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Almost all Computer Science programs require students to take a course on the Theory of Computa-
tion (ToC) which covers various models of computation such as finite automata, push-down automata
and Turing machines. ToC courses tend to give assignments that require paper-and-pencil solutions.
Grading such assignments takes time, so students typically receive feedback for their solutions more
than a week after they complete them. We present the Automatic Automata Checker (A2C), an open
source library that enables one to construct executable automata using definitions that mimic those
found in standard textbooks [28]. Such constructions are easy to reason about using semantic equiv-
alence checks, properties and test cases. Instructors can conveniently specify solutions in the form
of their own constructions. A2C can check for semantic equivalence between student and instructor
solutions and can immediately generate actionable feedback, which helps students better understand
the material. A2C can be downloaded and used locally by students as well as integrated into Learn-
ing Management Systems (LMS) like Gradescope to automatically grade student submissions and
generate feedback. A2C is based on the ACL2s interactive theorem prover, which provides advanced
methods for stating, proving and disproving properties. Since feedback is automatic, A2C can be
deployed at scale and integrated into massively open online courses.

1 Introduction

In Theory of Computation (ToC) courses, students study models of computation, including Deterministic
Finite Automata (DFAs), Push-Down Automata (PDAs) and Turing machines (TMs). When constructing
automata, students benefit from getting immediate, automatic feedback. We present Automatic Automata
Checker (A2C) [1], an open source library based on the ACL2s theorem prover [4, 12, 7]. For the
purposes stated above, A2C provides convenient forms for defining, executing, testing and reasoning
about automata.

Automata defined using A2C are not only executable, but are also a formal model of computation that
can be reasoned about. Instructors can use ACL2s functionality to specify and check properties over
these models, or use the full power of the ACL2s theorem prover to implement custom checks. This
advantage is usually missing from visual or XML based representations, such as those used in Automata
Tutor V3 [13] or JFLAP [25]. Furthermore, access to a powerful theorem prover allows an instructor to
test their constructions, prove properties or even add new theories or models. A2C has built-in support
for grading student-submitted automata and outputting results as JSON, making it easy to integrate into
existing learning management systems. It comes with out-of-the-box support for Gradescope, a widely-
used online grading system.

When a student submits an automata construction to Gradescope, it is checked for consistency and se-
mantic equivalence with solutions provided by the instructor. Students receive immediate feedback, e.g.,
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if their solution is determined to be incorrect, they are provided with inputs which their automata incor-
rectly classify. This is a significant improvement over existing tools like JFLAP [25] and OpenFLAP [22]
which do not support personalized, high quality feedback. Based on the feedback they receive, students
are then able to update and resubmit their automata.

A2C currently supports 3 models of computation – DFAs, PDAs and TMs, in a single package. Input
validation, equivalence testing and property-based testing are supported across all three models. We
provide a uniform testing interface across all supported models of computation, unlike Automata Tutor
V3 or JFLAP, whose level of testing capabilities depend heavily on the kind of automata being checked.

A2C is built on top of ACL2s, which gives access to several useful features like a powerful macro system
to define forms convenient for declaration of automata (our forms faithfully reflect their corresponding
textbook [28] descriptions), the Defdata [10] framework to define automata components as types, the-
orem proving to prove equivalence of types, property-based testing for checking equivalence between
automata constructions and to test if such constructions satisfy certain properties and counter-example
generation to produce helpful feedback, if automata constructions do not satisfy properties. Since A2C
is open source, it can be easily extended to support other models or theories, for example, recursive
function theory which has built-in support in ACL2s.

Our contributions. We make the following contributions with A2C: (i) an open source library to con-
struct executable models of DFAs, PDAs and TMs, (ii) ability to reason about constructed automata using
properties and test cases, (iii) instant feedback generation to guide students towards a correct construc-
tion, (iv) ability to run either locally or on compatible LMS like Gradescope and (v) ability to extend
with more models of computation, with a little experience working with ACL2s. To the best of our
knowledge, there exists no other tool with all of these capabilities.

Paper Outline. Section 2 presents related work in the field of automated grading of automata. Section 3
explains our choice of the ACL2s theorem prover. Section 4 illustrates the kinds of helpful feedback
A2C generates on student submissions. Section 5 describes implementation considerations of the system.
Section 6 shows the system architecture and details integration with Gradescope. Section 7 discusses our
experiences using A2C to automatically grade (autograde) assignments and exams. Section 8 lists some
limitations of A2C and Section 9 concludes.

