An NMF solution for the Petri Nets to State Charts case study
at the TTC 2013

Georg Hinkel Thomas Goldschmidt Lucia Happe
Karlsruhe Institute of Technology ABB Corporate Research Karlsruhe Institute of Technology
Karlsruhe, Germany Ladenburg, Germany Karlsruhe, Germany
georg.hinkel@student.kit.edu thomas.goldschmidt@de.abb.com lucia.kapova@kit.edu

Software systems are getting more and more complex. Model-driven engineering (MDE) offers ways
to handle such increased complexity by lifting development to a higher level of abstraction. A key
part in MDE are transformations that transform any given model into another. These transformations
are used to generate all kinds of software artifacts from models. However, there is little consensus
about the transformation tools. Thus, the Transformation Tool Contest (TTC) 2013 aims to compare
different transformation engines. This is achieved through three different cases that have to be tack-
led. One of these cases is the Petri Net to State Chart case. A solution has to transform a Petri Net
to a State Chart and has to derive a hierarchical structure within the State Chart. This paper presents
the solution for this case using NMF Transformations as transformation engine.

1 Introduction

The challenge of the Petri Nets to State Charts case of the TTC 2013 [2] is to transform a Petri Net into
a State Chart. Furthermore, both the Petri Net and the State Chart are afterwards to be reduced. This
paper presents a solution for these tasks using NMlﬂ an open source project to support model-driven
engineering on the .NET platform for the transformation part. The reduction of Petri Net and State Charts
has been written in general purpose C# that is embedded in the transformation and makes use of the trace
model created by NMF Transformations. The solution is available on SHAREﬂ

2 .NET Modelling Framework (NMF)

The .NET Modelling Framework is an open source project that provides support for model-driven soft-
ware development on the .NET platform. An essential part is the model transformation engine, NMF
TRANSFORMATIONS, which allows to write rule-based transformations in arbitrary .NET languages us-
ing an internal DSL [[1]. The reason to implement the transformation language as internal DSL is mainly
that transformation languages ought to be Turing complete [3] and thus, many advantages of external
DSLs attenuate. An internal DSL, however, can make use of features of its host language. Developers
used to this language feel familiar with the DSL.

NMF TRANSFORMATIONS makes it possible to specify model transformations directly in C#. For
this purpose, NMF TRANSFORMATIONS has a simple abstract syntax but hides the complexity in the
attributes of the metaclasses which are representing functions. These functions can be specified with gen-
eral purpose code that contain code as sophisticated as required. Although the transformation language

Uhttp://nmf . codeplex.com
Zhttp://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=XP-TUe_TTC13: :
NMF_TTC13: :NMF_updated _NMF_LiveContest.vdi

Pieter Van Gorp, Louis M. Rose, Christian Krause (Eds.): © G. Hinkel, T. Goldschmidt & L. Happe
Sixth Transformation Tool Contest (TTC 2013) This work is licensed under the
EPTCS 135, 2013, pp. 95100} doi{10.4204/EPTCS.135.12 Creative Commons|Attribution| License.

http://dx.doi.org/10.4204/EPTCS.135.12
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://nmf.codeplex.com
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=XP-TUe_TTC13::NMF_TTC13::NMF_updated_NMF_LiveContest.vdi
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=XP-TUe_TTC13::NMF_TTC13::NMF_updated_NMF_LiveContest.vdi

96 An NMF solution for the Petri Nets to State Charts case study at the TTC 2013

might seem quite verbose, especially when compared with external model transformation languages, C#
has been chosen as host language to make it easier to write and thus maintain these transformations for
C# developers.

Currently, NMF does not contain a metamodeling foundation, e.g. based on MOF. Instead, NMF
TRANSFORMATIONS uses the concepts of the CLR (the virtual machine used on the .NET platform) to
represent models and operates on plain objects (POCOs). Thus, we used an interop component to EMF,
which generates classes from an Ecore metamodel. Furthermore, there exists a serializer component to
load and store simple models (models that do not have references to other files).

