Solving the TTC 2011 Model Migration Case with
UML-RSDS

K. Lano, S. Kolahdouz-Rahimi
Dept. of Informatics, King’s College London, Strand, Longt/K*

kevin.lano®@kcl.ac.uk

In this paper we apply the UML-RSDS notation and tools to tiFGnodel migration case study
and explain how to use the UML-RSDS tools.

1 Model transformation specification in UML-RSDS

UML-RSDS is a model-driven development method with an dased toolset. It was originally designed
as a general-purpose method for synthesising verified &daeleusystems from high-level specifications
[2], and has been adapted for the synthesis of transformatiplementations from specificatioris [3].
Modelling is carried out using UML 2: class diagram model® nases, state machines, activities, object
models and interactions.

In UML-RSDS the specification of a transformation is writiarfirst-order logic and OCL, defining
the preconditions (assumptioAsn) of the use case representing the transformation, and tsteqre
ditions Consof the use case. Transformations may be composed usingirapand theincludesand
extendscomposition mechanisms of UML use cases.

2 GMF model migration

This case study [1] is a re-expression transformation wimeblves a complex restructuring of the data
of a model: actual figures are replaced by references to figarel references from a figure to subfigures
are recorded by explicit objects.

Figure[1 shows the unified metamodels of the source (GMFarrkiO) and target (GMF version
2.1) languages. Since most of the data of a model may remaimanged by the transformation, we
specify the transformation as an update-in-place mapphigurel is the target metamodel version of
theFigure class figuredl is the target version of the gallery figure list associatgad.

Class diagrams can be created using the visual class diagliton of the UML-RSDS tool (executed
by invoking java UmlTool).

We assume iismthat the input model is a syntactically correct version 1dilel and that the new
entities have no instances:

Figurel = {}
FigureDescriptor= {}
ChildAccess= {}

For simplicity of specification, we decompose the transtiion into a first transformation which
creates the new data from the old, without deleting any daiida second transformation which removes

*Research supported by the HORTMoDA EPSRC project

Van Gorp, Mazanek and Rose (Eds.):
Fifth Transformation Tool Contest (TTC 2011)
EPTCS 74, 2011, pp. 3611, d0i:10.4204/EPTCSI|74.6

http://dx.doi.org/10.4204/EPTCS.74.6

K. Lano, S. Kolahdouz-Rahimi 37

File Create Edit Vi

Transform Synthesis Decomposition Help

actualFigure

Figure il
Siring { identity }
¢
Pyl [

Figure 1: GMF metamodels in UML-RSDS

the version 1.0 data which is not in version 2.1. This is am®a of theconstruction and cleanup
design patterr [4].

For clarity, we use conventional mathematical notatiore htre specification must however be writ-
ten in the ASCII syntax for OCL when entered into the toolggidendix(B).

The first transformation is specified by the followiGgnsconstraints:

(C1):
vt : Figure- 3, rf : RealFigure rf .name= f.name and
3, fd : FigureDescriptor fd.actualFigure= rf

For each source model figure, there is a unique target moaldigare, with a figure descriptor.

(C2):
Vf : Figure- RealFigurdf.name.children = RealFiguréf .childrennamé

For each source model figure, the target model real figure lilken the corresponding children (real
figures). The notatiok|[x] denotes the instance Bfidentified by the key valug, if this is a single value,
or the set of instances identified by, if x is a set.

(C3):
vfg: FigureGallery-
fg.figured = RealFiguréfg.figuresnamé and
fg.descriptors= FigureDescriptorselectactualFigure: fg.figuredl)

For each figure gallery, its figureiguredl) in the target model are the real figures correspondingeo th
source model figures of the gallery, its descriptors are #@setibtors of these figures. Although in this
constraintfiguredl is both written and read, the update only affects the loatd df oneFigureGallery
objectfg, and no other object is modified, so no other application efrtie is affected.

38 Model Migration Case in UML-RSDS

(C4):
VT : Figure;, fd : FigureDescriptor d : f.referencingElements
fd.actualFigure= RealFiguréf.namé implies
d.figure=fd and
(d : DiagramLabel implies
Jca: ChildAccess d.accessor=ca and ca fd.accessors

The figure descriptor of a diagram element in the target misdélat corresponding to the figure which
contained the element in the source model. If the diagramesh is a label of a nested figure, then an
explicit child access object is defined to record the acqdbspage 3).