2 Related Work

Several tools and techniques for automatically grading or providing feedback for student submitted au-
tomata exist. For brevity, we will describe some of the most commonly used tools, and touch on the
possibility of using specialized algorithms for automata equivalence checking.

The JFLAP (Java Formal Language and Automata Package) is a visualization and teaching tool for
formal languages. It supports DFAs, PDAs, and TMs in addition to several other models of computation
and parsing algorithms. JFLAP does not have built-in support for grading (as it is a tool intended for
students to run themselves while writing up their homework solutions), though several extensions to
JFLAP have been made that attempt to add such features [27, 24]. Both of these extensions only support
DFAs, and the work of Shekhar et al. simply performs bounded checking of words to check equivalence
between the student’s submission and the instructor’s solution. Neither of these extensions allow for
integration with an external LMS. JFLAP claims to be open-source, though we could not find any way
to acquire the JFLAP source from its official website.
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A more modern incarnation of FLAP called OpenFLAP is a component of OpenDSA [26], an open-
source and interactive eTextbook system. OpenFLAP provides support for auto-graded DFA, PDA, and
TM construction exercises, but student submissions are evaluated solely on whether they pass concrete
test cases provided by the instructor. OpenDSA can be integrated with the Canvas LMS.

Automata Tutor v3 [13] is a closed-source online platform that automatically grades and provides feed-
back on automata. It has been used to teach thousands of students at over 30 universities, with high
reported satisfaction among both students and instructors [13], which highlights the benefits of auto-
mated grading systems in undergraduate level theory of computation classes. It supports DFAs, PDAs
and TMs in addition to several other models of computation. Instructors can create assignments inside
of Automata Tutor that include automata construction exercises. Students then use Automata Tutor’s in-
terface to graphically construct the relevant automaton. Automata Tutor automatically grades exercises,
and in the case of DFAs will provide “descriptive hints” that aim to help students understand how their
solutions are incorrect [14]. For PDAs and TMs, Automata Tutor will only provide counterexamples
(if it can find them). These counterexamples are generated by testing randomly generated words up to
a configurable length, given certain resource limits [13]. A disadvantage of a closed-source monolithic
platform like Automata Tutor v3 is that, it can not be reliably used when it is experiencing technical
problems or is down for maintenance, as was the case when we last checked on 12th November, 2022.

Checking equivalence of TMs or (nondeterministic) PDAs is undecidable, but checking the equivalence
of DFAs is decidable and algorithms exist that can check equivalence and generate a witness (a counterex-
ample to the equivalence of the two DFAs, e.g., a word that one of the DFAs accepts but the other rejects)
with worst-case runtime complexity “nearly linear” in the total number of states in the two DFAs [24].
A complete procedure to check equivalence of DFAs would be a good future addition to A2C.

3 ACL2 Sedan

A2C is written in ACL2 Sedan (ACL2s) [4, 12, 7], which is an extension of A Computational Logic
for Applicative Common Lisp (ACL2) [2, 15]. ACL2 is an industrial strength system for integrated
modeling, simulation, and inductive reasoning. It comes from the Boyer-Moore family of theorem
provers and is capable of reasoning about statements in the first order logic with mathematical induc-
tion. ACL2s extends ACL2 with automation and user friendly features like an advanced data defini-
tion framework Defdata, a powerful termination analysis based on calling context graphs [20] and or-
dinals [17, 18, 19], a property-based modeling and reasoning framework for theorem proving, the cgen
framework [8, 9, 11, 31] for generating counter-examples for invalid properties, and support for sys-
tems programming, a relatively new capability that allows one to build formal-methods-enabled tools
that use ACL2s as a key component and which has been used in projects involving gamified verification,
education, proof checking, interfacing with external theorem provers and security [32, 29, 30].

A2C utilizes all of these features to facilitate writing executable automata constructions, reasoning about
them using properties, and getting helpful feedback in the form of counter-examples, all in the same
system.
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4 Illustrative Examples

Before describing the details of our system, we will walk through a few illustrative examples that high-
light the kinds of feedback that A2C provides to a student. These example problems are also available
on Gradescope as programming assignments, which can be accessed using instructions provided in [1].