Beside NMF, to the best of our knowledge, there is hardly any framework that supports model-
driven engineering on the .NET platform. Microsoft offers a Visualization and Modeling SDKE| for
Visual Studio, which is a tool for graphical editors, and T4 as Text-To-Text-Transformation engine.
However, although T4 is included in Visual for many years now, there is still hardly support for editing
T4 templates. There is an add-in providing syntax-highlighting and code-completion, but still the support
is much less than for writing normal e.g. C# code. Furthermore, T4 has some restrictions like no
inheritance is allowed within a T4-template. These restrictions and the lack of out-of-the-box tool support
make model-driven development hard. NMF TRANSFORMATIONS makes it possible to use the full tool
support for C# also for model transformations.

3 Solution

As the case description was divided into several parts of the transformation, this section is also divided
in several subsections each presenting the solution of a subtask within the transformation. Thus, section
[3.1] presents the initialization before section [3.2]explains the reduction.

3.1 Initialization

The task of the initialization is to create an initial structure for the statechart model. Although it is not
mentioned in the description, the first rule for this initialization is that for a Petri Net, a Statechart has to
be created with a topstate, which is an AND element.

A M2M-transformation in NMF TRANSFORMATIONS is specified through transformation rules,
which are represented by classes. These transformation rules may only be called once per input ar-
guments within a transformation context, i.e. a transformation pass. Furthermore, transformation rules
may define dependencies to other rules. These dependencies are necessary to set, in order to let NMF
Transformations know which rules to call and to derive the inputs of these rules. NMF TRANSFORMA-
TIONS operates on plain CLR objects and therefore does not know the structure of the metamodel. Thus
the structure of the domain model has to be reflected in the dependencies of the transformation rules.

Thus, we have to specify that whenever a Petri Net is transformed, also all places of that Petri Net
have to be transformed, before or after the transformation of the Petri Net. The only rule that is actually
called by NMF TRANSFORMATIONS automatically is the rule that matches the transformation request
to transform a Petri Net into a state chart. This rule is depicted in Figure|[T]

The first rule in Figure[I] PetriNet2StateChart, is a rule that transforms a Petri Net into a State Chart.
The only thing that happens is that PetriNet2TopState is called and the resulting top state is applied to
the State Chart. The second rule, PetriNet2TopState creates this top state for each Petri Net. This rule
already contains information for the next two rules: For every Place within the PetriNet, a corresponding

3http://archive.msdn.microsoft.com/vsvmsdk

http://archive.msdn.microsoft.com/vsvmsdk

G. Hinkel, T. Goldschmidt & L. Happe 97

public class PetriNet25tateChart : TransformationRule<Net, Statechart:
{
public override void RegisterDependencies()
1
Require(Rule<Petrilet2TopStatex(), (chart, topState) => chart.TopState = topState);
h
}
public class PetriNet2TopState : TransformaticnRule<Net, AND>
1
public override void RegisterDependencies()
{
RequireMany(Rule<Place20r>(),
selector: net = net.Places,
persistor: (and, places) => and.Contains.AddRange(places));
RequireMany(Rule<Transiticn2HyperEdge>(},
selector: net => net.Transitions,
persistor: (and, transitions) =» and.Contains.AddRange(transitions));
}
}

Figure 1: The transformation rules to transform the Petri Net

OR element should be created and added to the initial AND top state. Furthermore, any transition should
be transformed to a HyperEdge. Note that within this rule, there is no information about how the places
are to be transformed, it is only required that they are transformed using the Place2OR-rule. The same
applies for the transitions. The Transition2HyperEdge rule again requires the incoming and outgoing
places to be transformed. However, the engine takes care that any place is only transformed once.

