
Pieter Van Gorp, Louis M. Rose, Christian Krause (Eds.):
Sixth Transformation Tool Contest (TTC 2013)
EPTCS 135, 2013, pp. 8–15, doi:10.4204/EPTCS.135.2

Case study: Class diagram restructuring

K. Lano, S. Kolahdouz-Rahimi
Dept. of Informatics, King’s College London, Strand, London, UK∗

This case study is an update-in-place refactoring transformation on UML class diagrams. Its aim is to
remove clones of attributes from a class diagram, and to identify new classes which abstract groups
of classes that share common data features.

It is used as one of a general collection of transformations (such as the removal of redundant
inheritance, or multiple inheritance) which aim to improvethe quality of a specification or design
level class diagram.

The transformation is a typical example of a model refactoring, and illustrates the issues involved
in such transformations.

1 Introduction

Update-in-place transformations have specific challengeswhich need to be addressed by model transfor-
mation tools:

• Establishing confluence of the transformation: that it produces a unique (up to isomorphism) result
from a given source model.

• Ensuring termination of a fixed-point implementation strategy.

• Ensuring control over the order of rule applications, in order to optimise some characteristics of
the transformation.

We have previously used the core version of this case study tocompare model transformation ap-
proaches, and it has proved to be effective as a test of the capabilities of approaches to specify and
implement update-in-place transformations requiring fixed-point iteration of rules [3]. The transforma-
tion also requires relative prioritisation of rules, and fine-grained control of the order of application of
individual rules to elements of a model.

The core version of the case study concerns removal of attribute clones assuming that only single
inheritance exists in the model (Section 2), this is then extended in Section 3 to deal with the case where
multiple inheritance is present.

In comparison to the refactoring case study of [5], the present case study is focussed upon the auto-
mated selection of refactoring steps, instead of interactive refactoring, and includes class diagrams with
multiple inheritance. In addition, the evaluation criteria of [5] only cover a subset of the aspects which
this case evaluates. Since we are interested in automated refactoring, termination and confluence are
specific evaluation criteria which we are interested in, andthe quality of the refactoring (ie., minimising
any size increase in the model) is also emphasised.

2 Core problem

Figure 1 shows the metamodel for the source and target language of the simple version (dealing with
single inheritance only) of the transformation.

∗Research supported by the HoRTMoDA EPSRC project

http://dx.doi.org/10.4204/EPTCS.135.2

K. Lano, S. Kolahdouz-Rahimi 9

NamedElement

name : String

Generalization Entity Property Type
1

type
**0..1

1

*

*

generalisation

specialisation
general

owned
Attribute

1
specific

Figure 1: Basic class diagram metamodel

It can be assumed that:

• No two classes have the same name.

• No two types have the same name.

• The owned attributes of each class have distinct names within the class, and do not have common
names with the attributes of any superclass.

• In this version there is no multiple inheritance, ie., the multiplicity of generalisationis restricted
to 0..1.

These properties must also be preserved by the transformation.
The informal transformation steps are the following:

(1) Pull up common attributes of all direct subclasses: If the setg = c.specialisation.specificof all
direct subclasses of a classc has two or more elements, and all classes ing have an owned attribute
with the same namen and typet, add an attribute of this name and type toc, and remove the copies
from each element ofg. This is the “Pull up attribute” refactoring of [2].

(2) Create subclass for duplicated attributes: If a classc has two or more direct subclassesg, and
there is a subsetg1 of g, of size at least 2, all the elements ofg1 have an owned attribute with
the same namen and typet, but there are elements ofg−g1 without such an attribute, introduce
a new classc1 as a subclass ofc. c1 should also be set as a direct superclass of all those classes
in g which own a copy of the cloned attribute. (In order to minimise the number of new classes
introduced, thelargestset of subclasses ofc which all contain a copy of the same attribute should
be chosen). Add an attribute of namen and typet to c1 and remove the copies from each of its
direct subclasses. This is the “Extract superclass” refactoring of [2].

(3) Create root class for duplicated attributes: If there are two or more root classes all of which have
an owned attribute with the same namen and typet, create a new root classc. Makec the direct
superclass of all root classes with such an attribute, and add an attribute of namen and typet to c
and remove the copies from each of the direct subclasses.

2.1 Test cases

The solutions should be tested on the following three test cases of increasing size and complexity. These
test cases represent both typical scenarios which could be expected to arise in class diagram modelling

10 Case study: Class diagram restructuring

(test cases 1 and 2), and pathological examples designed to check the behaviour of the transformation in
extreme cases (test case 3 and the duplications of test case 2).

The first test case is a simple test for alternative applications of rule 2. Figure 2 shows the starting
model.