4.1 Checking Deterministic Finite Automata

Consider a homework problem that requires a student to construct a DFA that can recognize words in
{0,1}∗ consisting of an odd number of ones. A DFA M is a 5-tuple, (Q,Σ,δ ,q0,F) where Q is a finite
set of states, Σ is an alphabet, δ : Q×Σ→ Q is a transition function, q0 ∈ Q is a start state and F ⊆ Q is
a finite set of accept states. Suppose the student submits an ACL2s form as shown:

(gen-dfa
:name student-dfa
:states (e1 e2 o1 o2)
:alphabet (0)
:start e1
:accept (o1 o2)
:transition-fun (((e1 0) . e1) ((e1 2) . o1) ((e2 0) . e2) ((e2 2) . e2)

((o1 0) . o2) ((o1 2) . e2) ((o2 0) . o1) ((o2 2) . e1)))

gen-dfa is a macro that generates data definitions for a DFA construction. ACL2s has a powerful macro
system that can be used to create representations of automata equivalent to those in the book. Moti-
vated users define their own macros and syntax. The gen-dfa form above defines a DFA with the name
student-dfa. The order of components appearing in the form does not matter, e.g., swapping the order
of :states and :accept yields the same DFA. On reading a gen-dfa form, A2C performs several checks,
including ensuring (1) the name is new, (2) all components of a DFA are provided and (3) components
are well-formed, e.g., that the transition function is a total function from the appropriate domain to the
appropriate co-domain.

Given the form above, A2C reports that :transition-fun (δ ) is not a function with domain Q×Σ. This
is because the :alphabet (Σ) specified in the above form contains the element 0, whereas the domain of
:transition-fun seems to have been constructed with a different alphabet in mind, namely one which
includes both 0 and 2 as elements. After receiving this feedback, the student can update :alphabet as
follows.

:alphabet (0 2)

The updated form passes all of our system’s checks, indicating that the student’s submitted form repre-
sents a valid DFA. What remains is to check whether this construction is correct. The specification for a
correct automaton is a solution provided by the instructor:

(gen-dfa
:name instructor-dfa
:states (even odd)
:alphabet (0 1)
:start even
:accept (odd)
:transition-fun (((even 0) . even) ((even 1) . odd) ((odd 0) . odd) ((odd 1) . even)))

Testing for correctness reduces to testing equivalence between the student’s solution student-dfa and
the instructor’s solution instructor-dfa. Part of checking equivalence of automata includes checking
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for equivalence of alphabet. So, in the running example, A2C tries to prove the equivalence of both
alphabets, fails and generates the following feedback:
Incorrect alphabet provided.

This is because the student’s alphabet does not match with the one provided in the instructor’s DFA. The
student corrects their alphabet and updates their transition function as appropriate.
:alphabet (0 1)
:transition-fun (((e1 0) . e1) ((e1 1) . o1) ((e2 0) . e2) ((e2 1) . e2)

((o1 0) . o2) ((o1 1) . e2) ((o2 0) . o1) ((o2 1) . e1))

But student-dfa is still incorrect, as is pointed out by A2C in the following feedback:
Transition function error. The following words are misclassified:
(’(0 1 1 1) ’(1 1 1 0) ’(1 1 1))

Each list in the feedback represents a word that is misclassified by student-dfa. With this feedback, the
student learns something new about their construction and can run their DFA on the generated words as
shown:
(run-dfa student-dfa ’(0 1 1 1))

The run-dfa form runs student-dfa on the input word ’(0 1 1 1) generating the following output:
E2

This helps the student realize that any transition from e2 leads back to e2. The student corrects this
mistake as shown:
:transition-fun (((e1 0) . e1) ((e1 1) . o1) ((e2 0) . e2) ((e2 1) . o2)

((o1 0) . o2) ((o1 1) . e2) ((o2 0) . o1) ((o2 1) . e1))

The updated solution is finally accepted by the autograder, which outputs:
student-dfa is correct.

4.2 Checking Push Down Automata

Consider another homework problem, one that requires a student to construct a a PDA that can recognize
the language {0n1n | n ≥ 0}. Recall that a PDA is a 6-tuple, (Q,Σ,Γ,δ ,q0,F) where Q is a finite set of
states, Σ is the input alphabet, Γ is the stack alphabet, δ : Q×(Σ∪{ε})×(Γ∪{ε})→P(Q×(Γ∪{ε}))
is a transition function, q0 ∈ Q is a start state and F ⊆ Q is a finite set of accept states.

