeletons for a given algorithm, Hu et. al.
proposed the diffusion transformation [13], which is capable of decomposing recursive functions of a
certain form into several functions, each of which can be described by a skeleton. Even though diffusion
can transform a wider range of functions to the required form, this method is only applicable to func-
tions with one recursive input. Further they proposed the accumulate skeleton [15] that encapsulates the
computational forms of map and reduce skeletons that use an accumulating parameter to build the result.
However, the associative property of the reduce and scan operators used in the accumulate skeleton have
to be verified and their unit values derived manually.

The calculational approaches to program parallelisation are based on list-homomorphisms [26] and
propose systematic ways to derive parallel programs. However, most methods are restricted to programs
that are defined over lists [9, 7, 10, 14]. Further, they require manual derivation of operators or their
verification for certain algebraic properties to enable parallel evaluation of the programs obtained. Mori-
hata et. al. [24] extended this approach for trees by decomposing a binary tree into a list of sub-trees
called zipper, and defining upward and downward computations on the zipper structure. However, such
calculational methods are often limited by the range of programs and data types they can transform.
Also, a common aspect of these calculational approaches is the need to manually derive operators that
satisfy certain properties, such as associativity to guarantee parallel evaluation. To address this, Chin
et. al. [4] proposed a method that systematically derives parallel programs from sequential definitions
and automatically creates auxiliary functions that can be used to define associative operators needed for
parallel evaluation. However, their method is restricted to a first-order language and applicable to func-
tions defined over a single recursive linear data type, such as lists, that has an associative decomposition
operator, such as ++ .

As an alternative to calculational approaches, Ahn et. al. [1] proposed an analytical method to trans-

V. Kannan and G. W. Hamilton 135

form general recursive functions into a composition of polytypic data parallel skeletons. Even though
their method is applicable to a wider range of problems and does not need associative operators, the
transformed programs are defined by composing skeletons and employ multiple intermediate data struc-
tures.

Previously, the authors proposed a method to transform the input of a given program into a cons-list
based on the recursive structure of the input [16]. Since this method does not use the recursive structure
of the program to build the cons-list, the transformed programs do not lend themselves to be defined
using list-based parallel skeletons. This observation led to creating a new encoded data type that matches
the algorithmic structure of the program and hence enables identification of polytypic parallel map and
reduce skeletons [17]. The new encoded data type is created by pattern-matching and recursively con-
suming inputs, where a recursive components is created in the new encoded input for each recursive
call that occurs in a function body using the input arguments of the recursive call. Consequently, the
data structure of the new encoded input reflects the recursive structure of the program. Even though this
method leads to better identification of polytypic skeletons, it is not easy to evaluate the performance
of the transformed programs defined using these skeletons because existing libraries do not offer imple-
mentations of skeletons that are defined over a generic data type. Consequently, the proposed method of
encoding the inputs into a list respects the recursive structures of programs and allows evaluation of the
transformed programs using existing implementations of list-based parallel skeletons.

Acknowledgment

This work was supported, in part, by the Science Foundation Ireland grant 10/CE/I1855 to Lero - the
Irish Software Research Centre (www.lero.ie).

References

[1] Joonseon Ahn & Taisook Han (2001): An Analytical Method for Parallelization of Recursive Functions.
Parallel Processing Letters, doi:10.1142/S0129626400000330.

[2] Manuel M. T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell & Vinod Grover (2011): Acceler-
ating Haskell Array Codes with Multicore GPUs. Proceedings of the Sixth ACM Workshop on Declarative
Aspects of Multicore Programming, doi:10.1145/1926354.1926358.

[3] Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones, Gabriele Keller & Simon Marlow
(2007): Data Parallel Haskell: A Status Report. Proceedings of the 2007 Workshop on Declarative Aspects
of Multicore Programming (DAMP), doi:10.1145/1248648.1248652.

[4] Wei-Ngan Chin, A. Takano & Zhenjiang Hu (1998): Parallelization via Context Preservation. International
Conference on Computer Languages, doi:10.1109/ICCL.1998.674166.

[5] Murray Cole (1991): Algorithmic Skeletons: Structured Management of Parallel Computation. MIT Press,
Cambridge, MA, USA.

[6] John Darlington, A. J. Field, Peter G. Harrison, Paul Kelly, D. W. N. Sharp, Qiang Wu & R. Lyndon While
(1993): Parallel Programming Using Skeleton Functions. Lecture Notes in Computer Science, 5th Interna-
tional PARLE Conference on Parallel Architectures and Languages Europe, doi:10.1007/3-540-56891-3 12.

[7] Jeremy Gibbons (1996): The Third Homomorphism Theorem. Journal of Functional Programming Vol. 6,
No. 3, doi:10.1017/S0956796800001908.

[8] Horacio González-Vélez & Mario Leyton (2010): A Survey of Algorithmic Skeleton Frameworks: High-level
Structured Parallel Programming Enablers. Software – Practice and Experience, doi:10.1002/spe.v40:12.

http://dx.doi.org/10.1142/S0129626400000330
http://dx.doi.org/10.1145/1926354.1926358
http://dx.doi.org/10.1145/1248648.1248652
http://dx.doi.org/10.1109/ICCL.1998.674166
http://dx.doi.org/10.1007/3-540-56891-3_12
http://dx.doi.org/10.1017/S0956796800001908
http://dx.doi.org/10.1002/spe.v40:12

136 Program Transformation to Identify List-Based Parallel Skeletons

[9] Sergei Gorlatch (1995): Constructing List Homomorphisms for Parallelism. Fakultät für Mathematik und
Informatik: MIP.

