
Pieter Van Gorp, Louis M. Rose, Christian Krause (Eds.):
Sixth Transformation Tool Contest (TTC 2013)
EPTCS 135, 2013, pp. 32–36, doi:10.4204/EPTCS.135.4

Analyzing Flowgraphs with ATL

Valerio Cosentino Massimo Tisi
Fabian Büttner

AtlanMod, INRIA & École des Mines de Nantes, France

{valerio.cosentino, massimo.tisi, fabian.büttner}@inria.fr

This paper presents a solution to the Flowgraphs case study for the Transformation Tool Contest
2013 (TTC 2013). Starting from Java source code, we execute a chain of model transformations to
derive a simplified model of the program, its control flow graph and its data flow graph. Finally we
develop a model transformation that validates the program flow by comparing it with a set of flow
specifications written in a domain specific language. The proposed solution has been implemented
using ATL.

1 Introduction

This paper presents an ATL-based solution to the Flowgraph Case Study[2] for the Transformation Tool
Contest 2013 (TTC 2013)1. The main task of the case study is deriving the program dependence graph
(PDG) of the given source code. This graph contains both control and data flow information and is ob-
tained through a sequence of steps: 1) creation of a simplified model for the Java program; 2) generation
of the program control flow graph; 3) addition of data flow dependencies to create the PDG. A final
additional task is 4) validation of the resulting PDG against a set of specifications written in the provided
DSL.

The solution2 is implemented using an ATL transformation chain. We address all the tasks of the
case study by relying exclusively on the ATL declarative language, with the exception of text-to-model
injectors and global orchestration. The case study shows the flexibility of ATL in handling a wide range
of tasks: classical model-to-model transformation and model-to-text transformation in task 1, in-place
refinement in task 2, a complex algorithm in task 3, model validation in task 4. It is also intended as a
full-range example for new ATL developers.

The ATL Transformation Language (ATL) [3] is a model transformation language and tool available
from the Eclipse modeling project 3. ATL is a declarative language allowing the specification of transfor-
mation rules, that are matched over the source model to create elements in the target model. Expressions
are written using the Object Constraint Language (OCL 4). ATL contains also an imperative part allow-
ing to handle cases whose declarative expressions would be too complex. The solution we propose in
this paper makes use only of the declarative part of the language.

ATL allows the developer to decorate the input metamodel with derived attributes and operations on
model elements, named Helpers and grouped into reusable Libraries. Finally the developed transfor-
mation can be applied in normal mode, where target models are built from scratch, or in refining mode,
where the input model is modified in-place.

1http://tinyurl.com/TTC2013-HomePage
2The full solution is available on the SHARE server of the contest http://tinyurl.com/ATL-solution
3http://www.eclipse.org/m2m/atl/
4http://www.omg.org/spec/OCL/2.3.1/

http://dx.doi.org/10.4204/EPTCS.135.4
http://tinyurl.com/TTC2013-HomePage
http://tinyurl.com/ATL-solution
http://www.eclipse.org/m2m/atl/
http://www.omg.org/spec/OCL/2.3.1/

V. Cosentino, M. Tisi & F. Büttner 33

Java2Graph.atl

JavaGetText.atl

Graph2Flow.atl Flow2Data.atl Validation.atlA.xmi

uses

A.resultA-DFG.
xmi

A.val.
xmi

Task 1 Task 2 Task 3.2 Task 4

Java2GraphWith
Vars.atl

Task 3.1

superimposes

Figure 1: The chain of ATL transformations (intermediate models are omitted).

This paper is structured as follows: Section 2 illustrates our solution and finally Section 3 concludes
the paper.

2 An ATL solution

The ATL solution for the Flowgraph Case Study is composed by a chain of ATL transformations orches-
trated by an ANT file. The structure of the chain is illustrated in Fig. 1 and detailed in the following.