Consider a student’s submission for this problem:
(gen-pda
:name student-pda
:states (q1 q2 q3)
:alphabet (0 1)
:stack-alphabet (0 z)
:start-state q1
:accept-states (q3)
:transition-fun (((q1 0 :e) . ((q1 0)))

((q1 1 0) . ((q2 :e)))
((q2 1 0) . ((q2 :e)))
((q2 :e z) . ((q3 :e)))))

The gen-pda form shown above defines a PDA with the name student-pda. Similar to the gen-dfa

form described earlier, the order of components in this form does not matter. We use :e to represent the
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empty word ε . We could have chosen to use the unicode character for ε as well, but we did not want
students to deal with potential issues due to lack of unicode support. Requiring only ASCII characters
as input allows A2C to support online courses where students might use a plethora of development
environments to write their solutions. Most of the checks related to validity of states, input alphabet
and stack alphabet are similar to those for DFAs. Even though we do not require transitions from every
possible tuple of state, alphabet and stack symbols (we assume empty set by default), we do include
a check for the presence of a transition from the start state on the empty word :e. This is required to
add a base stack symbol. The submission shown above fails this test and hence the student receives the
following feedback:

Starting transition from (Q1 :e :e) missing from the transition function.

This is fixed by adding a new start state q0 and updating the transition function as shown:

(gen-pda
:name student-pda
:states (q0 q1 q2 q3)
:alphabet (0 1)
:stack-alphabet (0 z)
:start-state q0
:accept-states (q3)
:transition-fun (((q0 :e :e) . ((q1 z)))

((q1 0 :e) . ((q1 0)))
((q1 1 0) . ((q2 :e)))
((q2 1 0) . ((q2 :e)))
((q2 :e z) . ((q3 :e)))))

The updated solution passes all checks for a valid PDA. It is now time to check whether it matches the
specifications of the problem. After checking if the submitted PDA is correct, the autograder reports

Transition function error. The following words were misclassified :
(:e)

This feedback suggests that student-pda does not correctly classify the input word ε . Indeed, this word
should be accepted, but is not accepted by student-pda. This can be fixed either by modifying the set of
accept states:

:accept-states (q0 q3)

or by modifying the transition function to allow an ε transition from the start state to the accept state:

:transition-fun (((q0 :e :e) . ((q1 z) (q3 :e)))
((q1 0 :e) . ((q1 0)))
((q1 1 0) . ((q2 :e)))
((q2 1 0) . ((q2 :e)))
((q2 :e z) . ((q3 :e))))

This updated solution is finally accepted upon submission.

student-pda is correct.

4.3 Checking TMs

Consider a problem where a student is required to submit a TM that flips 0s to 1s and vice-versa on its
tape. A TM is defined as a 7-tuple (Q,Σ,Γ,δ ,q0,qaccept,qreject) where Q is a finite set of states, Σ is
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the input alphabet, Γ is the tape alphabet, δ : Q×Γ→ Q×Γ×{L,R} is the transition function, q0 ∈ Q
is the start state, qaccept is the accept state and qreject is the reject state. We require that the execution
of the TM on the given input w end with the head at the end of the output on its tape. We ignore any
symbols occurring to the right of the head after the end of execution. We also trim all blank symbols
occurring between the end of the output and the head.

Suppose that a student submits the following TM for the above problem:

(gen-tm
:name student-tm
:states (q0 q1 q2 q3)
:alphabet (0 1)
:tape-alphabet (0 1)
:start-state q0
:accept-state q1
:reject-state q2
:transition-fun (((q0 1) . (q0 0 R))

((q0 0) . (q0 1 L))
((q0 nil) . (q3 nil R))
((q3 nil) . (q1 nil L))))

The gen-tm form shown above defines a TM with the name student-tm. Similar to the previously
seen gen- forms, the order of components in this form does not matter. After submitting this form, the
following feedback is produced by the autograder:

Blank tape symbol nil missing from tape-alphabet.