There can be multiple parameters specified to filter the dependencies, select the inputs for the de-
pendent transformation rule or persist the output. The code example in Figure[I]already contains several
cases. In the require dependency of the PetriNet2StateChart rule, there is only a persistor specified. This
persists the output of the dependent rule back to the output of the current rule, i.e. the top state of the
State Chart is set. The first RequireMany statement further has a selector specified. This selector chooses
the input for the dependent transformation rule, i.e. it specifies the places that should serve as inputs for
the Place2Or transformation rule. The last dependency works in the same way.

The initialization rules can directly be reflected in transformation rules. However, due to space
limitations, they are not displayed here. In total, the initialization consists of just five transformation
rules:

PetriNet2StateChart that transforms a Petri Net into a State Chart

PetriNet2TopState that creates the top state for a State Chart

Place2Basic that creates the Basic element for each place in the Petri Net

Place2Or that creates the OR element for each place in the Petri Net

Transition2HyperEdge that creates the HyperEdge for a each transition

With these five transformation rules, the initialization task is completed. The demanded equivalence
function is implicitly stored in the transformation context, as it contains a trace where we just need
to resolve a place using the Place2Basic or Place2OR rule. However, this trace functionality is not
serialized by default. If we wanted to serialize the trace into a file, we would have to do this on our own.

98 An NMF solution for the Petri Nets to State Charts case study at the TTC 2013

3.2 Reduction

As NMF TRANSFORMATIONS only checks application conditions for transformation rules once, we
implemented the reduction in general purpose code in C#. However, this general purpose code is embed-
ded in the transformation and makes use of the transformation engine, especially of the provided trace
functionality.

Therefore, we extend the transformation with the given reduction rules and include the reduction
code. As the rules apply on transitions, we write this code in the Transform-method of the Transi-
tion2HyperEdge-rule. We can just call the reduction rule from within the Transform-method, as both the
reduction rules and the transformation is written in C#. We can even put the helper methods that we need
into the class representing the Transition2HyperEdge-rule.

The implementations of the two main reduction rules are both placed within a single method. Both
methods consist of the following steps: (1) At first, it is checked whether the reduction rule is applicable
at all. If not, the method immediately returns. (2) Next, the rule is applied to the Petri Net and (3) to
the State Chart model. (4) Finally, the rule checks whether another rule is applicable with new inputs.
Besides step (3), all these steps are implemented using traditional straight-forward imperative code that
operates on the in-memory model representations. The only point where the reduction needs an access
to the correspondence established by the model transformation is when the reduction rules are applied
to the State Chart model. To have an access to the trace functionality, both methods have an additional
parameter that is the transformation context.

var or_transformed = context.CallTransformation<Place»{andRulePlace20r, or)
LOutput as OR;

Figure 2: Calling a transformation rule within the reduction

As the reduction rules rely on the trace functionality, it is necessary to use update the trace when
new OR compounds have to be created. This is done via the code snippet shown in Figure [2] where
andRulePlace2Or is a cached reference to an additional transformation rule that transforms a place into
an OR compound without creating a Basic element.

To query the correspondence established by the tracing functionality, we can simply use the trace
component that is given as a reference of the transformation context and either resolve many places at
once (as needed for the AND rule) or resolve single places (as needed for the OR rule). This tracing
functionality is shown in the Figure

context.Trace.Resolve<P]

]
]

» OR>(q);

var q_or lace
lace, OR>(r});

var r_or = context.Trace.Resolve<P]

Figure 3: Using the trace functionality to resolve single places in the OR rule

Figure [3| shows the tracing functionality without the specification of a transformation rule acting as
key. Thus, the trace looks up all transformations from a Place to an OR, i.e. collects transformations
using either AndRulePlace2Or or Place2Basic.

G. Hinkel, T. Goldschmidt & L. Happe 99

4 Analysis

4.1 Performance measurements

The average execution times on SHARHY| for the performance test cases are shown in table[l] Each test
case was repeated five times. All the tests were created in a single batch mode to delete the influence
that the code has to be compiled by the JIT compiler when the transformation is run for the first time.
However, the transformation has not been reused, although NMF TRANSFORMATIONS allows such
procedure. Instead, the transformation has been initialized every time from scratch.