2.1 Task 1: Structure Graph

The main transformation in Task 1 is Java2Graph.atl that implements a simple mapping between elements
in the JaMoPP and FlowGraph metamodels. The mapping is illustrated in Table 1. Each line of the table
is encoded as a simple ATL rule. For instance in Listing 1 we show the rule that translates while loops.
Rules define model elements to match in the source model (WhileLoop), model elements to generate in
the target (Loop), and values to assign to target properties. The rule in Listing 1 states that the expr and
body references have to be filled with the result of the translation of the condition and statement of the
matched element s. In each of the rules of Java2Graph.atl a txt attribute is filled with the concrete textual
syntaxt of the element, calculated by calling a getText attribute helper. The getText helpers are defined in
an ATL library, JavaGetText.atl, that is referenced by Java2Graph.atl.

Listing 1: A rule from Java2Graph.atl.
r u l e WhileLoop2Loop {

from
s : JAVA ! WhileLoop

to
t : GRP ! Loop (

expr <− s . condition ,
body <− s . statement ,
txt <− s . getText

)
}

The library JavaGetText.atl contains a set of getText attribute helpers, one for each metamodel ele-
ment, that implement the model-to-text transformation task of the case study. In Listing 2 we show an
excerpt of JavaGetText.atl, to illustrate its structure. Each helper is an OCL expression on the source

34 Analyzing Flowgraphs with ATL

Java Entities Flow Entities
Methods

ClassMethod Method, Exit
Statements

Block Block
Condition If
Return Return
WhileLoop Loop
Jump JumpStmt
JumpLabel Label
Continue Continue
Break Break
Other statements SimpleStmt

Expressions
EqualityExpression Expr
RelationExpression Expr

Table 1: Java2Graph mapping

model and the helpers call each other to construct complex concrete syntaxes. The excerpt in Listing 2
contains the necessary code to compute the textual syntax of an assignment of the form a=1;.

Listing 2: The model-to-text transformation JavaGetText.atl (excerpt).
he lp er c o n t e x t JAVA ! ExpressionStatement def : getText : S t r i n g =

self . expression . getText + ’;’ ;

he lp er c o n t e x t JAVA ! AssignmentExpression def : getText : S t r i n g =
self . child . getText + ’ ’ + self . assignmentOperator . getText + ’ ’

+ self . value . getText ;

he lp er c o n t e x t JAVA ! LocalVariable def : getText : S t r i n g =
self . name ;

he lp er c o n t e x t JAVA ! DecimalIntegerLiteral def : getText : S t r i n g =
self . decimalValue ;

2.2 Task 2: Control Flow Graph

Task 2 is implemented in the transformation Graph2Flow.atl. The transformation uses the refining mode
of ATL, allowing the developer to specify only the refinement part. In this case a set of rules adds the
cfNext reference that encodes control flow edges. All these rules have the structure shown in Listing 3:
elements are matched and a cfNext reference is added by calling a getNext OCL helper. The logic for
deriving control flow edges, detailed in the case study description, is encoded in the set of OCL getNext
helpers.

Listing 3: A rule from Graph2Flow.atl
r u l e SimpleStmt {

from
s : GRP ! SimpleStmt

to

V. Cosentino, M. Tisi & F. Büttner 35

t : GRP ! SimpleStmt (
cfNext <− s . getNext

)
}

2.3 Task 3: Data Flow Graph

2.3.1 Subtask 3.1

The construction of the data flow links requires to keep information, through the whole transformation
chain, about variable uses and definitions. For this reason, the transformation in Task 1 has to be extended
to avoid the loss of this information. We use the superimposition mechanism to extend the Java2Graph.atl
transformation in Task 1 with a set of additional rules and helpers. The rules of the superimposed
transformation, Java2GraphWithVars.atl are executed together with the rules of Java2Graph.atl by the
ATL virtual machine. Rules with the same name are overridden by the superimposed transformation (but
this case does not apply to our scenario). Listing 4 contains the only two rules of Java2GraphWithVars.atl,
that respectively create variables and parameters. A set of OCL helpers are called by getDefiners and
getUsers to fill the definition and usage references. The set of helpers find uses and definitions by
analyzing the position of the variable reference in the program tree. For instance a variable definition is
detected whenever the variable reference isInLeftInAssignment or isInUnaryModificationExpression.