The blank tape symbol is represented using the keyword nil. The tape-alphabet component of gen-tm
is required to include the blank tape symbol nil and the input alphabet has to be a subset of the tape
alphabet. This is fixed by modifying tape-alphabet :

:tape-alphabet (0 1 nil)

After editing and resubmitting, the autograder gives more feedback:

Incorrect output produced when running submitted TM on the following words :
(’(1 0) ’(0) ’(0 1 1))

Running their TM on words provided in the feedback, the student realizes a mistake in their transition
function, and corrects it as shown:

:transition-fun (((q0 1) . (q0 0 R))
((q0 0) . (q0 1 R))
((q0 nil) . (q3 nil R))
((q3 nil) . (q1 nil L)))

The updated solution is finally accepted by the autograder.

5 Implementation

As already mentioned, our tool is based on the ACL2s theorem prover [12, 4], an extension of ACL2 [15,
2] which consists of a programming language, a logic for the language and an interactive theorem prover.
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5.1 Solution format

A2C provides a well defined input format for specifying automata. A solution file in this format consists
of one or more gen-x forms where x may be one of dfa, pda or tm. Each such form provides a declarative
description of its corresponding automaton. The description is faithful to its textbook definition [28].
Hence the input format can be naturally explained and is easy to understand.

5.2 Validating automata

A2C validates a gen-x form by checking whether all of the following conditions hold:

• all required components of the automaton are provided,

• the start state is one of the given states,

• the set of accept states is a subset of the set of states,

• the domain of the transition function is of the right type,

• the co-domain of the transition function is of the right type,

• additional model-specific checks for each of PDAs and TMs, e.g., the blank tape symbol does not
appear in the alphabet of a TM, but should appear in the tape-alphabet.

5.3 Checking correctness

A2C uses the defdata data definition framework to convert an automaton description into corresponding
definitions of states, alphabets, transition-functions and functions which make it executable.

For property-based testing, instructors can either use property forms (for testing as well as theorem prov-
ing) or test? forms (meant solely for testing). Property-based testing depends on the cgen framework
for generating counter-examples to invalid properties. A2C makes use of the interface [32] library to
query ACL2s with test? forms to test equivalences and extract counter-examples.

Cgen framework: property-based testing using ACL2s’ test? forms depends on cgen, a counter-
example generation framework which combines theorem proving with testing in a synergistic way. The
framework is quite mature and has been used extensively in a number of projects, including industrial
projects. [23, 21] It provides numerous configuration options and is based on a number of algorithms and
ideas that are described in related work. In brief, it uses a collection of algorithms and the full power
of the theorem prover to simplify conjectures and to decompose them into subgoals, e.g., it may prove
that a conjecture holds in certain infinite regions of the state space, thereby removing these regions from
further consideration. It also uses a collection of testing methods that are performed at key parts of the
theorem proving process. The testing is integrated with the underlying ACL2s type system to generate
random elements of given types, optionally satisfying certain constraints. The counter-example gener-
ation framework can even improve the ability of ACL2s to prove theorems, e.g., it may reveal that a
generalization step falsifies a given conjecture, at which point it forces the theorem prover to backtrack,
which avoids certain failure and may lead to a proof. The number of tests generated for property-based
testing is configurable. For use in our undergraduate-level ToC class, we used the default number of test
cases for test? forms, which is 1000, and are not aware of any false-positives.

Testing equivalence: To test if two automata are equivalent, we first check if their alphabets match:
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(defdata-equal instructor-x-alphabet student-x-alphabet)

Here instructor-x-alphabet and student-x-alphabet are definitions generated by either of gen-dfa,
gen-pda or gen-tm, (depending on x being either of dfa, pda or tm) for the alphabet of the instructor and
the student automata respectively. defdata-equal checks whether two data types are identical. If not, the
defdata framework [10] will generate a value that is in one of the data types and not in the other. In this
case, if the student and instructor alphabets differ, defdata will return a symbol that is in one alphabet but
not the other. To complete the check of equivalence, we check the following property.

(test?
(=> (instructor-x-wordp w)

(== (accept-x w *student-x*)
(accept-x w *instructor-x*))))

where x is one of dfa, pda or tm.

