
Van Gorp, Mazanek and Rose (Eds.):
Fifth Transformation Tool Contest (TTC 2011)
EPTCS 74, 2011, pp. 36–41, doi:10.4204/EPTCS.74.6

Solving the TTC 2011 Model Migration Case with
UML-RSDS

K. Lano, S. Kolahdouz-Rahimi
Dept. of Informatics, King’s College London, Strand, London, UK∗

kevin.lano@kcl.ac.uk

In this paper we apply the UML-RSDS notation and tools to the GMF model migration case study
and explain how to use the UML-RSDS tools.

1 Model transformation specification in UML-RSDS

UML-RSDS is a model-driven development method with an associated toolset. It was originally designed
as a general-purpose method for synthesising verified executable systems from high-level specifications
[2], and has been adapted for the synthesis of transformation implementations from specifications [3].
Modelling is carried out using UML 2: class diagram models, use cases, state machines, activities, object
models and interactions.

In UML-RSDS the specification of a transformation is writtenin first-order logic and OCL, defining
the preconditions (assumptionsAsm) of the use case representing the transformation, and the postcon-
ditions Consof the use case. Transformations may be composed using chaining and theincludesand
extendscomposition mechanisms of UML use cases.

2 GMF model migration

This case study [1] is a re-expression transformation whichinvolves a complex restructuring of the data
of a model: actual figures are replaced by references to figures, and references from a figure to subfigures
are recorded by explicit objects.

Figure 1 shows the unified metamodels of the source (GMF version 1.0) and target (GMF version
2.1) languages. Since most of the data of a model may remain unchanged by the transformation, we
specify the transformation as an update-in-place mapping.Figure1 is the target metamodel version of
theFigure class,figures1 is the target version of the gallery figure list associationend.

Class diagrams can be created using the visual class diagrameditor of the UML-RSDS tool (executed
by invokingjava UmlTool).

We assume inAsmthat the input model is a syntactically correct version 1.0 model and that the new
entities have no instances:

Figure1= {}
FigureDescriptor= {}
ChildAccess= {}

For simplicity of specification, we decompose the transformation into a first transformation which
creates the new data from the old, without deleting any data,and a second transformation which removes

∗Research supported by the HoRTMoDA EPSRC project

http://dx.doi.org/10.4204/EPTCS.74.6

K. Lano, S. Kolahdouz-Rahimi 37

Figure 1: GMF metamodels in UML-RSDS

the version 1.0 data which is not in version 2.1. This is an example of theconstruction and cleanup
design pattern [4].

For clarity, we use conventional mathematical notation here, the specification must however be writ-
ten in the ASCII syntax for OCL when entered into the toolset (Appendix B).

The first transformation is specified by the followingConsconstraints:

(C1) :
∀ f : Figure· ∃1 rf : RealFigure· rf .name= f .name and

∃1 fd : FigureDescriptor· fd.actualFigure= rf

For each source model figure, there is a unique target model real figure, with a figure descriptor.

(C2) :
∀ f : Figure·RealFigure[f .name].children= RealFigure[f .children.name]

For each source model figure, the target model real figure has children the corresponding children (real
figures). The notationE[x] denotes the instance ofE identified by the key valuex, if this is a single value,
or the set ofE instances identified byx, if x is a set.

(C3) :
∀ fg : FigureGallery·

fg.figures1 = RealFigure[fg.figures.name] and
fg.descriptors= FigureDescriptor→select(actualFigure: fg.figures1)

For each figure gallery, its figures (figures1) in the target model are the real figures corresponding to the
source model figures of the gallery, its descriptors are the descriptors of these figures. Although in this
constraintfigures1 is both written and read, the update only affects the local data of oneFigureGallery
objectfg, and no other object is modified, so no other application of the rule is affected.

38 Model Migration Case in UML-RSDS

(C4) :
∀ f : Figure; fd : FigureDescriptor; d : f .referencingElements·

fd.actualFigure= RealFigure[f .name] implies
d.figure= fd and
(d : DiagramLabel implies

∃ca : ChildAccess· d.accessor= ca and ca: fd.accessors)

The figure descriptor of a diagram element in the target modelis that corresponding to the figure which
contained the element in the source model. If the diagram element is a label of a nested figure, then an
explicit child access object is defined to record the access ([1], page 3).