A B C D

a : T1 a : T1 b : T2 b : T2
b : T2

S

Figure 2: Test case 1

Applying the rule to classes B, C, D to remove duplicates of b is the preferred choice because it
creates fewer new classes than an application to A and B, to remove the duplicate of a, followed by an
application to C and D, although both solutions remove the maximum possible 2 clone attribute copies.

A larger test case, involving applications of rules 1 “Pull up attributes” and 3 “Create root class”, is
shown in Figure 3.

A

B C

D

E F

G

a : T1 a : T1

b : T2 b : T2 b : T2 b : T2

b : T2

Figure 3: Test case 2

Test case 3 has 500 classes, each of which is a root class, and there are ten attributes in each class,
with the attributes of each class being a copy of those in eachother class (ie., 5000 attributes, with 4990
clone copies). Only one new class needs to be introduced, as asuperclass of all the other classes, and all
redundant copies of the attributes can be removed.

In addition we recommend carrying out ‘stress testing’ to measure the maximum capability of a
transformation tool and implementation, in terms of the maximum size of models which a transformation
tool or implementation is capable of processing. These tests are models formed from duplicated copies
of test case 2 (omitting classD and its subclasses), of sizes up to 10000 copies (40000 classes, 40000
attributes, 20000 generalisations).

Table 1 summarises the test cases.
Solution providers should ensure that their solutions can successfully process test cases 1, 2 and 3 at a

minimum, and as many of the capability test cases as possible. Models should be processed as XMI files,
eg., as exported by Eclipse. Self-evaluation of the solutions using the evaluation criteria in Appendix A

K. Lano, S. Kolahdouz-Rahimi 11

Test case Number of Number of Total
classes attributes size

1 5 5 14
2 7 7 18
3 500 5000 5500
2*1000 4000 4000 10000
2*5000 20000 20000 50000
2*10000 40000 40000 100000

Table 1: Test cases

should be provided, in addition a survey of usability shouldbe carried out among other TTC participants,
at least 5 persons not involved in creating the solution.

3 Extension: adaption to work with multiple inheritance

In this extension the transformation should be generalisedto work also on models containing multiple
inheritance. This implies alternative strategies for the three rules of Section 2:

1. For rule 1, if there are multiple superclassess1, ..., sn each with a common setc1, ..., cm of
subclasses with an owned attribute of the same name and type,should the common attribute be
moved up to all of thesi (thereby introducing name clashes in thecj), or to only one of them, and
in that case, which one?

2. For rules 2 and 3, there is now the possibility to group together all classes which contain a common
attribute, as subclasses of a new class, even if there are overlapping groups. Introducing multiple
inheritance may complicate the structure of the class diagram, and probably should not be used in
every such case.

The effort required to modify the case study solution to meetthe extended requirement should be
recorded as an evaluation measure of extensibility.

References

[1] Botella, P., Burgués, X., Carvallo, J. P., Franch, X., Grau, G., Marco, J., Quer, C.,ISO/IEC 9126 in practice:
what do we need to know?, Software Measurement European Forum (SMEF 2004).

[2] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts,Refactoring: improving the design of existing code,
Addison-Wesley, 1999.

[3] S. Kolahdouz-Rahimi, K. Lano, S. Pillay, J. Troya, P. VanGorp,Goal-oriented measurement of model trans-
formation methods, Science of Computer Programming, 2013, doi:10.1016/j.scico.2013.07.013.

[4] K. Lano,The UML-RSDS Manual, http://www.dcs.kcl.ac.uk/staff/kcl/uml2web, 2013.

[5] J. Perez, Y. Crespo, B. Hoffmann, T. Mens,A case study to evaluate the suitability of graph transformation
tools for program refactoring, Int. J. Softw. Tools Technical Transfer (2010), vol 12: 183–199, doi:10.1007/
s10009-010-0153-y.

A Evaluation criteria

As the basis of a systematic evaluation framework for model transformations, we propose to use the
International Organisation for Standardization (ISO) standards related to software quality, specifically the

http://dx.doi.org/10.1016/j.scico.2013.07.013
http://www.dcs.kcl.ac.uk/staff/kcl/uml2web
http://dx.doi.org/10.1007/s10009-010-0153-y
http://dx.doi.org/10.1007/s10009-010-0153-y

12 Case study: Class diagram restructuring

ISO/IEC 9126-1 standard, which is based upon the definition of a Quality Modeland its use for software
evaluation [1]. This framework defines quality models basedon general characteristics of software,
which are further refined into subcharacteristics.