Note that whenever a gen-x form successfully validates and generates data definitions for each compo-
nent of a given construction named student-x, behind the scenes, it generates a constant *student-x*
to refer to a list consisting of the given components. The (accept-x *student-x* w) and (accept-x
*instructor-x* w) forms check whether the student’s automaton and the instructor’s automaton accept
the word w of type instructor-x-word respectively. Any counter-example generated by this test? form
indicates a word accepted by exactly one of the automata. The number of steps PDAs and TMs are
allowed to run for on an input is bounded and can be configured by the instructor. In case of TMs, we
utilize another test for equivalence, one that checks whether the two TMs agree on their output.

(test?
(=> (instructor-tm-wordp w)

(== (remove-final-nils (left-of-head (run-tm w *student-tm*)))
(remove-final-nils (left-of-head (run-tm w *instructor-tm*))))))

where left-of-head of the output of run-tm is the part of the tape to the left of the head, where we
expect our output to reside. remove-final-nils removes blank symbols occurring between the end of
the output and the head.

Automata constructions are executed using functions, whose definitions depend on the automaton x:

• Given a initial state q0, a transition function δ and a word w, run-dfa returns a state s∈Q. Starting
with q0 and the first letter in w, it queries δ to get a new state. This process is repeated until all
letters in w are exhausted and s is reached.

Since δ is complete (all pairs in Q×Σ belong to the domain of δ ), and since the length of w is
finite, run-dfa is terminating.

• Consider a tuple t ∈ Q×Γ∗×Σ∗ denoting a state reached, contents in a stack and a suffix of the
input word left to be consumed, respectively. We call this an exec-tuple.

run-pda is a function that accepts a bound (a natural number), a PDA and a set of exec-tuples, and
returns a boolean: t or nil. The execution trace of run-pda is a tree such that each of its nodes is an
exec-tuple. The root of this tree is (q0,ε,w) i.e., a tuple consisting of the start state, an empty stack
and the input word. At each step of the execution, new leaves of the tree may be generated. Recall
that δ : Q× (Σ∪{ε})× (Γ∪{ε})→P(Q× (Γ∪{ε})). For a leaf l = (ql,(t . . .),(c . . .)) where
ql ∈Q, t is the top of its stack and c is the first letter in the rest of the word, we have the following
tuples : (ql, t,c),(ql,ε,c),(ql, t,ε) and (ql,ε,ε). If any of these tuples exists in the domain of δ ,
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we say that leaf l is active and the children of l can be generated using δ . In case none of these
tuples exist in the domain of δ , l remains a leaf node.

An exec-tuple is accepted when it is of the form (q f , . . . ,ε) where q f ∈ F . run-pda is executed
until either an acceptable exec-tuple is generated (in which case it returns t) or when all active
leaves of the tree are at a depth greater than n, in which case it returns nil.

The inherent non-determinism of PDAs coupled with the possibility of making ε−transitions does
not allow guaranteed termination of run-pda. Hence, the execution of run-pda needs to be bounded
by a positive integer n, the maximum depth of an execution tree decided by the instructor.

• Given a TM (Q,Σ,Γ,δ ,q0,qaccept,qreject) and a word w, run-tm returns a tuple (Q×Γ∗×Γ∗)
whose first element is the current state of the TM and the second and third elements are the contents
of the tape to the left and to the right of the TM’s head, respectively. Note that tape symbols to
the left of the head are stored in reverse. The head of a TM moving left on its tape is simulated by
removing the first element from the tape on the left of head and attaching it at the start of the tape
on the right of head.

Since the halting problem is undecidable for a Turing machine, we need to set a maximum number
of steps the TM can run for before stopping it.

Testing properties: Since checking the equivalence of PDAs and TMs is undecidable, it is useful for the
instructor to have a collection of properties to check a students’ constructions. For example, in context
of our running DFA example,

(property no-odd1s-in-ww (w :instructor-dfa-word)
:proofs? nil
(! (accept-dfa *student-dfa* (append w w))))

checks that *student-dfa* does not accept words of the form ww. This is because such words can not
have an odd number of 1s. Such properties represent an infinite class of test cases a submission can be
evaluated against. Of course, ground expressions such as unit tests can also be defined. Property forms
in ACL2s can be configured to perform as much testing as one requires. In our example, we turn off
theorem proving locally for this property using :proofs? nil to focus exclusively on testing in hopes
of finding counter-examples. It is possible to disable theorem proving globally, for all properties as well,
as shown:

(set-acl2s-property-table-testing? t)
(set-acl2s-property-table-proofs? nil)

Now that theorem proving has been disabled and testing enabled globally for property forms, we have

(property accept-w->accept-0w1 (w :instructor-pda-word)
(=> (accept-pda *student-pda* w)

(accept-pda *student-pda* (app ’(0) w ’(1)))))

which checks that if a word w is accepted by *student-pda*, so is 0w1.