Each of theConsconstraints can be implemented by simple iterations [4]. This implementation is
carried out automatically by the UML-RSDS toolkit: a designlevel description as a UML activity is
derived for each use case. In addition, executable Java codeis also generated. The implementation is
structured as a sequence of phases, one for each constraint.The phase forC1 must precede the phases
for the other three constraints, but they can be executed in any order, so the transformation can be
decomposed into several separate use cases if required. Only C4 uses theDiagramElementclass and
its subclasses, so an input model could be divided into two parts, with the instances of classesFigure,
FigureGalleryrequired forC1 toC3, and instances of the other classes required forC4.

C1 andC2 are implemented by iterations overFigure of operationscopyFigureandcopyChildren,
respectively.C3 is implemented by an iteration of an operationcopyFiguresoverFigureGallery. C4 is
implemented by an iteration of an operationcreateReferencesonFigure.

The BNF syntax of the OCL subset used in UML-RSDS is defined in Appendix B. Metamodels are
stored in text files in theoutput subdirectory, but should not be edited directly, only via the graphical
editor of UML-RSDS.

The second transformation removes all instances ofFigure and all elements and links specific to the
source metamodel. It is an update-in-place transformation, with Consspecification

Figure@pre.referencingElements= {}
FigureGallery.figures= {}
Figure→isDeleted()

This can be coded as the postcondition of an operationcleanModelof Canvas.
The two transformations are composed by executing one afterthe other, using an intermediate file to

hold the target model of the first transformation, which serves as the source model of the second.

3 Conclusion

We have shown that UML-RSDS can specify the GMF case study transformation in a direct and concise
manner, both as high-level specifications and as explicit designs. UML-RSDS has the advantage of using
standard UML and OCL notations to specify transformations,reducing the cost of learning a special-
purpose transformation language. Our method has the advantage of making explicit all assumptions on
models and providing global specifications (ConsandAsm) of transformations, independent of specific
rules.

One deficiency is a lack of graphical specification for transformation rules, ie, by diagrams at the
abstract or concrete syntax level. We intend to support suchspecification as a supplement to the formal
specifications of rules.

K. Lano, S. Kolahdouz-Rahimi 39

References

[1] M. Herrmannsdoerfer,GMF: A Model Migration Case for the Transformation Tool Contest, in [5], 2011.

[2] K. Lano,Constraint-Driven Development, Information and Software Technology, 50, 2008, pp. 406–423.

[3] K. Lano, S. Kolahdouz-Rahimi,Model-Driven Development of Model Transformations, ICMT 2011.

[4] K. Lano, S. Kolahdouz-Rahimi,Model Transformation Design Patterns, ICSEA 2011.

[5] Van Gorp, Pieter, Mazanek, Steffen, and Rose, Louis,TTC 2011: Fifth Transformation Tool Contest, Zürich,
Switzerland, June 29-30 2011, Post-Proceedings, EPTCS, 2011.

A Transforming specific models

Source and target metamodels are defined using the visual class diagram editor of UML-RSDS. Metamodels cannot
contain multiple inheritance, and all non-leaf classes must be abstract. Metamodels can be saved to a file by the
Save datacommand, and loaded byLoad data.

Source models can be defined in text files, which are then read by the executable implementationController.class
of the transformation, in a textual form. An example is shownbelow for GMF.

UML-RSDS can be executed by the commandjava UmlTool. The directoryoutput is used to store meta-
models, input and output models, and the generated Java code. The commandLoad dataloads a metamodel from
a file (eg,gmfmm3.txt for the migration metamodel). The commandSynthesis Javagenerates the Java executable
of a transformation, this generated executable is theController.java file in theoutputdirectory. This can be
compiled and used independently of the toolset. It is compatible with Java SDK version 1.4.1 and later versions,
the only specialised Java package used is Java reflection, toload models.