Each of theConsconstraints can be implemented by simple iterations [4]is Thplementation is
carried out automatically by the UML-RSDS toolkit: a desigmel description as a UML activity is
derived for each use case. In addition, executable Javais@lso generated. The implementation is
structured as a sequence of phases, one for each consfragmphase foC1 must precede the phases
for the other three constraints, but they can be executedhynoader, so the transformation can be
decomposed into several separate use cases if requireg. G@nises theDiagramElementlass and
its subclasses, so an input model could be divided into twts paith the instances of classEgjure,
FigureGalleryrequired forC1 to C3, and instances of the other classes require@for

C1 andC2 are implemented by iterations oveigure of operationscopyFigureandcopyChildren
respectively.C3 is implemented by an iteration of an operatmopyFiguresover FigureGallery C4 is
implemented by an iteration of an operaticneateReferencesn Figure.

The BNF syntax of the OCL subset used in UML-RSDS is definedppekdiXB. Metamodels are
stored in text files in th@utput subdirectory, but should not be edited directly, only via traphical
editor of UML-RSDS.

The second transformation removes all instancdagire and all elements and links specific to the
source metamodel. It is an update-in-place transformatitth Consspecification

Figure@pre.referencingElements: {}
FigureGalleryfigures= {}
Figure—isDeleted)

This can be coded as the postcondition of an operalieemnModelof Canvas
The two transformations are composed by executing onetatasther, using an intermediate file to
hold the target model of the first transformation, which seras the source model of the second.

3 Conclusion

We have shown that UML-RSDS can specify the GMF case studgftsamation in a direct and concise
manner, both as high-level specifications and as explisipds. UML-RSDS has the advantage of using
standard UML and OCL notations to specify transformatiossglucing the cost of learning a special-
purpose transformation language. Our method has the ady@nf making explicit all assumptions on
models and providing global specificatior@onsand Asm) of transformations, independent of specific
rules.

One deficiency is a lack of graphical specification for transfation rules, ie, by diagrams at the
abstract or concrete syntax level. We intend to support spekification as a supplement to the formal
specifications of rules.

K. Lano, S. Kolahdouz-Rahimi 39

References

[1] M. HerrmannsdoerfelGMF: A Model Migration Case for the Transformation Tool Cesttin [5], 2011.
[2] K. Lano, Constraint-Driven Developmernformation and Software Technology, 50, 2008, pp. 40842
[3] K. Lano, S. Kolahdouz-RahimModel-Driven Development of Model Transformatiplf@&iMT 2011.

[4] K. Lano, S. Kolahdouz-RahimModel Transformation Design Pattern€SEA 2011.

[5] Van Gorp, Pieter, Mazanek, Steffen, and Rose, LOUIE; 2011: Fifth Transformation Tool Contestjrith,
Switzerland, June 29-30 2011, Post-Proceedifd®TCS, 2011.

A Transforming specific models

Source and target metamodels are defined using the visgaldilegram editor of UML-RSDS. Metamodels cannot
contain multiple inheritance, and all non-leaf classestrhasabstract. Metamodels can be saved to a file by the
Save dat@wommand, and loaded lyad data

Source models can be defined in text files, which are then retiblexecutable implementati@ontroller.class
of the transformation, in a textual form. An example is shdefow for GMF.

UML-RSDS can be executed by the commagrgra UnlTool. The directoryoutput is used to store meta-
models, input and output models, and the generated Java Thdeommand.oad dataloads a metamodel from
a file (eg,gmfmn3.txt for the migration metamodel). The commaBgnthesis Javgenerates the Java executable
of a transformation, this generated executable isCéretroller. java file in the outputdirectory. This can be
compiled and used independently of the toolset. It is coibfgatvith Java SDK version 1.4.1 and later versions,
the only specialised Java package used is Java reflectimadaonodels.