Finally, for the TM example, we could use the following property to test a student submission, after it
has been validated:

(property involution (w :student-tm-word)
(== (remove-final-nils (left-of-head (run-tm

(remove-final-nils (left-of-head (run-tm w *student-tm*))))))
w))
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which checks that if running *student-tm* on the input word w produces w′ in which the 0s and 1s are
flipped, then running *student-tm* again on w′ should produce w as output.

Notice that each property is specified programmatically in the ACL2s language in terms of executable
automata, making the process of creating tests effortless.

Unit testing: An instructor can also make use of check= forms to check their own construction for
specific test cases. For example, from our running examples,
(check= (accept-pda *instructor-pda* ’(0 0 0 1 1 1)) t)

checks whether *instructor-pda* accepts ’(0 0 0 1 1 1). Similarly,
(check= (remove-final-nils (left-of-head (run-tm ’(1 0 1 1 1 0 1 0) *instructor-tm*)))

’(0 1 0 0 0 1 0 1))

checks whether running *instructor-tm* on input ’(1 0 1 1 1 0 1 0 1 0) flips 0s and 1s.

6 System Description

A2C can be packaged as an executable and deployed on any online grading platform that can run the
executable on student submissions and can use the output generated to grade assignments.

6.1 ACL2s and external tools

Figure 1: Technical stack for auto-
grading ToC assignments

As previously discussed in Section 3, ACL2s extends the ACL2
theorem prover with several automation and user-friendly features.
ACL2 provides a full-featured programming language, so it is pos-
sible to implement and integrate additional functionality inside
of ACL2 without needing to modify or understand its internals.
ACL2 is built on top of Common Lisp, and is designed in such
a way that one can write Common Lisp code that interacts with
ACL2 code and vice versa. This means that it is also relatively
easy to integrate external tools with ACL2.

ACL2s provides a feature that allows a user to save the state of a
running ACL2s process as an executable file. We use this feature
to generate an executable for each assignment that an instructor
would like to autograde. The state of such an executable includes
libraries that we wrote that provide the forms required for testing
student constructions and integrating with Gradescope in addition
to the instructor’s version of any automata being graded.

6.2 Libraries

Our Gradescope-based automatic grader for the ToC course uses
the following libraries:

• A2C: forms needed to define, validate, run and check equivalence between user-provided automata

• gradescope-acl2s : interacts with Gradescope by generating JSON files consisting of scores and
feedback for autograded submissions.



88 Automated Grading of Automata with ACL2s

• interface : provides an interface with ACL2s’ theorem proving and counterexample generation
functionality.

These libraries are designed to be reusable in other contexts besides A2C. Students can use the A2C
library locally to inspect their automata before submitting. For example, a student who is so inclined can
define an automata and then use ACL2s to check both concrete test cases and properties that they believe
their automata should satisfy. Instructors may also find this useful to check their work while develop-
ing solution automata. Defining properties requires some experience working with the ACL2s theorem
proving system. Freshman computer science students generally learn ACL2s as part of Northeastern
University’s Logic and Computation class.

6.3 Gradescope Integration

Gradescope is a LMS used at several universities. It provides autograding functionality, and can be con-
figured to allow students to submit the same assignment multiple times and review autograder feedback
after each submission.

A Gradescope autograder is a zip-archive consisting of code that accepts student submissions and gen-
erates JSON files consisting of points received and feedback for each autograded solution. Student
submissions are run in Docker containers, which are setup according to specifications provided in the
autograder zip-archive. Since Gradescope Docker containers do not support ACL2s by default, we use
a custom Docker image [3]. In most cases, an instructor can simply use one of our provided examples,
just updating the problems and solutions as necessary, to publish an autograded assignment.

Our autograder can be adapted to support any LMS that supports autograding using a Docker image or
an executable. To do this, one would need to write a library analogous to gradescope-acl2s that handles
whatever I/O is appropriate for that LMS.