The transformation used the original provided performance test cases with id-referencing scheme
and thus, the load times are a bit slow.

4.2 Profiler results

As NMF TRANSFORMATIONS is used through an internal DSL for C#, the tool support integrated within
Visual Studio and other tools can be applied to model transformations created with it. Besides a great
debugging and refactoring support, this means that a profiler can be applied to the model transformations.
This made it possible to unveil the biggest performance degrade in previous versions. These previous
versions used ordered sets due to the index-based referencing scheme in the test models. As the profiler
showed, the remove operation of these ordered sets was consuming large shares of the execution time.
Indeed, by changing the underlying data structure for the collections, the performance increased by two
magnitudes.

5 Conclusion

In this paper we have presented a solution to the TTC 2013 Petri Nets to State Charts case based on
NMF TRANSFORMATIONS. It was not possible to support every bit of the transformation with NMF,
as the reduction was entirely written in general purpose code interacting with the transformation engine.
However, it was easy to integrate the general purpose code into the transformation.

We suggest the high points of our solution as

— Good execution speed. The biggest test model is transformed in a few seconds.

— Easy integration of general purpose code. The whole reduction part is written as general purpose
code that interacts with the transformation.

— Great tool support, as NMF TRANSFORMATIONS can reuse for example debugging, profiling,
refactoring, testing and continuous integration support for C#.

References

[1] Martin Fowler (2010): Domain-specific languages. Addison-Wesley Professional.
[2] Pieter Van Gorp & Louis M. Rose (2013): The Petri-Nets to Statecharts Transformation Case. http://
planet-sl.org/ttc2013/images/userdirs/122/ttc2013/pn2sc.pdf.

[3] Shane Sendall & Wojtek Kozaczynski (2003): Model transformation: The heart and soul of model-driven
software development. Software, IEEE 20(5), pp. 42-45, doi:10.1109/MS.2003.1231150.

Yhttp://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=XP-TUe_TTC13: :
NMF_TTC13: :NMF_updated _NMF_LiveContest.vdi

http://planet-sl.org/ttc2013/images/userdirs/122/ttc2013/pn2sc.pdf
http://planet-sl.org/ttc2013/images/userdirs/122/ttc2013/pn2sc.pdf
http://dx.doi.org/10.1109/MS.2003.1231150
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=XP-TUe_TTC13::NMF_TTC13::NMF_updated_NMF_LiveContest.vdi
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=XP-TUe_TTC13::NMF_TTC13::NMF_updated_NMF_LiveContest.vdi

100

A Appendix

An NMF solution for the Petri Nets to State Charts case study at the TTC 2013

] Test case | Reading input | Transformation | Writing output
sp200 12.96ms 8.78ms 8.62ms
sp300 19.87ms 13.06ms 12.72ms
sp400 27.50ms 15.66ms 18.44ms
spS00 32.80ms 21.14ms 21.62ms
sp1000 72.09ms 55.31ms 41.10ms
sp2000 176.91ms 111.13ms 103.97ms
sp3000 295.12ms 175.32ms 142.97ms
sp4000 465.48ms 248.64ms 160.39ms
spS000 618.60ms 299.40ms 241.14ms
sp10000 1,887ms 745.50ms 499.84ms
sp20000 6,273ms 1,549ms 1,600ms
sp40000 22,012ms 2,923ms 2,277ms
sp80000 83,417ms 5,639ms 6,453ms
sp100000 128,445ms 7,040ms 7,343ms
sp200000 | 488,709ms 13,532ms 18,317ms

Table 1: Execution times of the performance test cases

	1 Introduction
	2 .NET Modelling Framework (NMF)
	3 Solution
	3.1 Initialization
	3.2 Reduction

	4 Analysis
	4.1 Performance measurements
	4.2 Profiler results

	5 Conclusion
	Bibliography
	A Appendix