Relevant characteristics and subcharacteristics for evaluation of model transformation can be selected
from the ISO/IEC9126-1 framework. These characteristics and subcharacteristics can then be further de-
composed into measurable attributes. Table 2 summarizes the chosen characteristics, subcharacteristics
and their corresponding measurable attributes. One attribute may be related to more than one quality
factor.

Characteristic Subcharacteristic Attribute
Functionality Suitability Abstraction level

Size
Complexity
Effectiveness
Development effort
Execution time

Accuracy Correctness
Completeness

Interoperability Embeddable in transformation process
Close to well-known notation
Interoperable with Eclipse

Functionality Close to well-known
compliance notation

Reliability Maturity History of use
Fault tolerance Tolerance of false assumptions

Usability Understandability Survey
Learnability results
Attractiveness

Efficiency Time behavior Execution time
Maximum capability

Maintainability Changeability Size
Complexity
Modularity

Portability Adaptability Extensibility

Table 2: Selected quality characteristics for evaluation of model transformation approaches

Characteristics such as interoperability and adaptability can be interpreted and evaluated in several
different ways. Here we have evaluated these characteristics based upon key factors specific to model
transformations. For example, the ability to interwork with Eclipse is an important factor for the inter-
operability of a transformation approach.

In cases where a numeric value is not appropriate for an attribute (such as Abstraction level, Maturity)
a three-point or five-point scale is used to summarise the relative values of attributes.

The following are the specific measures which should be evaluated for each solution:

• Size: lines of specification text

K. Lano, S. Kolahdouz-Rahimi 13

• Complexity: sum of number of operator occurrences and feature and entity type name references
in the specification expressions

• Effectiveness: proportion of attribute clones which are removed, relative to the theoretical maxi-
mum number that can be removed

• Development effort: developer time in person-hours spent in writing and debugging the specifica-
tion

• Execution time: milliseconds

• History of use: number of years the model transformation language and tools have been publicly
available

• Maximum capability: maximum size of input model, in terms ofnumber of elements, which can
be successfully processed

• Modularity: proportion of calls internal to modules, relative to the total number of calls. Value is
1 if there are no external calls.

Abstraction level is classified as High for primarily declarative solutions, Medium for declarative-
imperative solutions, and Low for primarily imperative solutions.

The effectiveness measure used is the proportion of clone copies of attributes which are removed by
the transformation. That is, if there aren copies of attributes which could, in principle, be removed by
the rules 1, 2 and 3, and the implemented transformation removesm≤ n copies, the effectiveness ism/n.
In addition, a solution is optimal if the minimum possible number of new classes are introduced.

Execution time of the transformation implementation does not include the loading and unloading of
models from the transformation tool.

Correctness is divided into syntactic correctness, termination and confluence. Syntactic correct-
ness is the capability to establish the constraints of the target metamodel of a transformation, and the
capability to establish or preserve correct inverse links to associations (in this case study the pairs
general/specialisationandspecific/generalisationof roles). Equivalently, it is the ability to ensure con-
formance of the target model to the target metamodel. The classification of correctness is given by an
average of three separate 5-point measures for syntactic correctness, termination and confluence. Each
measure separately is rated -2 (None), -1 (Low), 0 (Medium),1 (High) and 2 (Comprehensive).

Usability is separated into:

• Understandability: how easy a transformation specification is to comprehend.

• Learnability: the degree to which the transformation language and tool can be learnt in a reasonable
timescale and with reasonable effort.

• Attractiveness: how acceptable is the language and tool forthe user.

Empirical studies with representative users and tasks are considered one of the best techniques to
measure usability of software systems. Therefore we propose that a survey of TTC participants (at least
5 persons not involved in the surveyed case study solution) is used to measure the Understandability,
Learnability and Attractiveness of solutions to the case study. The survey contains five questions, each
with 5 answer options from None (0), Low (1), Medium (2), High(3), Very high (4). The first question
identifies the level of knowledge of the specific transformation language by the participant. The rest of
the questions are as follows:

• To what degree do the rules of the transformation satisfy thecase study description / How easy is
it to relate the informal to the formal specification? (Understandability)

14 Case study: Class diagram restructuring

• How well structured is the transformation specification? (Attractiveness)

• How attractive is the specification notation to read? (Attractiveness)

• How much effort is needed to understand the transformation?(Learnability)

In addition to these questions we include a small test case toassess the actual understanding of the
transformation by a participant: the participant needs to explain where in the transformation specification
a particular aspect of the transformation (promoting a duplicated attribute to a superclass) is dealt with.
This is a factor for understandability.

The difference between this score for detailed understanding and the level of initial knowledge is
also taken as a learnability factor.