7 Experiences and Observations

We deployed A2C on Gradescope for autograding assignments in a undergraduate-level ToC class taught
at Northeastern University, consisting of about 50 students. Students were introduced to the input format
for specifying each automata before the corresponding assignment was released.

7.1 Ease of use

Setting up autograded assignments using A2C was easy. Solutions were easy to specify, since they were
simply the instructor’s solution. A portion of the final exam consisted of autograded problems. For
example, a question similar to : “Write a TM to insert a 1 in the input tape after the third occurrence
of symbol # from the left” was asked in the final exam. TMs submitted for this problem were fairly
complex (i.e. they had several states and transitions). Autograding helped us save about 16 hours of TA
time grading this problem. In addition to this, usually one in thirty students would have sent regrade
requests, which would have taken another 2 hours. Hence it was useful for the students as well.

7.2 Anecdotal evidence

We observed that in comparison to manually graded assignments: (1) autograded assignments had a
significantly higher number of resubmissions, (2) students received higher grades in the autograded as-
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signments and (3) student feedback regarding the autograding was overwhelmingly positive due to the
immediate feedback which allowed students to find trivial errors and helped them better understand the
course material. On average, more than 95% of students got full credit on autograded problems, whereas
less than 20% got full credit on manually graded problems.

8 Limitations

Our approach has few limitations, which we discuss here. Firstly, our tool does not provide a graphical
interface for constructing or inspecting automata. Although the format we use to submit automata is
similar to that used in Sipser’s classic textbook [28], students may still need to learn how to read and
write S-expressions to write automata descriptions. This was not an issue in our class since most students
had already taken the “Logic and Computation” class, where they were introduced to programming in
ACL2s. However, in case they do not understand S-expressions, students may require some additional
training before they can use our tool.

Adding visualizations of automata to our tool would be relatively straightforward - since our tool is
written in ACL2s, it is easy to develop code that will produce output suitable for visualization tools.
Adding a UI for constructing automata may be somewhat more difficult and will not integrate with
Gradescope.

Though A2C does not require its users to have any ACL2s experience, some functionality does require
ACL2s experience. In particular, writing an extension of our tool requires the user to write ACL2s
functions. Users may also need to understand ACL2s to some extent to make use of the property system.

Additionally, even in cases where the automata equivalence problem is decidable, the method we use to
check for automata equivalence is not complete, which is a result of having a uniform testing interface
across all supported models of computation. Put another way, our tool may return false positives, e.g.,
it may report that two automata are equivalent when they are not. While using our tool in a Theory of
Computation course, we performed spot checks of our tool’s results and did not find any issues. It may
be the case that the mistakes that students make tend to be easy to exploit – that is, they are easy to find
counterexamples. We expect that more complex automata and automata that differ in their classification
of a small number of words would be more prone to false positives. To mitigate the issue of incomplete-
ness, an instructor using our tool can provide both test cases and properties to check tricky errors that the
automata equivalence checker might miss. If they have some ACL2s expertise, the instructor can use a
variety of techniques to improve ACL2s’ ability to find witnesses to non-equivalence. However, adding
more properties should be sufficient in most cases.

Overall, we believe that trading off incompleteness for ease of use is worthwhile, as this allows instructors
and TAs to spend more time working with students on the truly interesting parts of the course.

9 Conclusion and Future work

We present A2C, a library based on the ACL2s theorem prover to check and provide automatic feedback
to students about automata they construct. Such constructions are executable and generate a formal model
to reason about in the context of a theorem prover, by checking for equivalence with the instructor’s
construction, testing properties and test cases. It generates immediate and helpful feedback. A2C can
either be run locally or on a compatible LMS. It has been integrated into Gradescope to grade assignments
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and exams. All of these abilities make A2C ideal for use in massively open online courses, where
instructor-student ratio is generally too low to allow highly available, high quality and personalized
feedback by instructors. We believe that a similar approach of theorem prover based feedback generation
can be used for non-programmable assignments in other subjects like logic and discrete math.

In the future, we would like to add the capability to generate visualizations of automata in order to make
learning more intuitive and effective for students. We would also like to add decision procedures for
decidable problems, like checking equivalence of DFAs. However, this is an example of an extension
which can be implemented by end users as well, due to A2C being open source.
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