An example source modedinfl.txt) is as follows:

c : Canvas

cl : Compartment

c2 : Compartment

cl : c.compartments
c2 : c.compartments
nl : Node

n2 : Node

nl : c.nodes

n2 : c.nodes

1 : DiagramLabel

1l : c.labels

fg : FigureGallery
fg : c.figures

f1 : Figure
fl.name = "f1"
£f2 : Figure

f2.name = "f2"

f2 : fl.children

f1 : fg.figures

1 : fl.referencingElements
nl : fl.referencingElements
cl : fl.referencingElements
n2 : f2.referencingElements
c2 : f2.referencingElements

The new model generated from this is:

40 Model Migration Case in UML-RSDS

c : Canvas

cl : Compartment

c2 : Compartment

cl : c.compartments

c2 : c.compartments

nl : Node

n2 : Node

nl : c.nodes

n2 : c.nodes

1 : DiagramLabel

1 : c.labels

fg : FigureGallery

fg : c.figures

rfl : RealFigure
rfl.name = "f1"

rf2 : RealFigure
rf2.name = "£f2"

rf2 : rfl.children

fdl : FigureDescriptor
fdl.actualFigure = rfl
£fd2 : FigureDescriptor
fd2.actualFigure = rf2
rfl : fg.figuresl

fdl : fg.descriptors
1l.figure = fdl

nl.figure = fdl
cl.figure = fdl
n2.figure = £d2

c2.figure = £d2

ca : ChildAccess
1l.accessor = ca

ca : fdl.accessors

B Expression syntax of UML-RSDS

UML-RSDS uses both classical set theory expressions and @Ghly uses sets and sequences, and not bags or
ordered sets, unlike OCL. Symmetric binary operators sachandn are written in the classical style, rather than
as operators on collections. Likewise for the binary lobigeerators.

K. Lano, S. Kolahdouz-Rahimi

< expression> R

< bracketedexpression>
< logical_expression>

< equality expression>
< factor_expression>

< factor2_expression>

< basicexpression>

< setexpression- n=
< sequenceexpression> =
< call_expression> n=
< array_expression> =

41

< bracketedexpression> | < equality expression> |

< logicalexpression> | < factor_expression>

“(" < expression> “)"

< expression> < logical.op > < expression>

< factor_expression> < equalityop > < factor_expression-

< basicexpression> < factor_op > < factor_expression> |

< factor2_expression>

< expression> “- >any()" |

< expression> “- >size()”|

< expression> “- >isDeleted()”|

< expression> “- >exists("< identifier> “|” < expression> “)" |

< expression> “- >exists1("< identifier > “|” < expression> “)" |
< expression> “- >exists(’ < expression> “)" |
< expression> “- >exists1("< expression> “)”

< expression> “- >forAll(" < expression> “)" |
< expression> “- >select("< expression> “)" |
< expression> “- >reject(” < expression> “)" |
< basicexpression>

< setexpression> | < sequenceexpression> |

< call_expression> | < array_expression> |

< identifier> | < value>

“{" < fe_sequence- “}”

“Sequencf < fe_sequence- “}”

< identifier> “(" < fe_sequence-)"

< identifier> “[* < fe_sequence- “]"

wn

A logicalopis one of=>, &, or. An equalityopis one of=, / =, >, <, <: (subset-or-equalk.=, >=, :,
/ : (not-in). Afactor_opis one of+, /, x, —, \/ (union),” (concatenation of sequenceg), (intersection). An

fe_sequencés a comma-separated sequence of factor expressionsifiglsrdan contain “.".

C Activity syntax of UML-RSDS

The following concrete syntax is used for a subset of UMLtited activities:

< statement> =

< loop_statement-

< conditionalstatement>

< sequencsestatement>
< creation.statement>
< basicstatement- n=

< loop_statement> | < creation.statement>

< conditionalstatement- | < sequencestatement> |
< basic statement>

“while” < expression> “do” < statement> |

“for” < expression> “do” < statement-

“if” < expression> “then” < statement-

“else” < basic statement>

< statement> “" < statement>

< identifier> “" < identifier>

< basicexpression> “:=" < expression> | “skip” |
“return” < expression> | “(" < statement>)" |
< call_expression>

	1 Model transformation specification in UML-RSDS
	2 GMF model migration
	3 Conclusion
	A Transforming specific models
	B Expression syntax of UML-RSDS
	C Activity syntax of UML-RSDS