Listing 4: Rules from Java2GraphWithVars.atl
r u l e LocalVariableStatement2Var {

from
s : JAVA ! LocalVariable

to
t : GRP ! Var (

txt <− s . getText ,
definers <− Sequence{s . getLocalVariableStatement}−>

union (s . getDefiners) ,
users <− s . getUsers

)
}

r u l e OrdinaryParameter2Var {
from

s : JAVA ! OrdinaryParameter
to

t : GRP ! Param (
txt <− s . getText ,
definers <− Sequence{s . getMethod}−>union (s . getDefiners) ,
users <− s . getUsers

)
}

2.3.2 Subtask 3.2

For the generation of data-flow links we implemented a variation of the algorithm in [1] as a set of OCL
helpers. The resulting iterative algorithm calculates for each flow instruction the set of definitions that
the program needs when arriving to that point. It proceeds backwards by starting from variable uses,
analyzing the successors of each flow instruction and propagating back the need for definitions.

36 Analyzing Flowgraphs with ATL

source: EString
CfNext

target: EString
source: EString

DfNext

target: EString

Model
cfNext

0..*

dfNext

0..*

Figure 2: Metamodel for the Validation DSL.

2.4 Task 4: Validation

We implemented the validation task of the case study by an ATL model-to-text transformation (Vali-
dation.atl) that takes two models as input: the program dependence model generated by Task 3 and a
user-provided specification model (Fig. 2). A set of OCL helpers iterate on the specifications and check
that the correspondent dependency exists in the model. Vice versa, they also iterate on the dependency
models to check that all the dependencies belong to the specification file. A textual list of missing links
and false links is generated in output.

3 Conclusion

The case study shows the applicability of ATL to complex transformation scenarios in program analysis.
Table 2 presents size information on the implemented transformations5. The transformations, beside
intrinsic algorithmic complexity, look fairly readable.

Transformation Task LOC Rules Helpers
JavaGetText 1 214 0 60
Java2Graph 1 133 12 0
Java2GraphWithVars 3.1 183 2 19
Graph2Flow 2 324 7 28
Flow2Data 3.2 92 2 6
Validation 4 59 0 9

Table 2: Transformation size

The problem can be modularized in a transformation network and concisely represented by using
exclusively declarative transformation rules and helpers. All the phases are handled by the same trans-
formation language: model-to-model, model refinement, model-to-text, validation. The case study rep-
resents an interesting illustration of the ATL application space.

References
[1] Alfred V. Aho, Ravi Sethi & Jeffrey D. Ullman (1986): Compilers: Princiles, Techniques, and Tools. Addison-

Wesley.
[2] Tassilo Horn (2013): The TTC 2013 Flowgraphs Case. In: Sixth Transformation Tool Contest (TTC 2013),

EPTCS this volume.
[3] Frédéric Jouault & Ivan Kurtev (2005): Transforming Models with ATL. In: MoDELS Satellite Events, pp.

128–138, doi:10.1007/11663430 14.

5Performance evaluation of the proposed ATL solution can be found at http://docatlanmod.emn.fr/TTC/Result.pdf

http://dx.doi.org/10.1007/11663430_14
http://docatlanmod.emn.fr/TTC/Result.pdf

	1 Introduction
	2 An ATL solution
	2.1 Task 1: Structure Graph
	2.2 Task 2: Control Flow Graph
	2.3 Task 3: Data Flow Graph
	2.3.1 Subtask 3.1
	2.3.2 Subtask 3.2

	2.4 Task 4: Validation

	3 Conclusion