[10] Sergei Gorlatch (1999): Extracting and Implementing List Homomorphisms In Parallel Program Develop-
ment. Science of Computer Programming, doi:10.1016/S0167-6423(97)00014-2.

[11] G. W. Hamilton & Neil D. Jones (2012): Distillation with Labelled Transition Systems. Proceedings of the
ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation, doi:10.1145/2103746.2103753.

[12] Zhenjiang Hu, Masato Takeichi & Wei-Ngan Chin (1998): Parallelization in Calculational Forms. Proceed-
ings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),
doi:10.1145/268946.268972.

[13] Zhenjiang Hu, Masato Takeichi & Hideya Iwasaki (1999): Diffusion: Calculating Efficient Parallel Pro-
grams. ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipulation
(PEPM).

[14] Zhenjiang Hu, Tetsuo Yokoyama & Masato Takeichi (2005): Program Optimizations and Transformations
an Calculation Form. GTTSE, doi:10.1007/11877028 5.

[15] Hideya Iwasaki & Zhenjiang Hu (2004): A New Parallel Skeleton for General Accumula-
tive Computations. International Journal of Parallel Programming, Kluwer Academic Publishers,
doi:10.1023/B:IJPP.0000038069.80050.74.

[16] Venkatesh Kannan & G. W. Hamilton (2014): Extracting Data Parallel Computations from Distilled Pro-
grams. Fourth International Valentin Turchin Workshop on Metacomputation (META).

[17] Venkatesh Kannan & G. W. Hamilton (2016): Program Transformation To Identify Parallel Skeletons.
24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP),
doi:10.1109/PDP.2016.32.

[18] Rita Loogen (2012): Eden Parallel Functional Programming with Haskell. Lecture Notes in Computer
Science, Central European Functional Programming School, Springer Berlin Heidelberg, doi:10.1007/978-
3-642-32096-5 4.

[19] K. Matsuzaki, Z. Hu & M. Takeichi (2006): Parallel Skeletons for Manipulating General Trees. Parallel
Computing, doi:10.1016/j.parco.2006.06.002.

[20] K. Matsuzaki, H. Iwasaki, K. Emoto & Z. Hu (2006): A Library of Constructive Skeletons for Sequential Style
of Parallel Programming. Proceedings of the 1st ACM International Conference on Scalable Information
Systems, InfoScale, doi:10.1145/1146847.1146860.

[21] K. Matsuzaki, K. Kakehi, H. Iwasaki, Z. Hu & Y. Akashi (2004): Fusion-Embedded Skeleton Library.
Euro-Par 2004 Parallel Processing, Lecture Notes in Computer Science, Springer Berlin Heidelberg,
doi:10.1007/978-3-540-27866-5 85.

[22] Kiminori Matsuzaki, Hideya Iwasaki, Kento Emoto & Zhenjiang Hu (2006): A Library of Constructive
Skeletons for Sequential Style of Parallel Programming. Proceedings of the 1st International Conference on
Scalable Information Systems, doi:10.1145/1146847.1146860.

[23] Trevor L. McDonell, Manuel M.T. Chakravarty, Gabriele Keller & Ben Lippmeier (2013): Optimising Purely
Functional GPU Programs. ACM SIGPLAN Notices, doi:10.1145/2500365.2500595.

[24] Akimasa Morihata, Kiminori Matsuzaki, Zhenjiang Hu & Masato Takeichi (2009): The Third Ho-
momorphism Theorem on Trees: Downward & Upward Lead to Divide-and-Conquer. POPL,
doi:10.1145/1594834.1480905.

[25] Alberto Pettorossi & Maurizio Proietti (1996): Rules and Strategies for Transforming Functional and Logic
Programs. ACM Computing Surveys, doi:10.1145/234528.234529.

[26] D. B. Skillicorn (1993): The Bird-Meertens Formalism as a Parallel Model. Software for Parallel Computa-
tion, NATO ASI Series F, Springer-Verlag, doi:10.1007/978-3-642-58049-9 9.

[27] D. B. Skillicorn & Domenico D. Talia (1998): Models and Languages for Parallel Computation. ACM
Computing Surveys, doi:10.1145/280277.280278.

http://dx.doi.org/10.1016/S0167-6423(97)00014-2
http://dx.doi.org/10.1145/2103746.2103753
http://dx.doi.org/10.1145/268946.268972
http://dx.doi.org/10.1007/11877028_5
http://dx.doi.org/10.1023/B:IJPP.0000038069.80050.74
http://dx.doi.org/10.1109/PDP.2016.32
http://dx.doi.org/10.1007/978-3-642-32096-5_4
http://dx.doi.org/10.1007/978-3-642-32096-5_4
http://dx.doi.org/10.1016/j.parco.2006.06.002
http://dx.doi.org/10.1145/1146847.1146860
http://dx.doi.org/10.1007/978-3-540-27866-5_85
http://dx.doi.org/10.1145/1146847.1146860
http://dx.doi.org/10.1145/2500365.2500595
http://dx.doi.org/10.1145/1594834.1480905
http://dx.doi.org/10.1145/234528.234529
http://dx.doi.org/10.1007/978-3-642-58049-9_9
http://dx.doi.org/10.1145/280277.280278

	1 Introduction
	2 Language
	3 Distillation
	4 Encoding Transformation
	4.1 Correctness

	5 Parallel Execution of Encoded Programs
	5.1 Identification of Skeletons
	5.2 Parallel Implementation of Skeletons

	6 Evaluation
	6.1 Example – Matrix Multiplication
	6.2 Example – Dot-Product of Binary Trees

	7 Conclusion
	7.1 Summary
	7.2 Related Work