An example source model (gmf1.txt) is as follows:

c : Canvas

c1 : Compartment

c2 : Compartment

c1 : c.compartments

c2 : c.compartments

n1 : Node

n2 : Node

n1 : c.nodes

n2 : c.nodes

l : DiagramLabel

l : c.labels

fg : FigureGallery

fg : c.figures

f1 : Figure

f1.name = "f1"

f2 : Figure

f2.name = "f2"

f2 : f1.children

f1 : fg.figures

l : f1.referencingElements

n1 : f1.referencingElements

c1 : f1.referencingElements

n2 : f2.referencingElements

c2 : f2.referencingElements

The new model generated from this is:

40 Model Migration Case in UML-RSDS

c : Canvas

c1 : Compartment

c2 : Compartment

c1 : c.compartments

c2 : c.compartments

n1 : Node

n2 : Node

n1 : c.nodes

n2 : c.nodes

l : DiagramLabel

l : c.labels

fg : FigureGallery

fg : c.figures

rf1 : RealFigure

rf1.name = "f1"

rf2 : RealFigure

rf2.name = "f2"

rf2 : rf1.children

fd1 : FigureDescriptor

fd1.actualFigure = rf1

fd2 : FigureDescriptor

fd2.actualFigure = rf2

rf1 : fg.figures1

fd1 : fg.descriptors

l.figure = fd1

n1.figure = fd1

c1.figure = fd1

n2.figure = fd2

c2.figure = fd2

ca : ChildAccess

l.accessor = ca

ca : fd1.accessors

B Expression syntax of UML-RSDS

UML-RSDS uses both classical set theory expressions and OCL. It only uses sets and sequences, and not bags or
ordered sets, unlike OCL. Symmetric binary operators such as∪ and∩ are written in the classical style, rather than
as operators on collections. Likewise for the binary logical operators.

K. Lano, S. Kolahdouz-Rahimi 41

< expression> ::= < bracketedexpression> | < equality expression> |
< logical expression> | < factor expression>

< bracketedexpression> ::= “(” < expression> “)”
< logical expression> ::= < expression> < logical op> < expression>
< equality expression> ::= < factor expression> < equality op> < factor expression>
< factor expression> ::= < basic expression> < factor op> < factor expression> |

< factor2 expression>
< factor2 expression> ::= < expression> “->any()” |

< expression> “->size()” |
< expression> “->isDeleted()”|
< expression> “->exists(”< identifier> “ |” < expression> “)” |
< expression> “->exists1(”< identifier> “ |” < expression> “)” |
< expression> “->exists(”< expression> “)” |
< expression> “->exists1(”< expression> “)” |
< expression> “->forAll(” < expression> “)” |
< expression> “->select(”< expression> “)” |
< expression> “->reject(”< expression> “)” |
< basic expression>

< basic expression> ::= < set expression> | < sequenceexpression> |
< call expression> | < array expression> |
< identifier> | < value>

< set expression> ::= “{” < fe sequence> “}”
< sequenceexpression> ::= “Sequence{” < fe sequence> “}”
< call expression> ::= < identifier> “(” < fe sequence> “)”
< array expression> ::= < identifier> “[” < fe sequence> “]”

A logical op is one of=>, &, or. An equality op is one of=, / =, >, <, <: (subset-or-equal),<=, >=, :,

/ : (not-in). A factor op is one of+, /, ∗, −, \/ (union),a (concatenation of sequences),/\ (intersection). An
fe sequenceis a comma-separated sequence of factor expressions. Identifiers can contain “.”.

C Activity syntax of UML-RSDS

The following concrete syntax is used for a subset of UML structured activities:

< statement> ::= < loop statement> | < creation statement>
< conditional statement> | < sequencestatement> |
< basic statement>

< loop statement> ::= “while” < expression> “do” < statement> |
“for” < expression> “do” < statement>

< conditional statement> ::= “if” < expression> “then” < statement>
“else”< basic statement>

< sequencestatement> ::= < statement> “;” < statement>
< creation statement> ::= < identifier> “:” < identifier>
< basic statement> ::= < basic expression> “:=” < expression> | “skip” |

“return” < expression> | “(” < statement> “)” |
< call expression>

	1 Model transformation specification in UML-RSDS
	2 GMF model migration
	3 Conclusion
	A Transforming specific models
	B Expression syntax of UML-RSDS
	C Activity syntax of UML-RSDS