Interoperability consists of Embeddability: how effectively the transformation can be reused within
a larger quality improvement process, consisting of transformations to (1) remove redundant inheritance,
(2) remove multiple inheritance, (3) replace concrete superclasses by an abstract class and a new con-
crete subclass of this class. Embeddability is High if both internal and external composition of these
transformations is possible, Medium if only one composition is possible, and Low if no composition is
possible.

Another factor for interoperability is the closeness to a well-known notation, which is graded by a
three-point scale: High (+1) for a common syntax and semantics to a well-known notation (eg., OCL);
Medium (0) for a variant syntax and/or variant semantics; Low (-1) for no similarity.

Interoperability with Eclipse is given by a three-point scale: High (+1) for complete integration;
Medium (0) for interoperability via exported/imported data files only; Low (-1) for no interoperation
mechanism.

Maturity is considered low (-1) for languages/tools of lessthan 4 years public availability, medium
(0) for 4 up to eight years availability, and high (+1) for more than 8 years.

Extensibility is measured by evaluating how succesfully the solution for the core problem can be
generalised to solve the extended case study problem in Section 3. It is measured quantitatively by the
effort required to extend the solution, in person-hours.

B UML-RSDS Solution

The case study transformation has been specified in UML-RSDS[4]. This specification consists of the
class diagram of Figure 1, and a single use case which represents the transformation. The use case
has precondition constraints expressing the assumptions of the transformation, and a sequence of three
postcondition constraints(C1), (C2), (C3) corresponding to the three informal rules. Each of these
operates on instances ofEntity:

(C1) :
a : specialisation.specific.ownedAttribute&
specialisation.size> 1 &
specialisation.specific→forAll(

ownedAttribute→exists(b | b.name= a.name& b.type= a.type)) ⇒
a : ownedAttribute&
specialisation.specific.ownedAttribute→select(

name= a.name)→isDeleted()

K. Lano, S. Kolahdouz-Rahimi 15

This specifies that an instance (self) of Entity, and instancea of Propertymatch the constraint LHS
if: (i) a is in the set of attributes of all direct subclasses ofself, (ii) there is more than one direct subclass
of self, and (iii) every direct subclass ofself has an attribute with the same name and type asa.

The conclusion specifies that (i) the propertya is moved up to the superclassself, (ii) all other
attributes with namea.nameare deleted from all direct subclasses ofself.

s→isDeleted() is a built-in operator of UML-RSDS, which deletes the objector set of objectss from
their model, removing them from all entity types and association ends.

(C2) :
a : specialisation.specific.ownedAttribute&
v= specialisation→select(

specific.ownedAttribute→exists(b | b.name= a.name& b.type= a.type)) &
v.size> 1 &
specialisation.specific.ownedAttribute→forAll(c | specialisation→select(

specific.ownedAttribute→exists(d |
d.name= c.name& d.type= c.type))→size() ≤ v.size) ⇒

Entity→exists(e | e.name= name+ “ 2 ” +a.name&
a : e.ownedAttribute&
e.specialisation= v &
Generalization→exists(g | g : specialisation& g.specific= e)) &
v.specific.ownedAttribute→select(name= a.name)→isDeleted()

The assumption specifies that an instance (self) of Entity, and instancea of Property match the
constraint LHS if: (i)a is in the set of attributes of all direct subclasses ofself, (ii) the setv of all
specialisations ofself whose class contains a clone attribute ofa has size greater than 1, (iii)v is of
maximal size over all groups of specialisations ofself which contain a common attribute.

The conclusion specifies that: (i) a new entitye is created, and the propertya is moved up toe, (ii)
the specialisations ofe arev, (iii) e is made a subclass ofself, and (iv) all the clone copies ofa in v are
deleted.

(C3) :
a : ownedAttribute&
generalisation.size= 0 &
v= Entity→select(generalisation.size= 0 &

ownedAttribute→exists(b | b.name= a.name& b.type= a.type)) &
v.size> 1 ⇒

Entity→exists(e | e.name= name+ “ 3 ” +a.name&
a : e.ownedAttribute&
v.ownedAttribute→select(name= a.name)→isDeleted() &
v→forAll(c | Generalization→exists(

g | g : e.specialisation& g.specific= c)))

The Java executable of this solution is provided in the ShareVM, as GUI.java. This can be executed
by the commandjava GUI from the command line. The executable reads its input model from in.txt
and produces output in the file out.txt, when the button for the transformation is selected. XMI output is
also produced, in xsi.txt.

	1 Introduction
	2 Core problem
	2.1 Test cases

	3 Extension: adaption to work with multiple inheritance
	A Evaluation criteria
	B UML-RSDS Solution

