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In Software Reengineering, one of the central artifacts is the source code of the legacy system in
question. In fact, in most cases it is the only definitive artifact, because over the time the code has
diverged from the original architecture and design documents. The first task of any reengineering
project is to gather an understanding of the system’s architecture. Therefore, a common approach
is to use parsers to translate the source code into a model conforming to the abstract syntax of the
programming language the system is implemented in which can then be subject to querying. Despite
querying, transformations can be used to generate more abstract views on the system’s architecture.

This transformation case deals with the creation of a state machine model out of a Java syntax
graph. It is derived from a task that originates from a real reengineering project.

1 Objective and Context

The objective of the reengineering case presented here is to transform an abstract Java syntax graph into
a simple state machine. There are two major challenges involved. The first challenge is an issue of
performance and scalability, because the input models are naturally large.

The second and more important challenge is that the transformation task involves complex, non-local
matching of elements. For example, the core task, demands that the transformation should create one
state for each Java class that derives directly or indirectly from an abstract Java class named “State.”
There are no restrictions on the depth of the inheritance hierarchy, so the “State” class and its subclasses
may be located arbitrarily far in the input model. However, the structure of the path from subclass to
superclass is clearly specified by the input metamodel and must be utilized by transformations.

The SOAMIG1 project dealt with the migration of legacy systems to Service-Oriented Architectures
by means of model-driven techniques. One legacy system on which the approach has been evaluated is
a monolithic Java system, which is operated with a graphical user interface. This user interface consists
of around 30 different masks, which often relate to conceptually self-contained functionalities that might
be implemented as services in the reengineered target system. The order in which masks are activated
and which successor masks can be activated from a given mask gives good hints about the orchestration
of the target system services.

The masks are implemented as plain Java classes using the Swing toolkit. Many masks are very
complex with many user interface elements and even more input validation code, which complicates
tracking down the relationships between the individual masks. However, the user interface is based on a
state machine concept and uses strict coding conventions in the implementation. As such, any masks can
be seen as states, and when another mask is activated, it can be seen as a transition. The trigger of this
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transition is usually a click on some button, and possibly additional actions are performed just before the
transition, e.g., validating user input.

A GReTL [4] transformation has been developed which creates a simple state machine model con-
sisting of states and transitions with triggers and actions out of the syntax graph of the legacy system
consisting of more than 2.5 million nodes and edges. The transformation exploits the coding conven-
tions taken as a basis for the implementation of the graphical user interface. The resulting state machine
model contains all information about the possible sequences in which masks can be activated, what
triggers are responsible for a transition, and what additional actions are performed when transitioning.
However, it consists of less than 100 nodes and edges, it can be visualized and printed. Therefore, it is
of great value for the understanding of the legacy system.

The transformation case proposed here is derived form this reengineering project’s task. Instead
of using the syntax graph of the proprietary system, a toy example implementing the well-known TCP
protocol state machine using very similar coding conventions is used. The next section describes the
tasks including the relevant metamodels and models. The evaluation criteria used to judge the solutions
are discussed in Section 3.

2 Detailed Task Description

In this section, the transformation task is explained in details. The overall goal of this task is to create a
very simple state machine model for a Java syntax graph model encoding a state machine with a set of
coding conventions a transformation has to exploit.

The task is divided into one mandatory core task and two optional extension tasks with slightly
increased complexity. The conventions used to implement the state machine in Java that should be
exploited by transformations are explained in terms of concrete Java syntax, i.e., by using source code
examples. However, the most relevant metamodel elements are named, too. In the following, source
metamodel elements are written underlined (e.g., MethodCall), and target metamodel elements are
written with a typewriter font (e.g., Transition).

Source Metamodel and Models. The primary source model of the transformation is a Java abstract
syntax graph conforming to the JaMoPP Ecore metamodel [2, 3]. The input model contains any infor-
mation present in the source code. It consists of about 6,500 elements. A second input model is slightly
larger and more complex, e.g., the specialization hierarchy is deeper and so is the nesting of statements
in method bodies. Lastly, a third industry-size input model is provided, which was generated by parsing
the source code of a Java project containing about 900 classes and 220,000 lines of code resulting in a
model constisting of nearly one million elements.

All provided input models implement the TCP state machine according to the conventions specified
in the task description below, so the target state machine model is always the same (not accounting for
the order of elements).

Target Metamodel. As target metamodel, the very basic state machine metamodel shown in Fig-
ure 1 is used. A StateMachine consists of an arbitrary number of States and Transitions. Any
Transition starts at exactly one src-State, and it ends at exactly one dst-State. Every State has
a name, and any Transition may be caused by a trigger, and as a result of its activation an action

might be performed.



Tassilo Horn 19

Figure 1: The target Ecore metamodel

Core Task. The core task should create a state machine model that contains all entities, i.e., all States
and all Transitions with the appropriate references set. Additionally, the name attribute defined for
the State class must be set. The initialization of the trigger and action attributes are left for the
extension tasks.

Below, the coding conventions used to implement the TCP state machine in plain-java are discussed
in terms of concrete Java syntax and by using the SynSent class contained in the src directory, which is
shown in Listing 1.

1 pub l i c c l a s s SynSent extends L i s t e n i n g S t a t e {
2 p r i v a t e s t a t i c Sta t e i n s t a n c e = new SynSent ( ) ;
3 pub l i c s t a t i c Sta t e I n s t a n c e ( ) { re tu rn i n s t a n c e ; }
4 pub l i c vo id c l o s e ( ) { Closed . I n s t a n c e ( ) . a c t i v a t e ( ) ; }
5 protected vo id run ( ) {
6 switch ( g e tRe c e i v e dF l a g ( ) ) {
7 case SYN: send ( F lag . SYN ACK ) ;
8 SynRece ived . I n s t a n c e ( ) . a c t i v a t e ( ) ;
9 re tu rn ;

10 case SYN ACK : send ( F lag .ACK) ;
11 E s t a b l i s h e d . I n s t a n c e ( ) . a c t i v a t e ( ) ;
12 re tu rn ;
13 } } }

Listing 1: The SynSent class

The coding conventions relevant for the core task are as follows:
1. A State is a non-abstract Java class (classifiers.Class) that extends the abstract class named

“State” directly or indirectly. All concrete state classes are implemented as singletons [1]. In
Listing 1, SynSent extends the abstract ListeningState state class, and that in turn extends the
abstract State class.

2. A Transition is encoded by a method call (references.MethodCall), which invokes the next
state’s Instance () method (members.Method) returning the singleton instance of that state on
which the activate () method is called in turn. This activation may be contained in any of the
classes’ methods with an arbitrary deep nesting. It may be assumed that a transition always has
the form NewState.Instance(). activate (). In the example, there are three transitions. In the
close () method, there is one transition from the current state (SynSent) into the Closed state (line
7). In the run() method, there are another two transitions. In line 11, there is a transition into the
SynReceived state, and in line 14, there is a transition into the Established state.

The target model state names should be set according to the Java classes they were created for. The
outcome of the core task is a state machine with 11 states and 21 transitions between the states.
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Extension 1: Triggers. This extension task deals with the trigger attribute of transitions. There are
three different coding conventions that a transformation has to exploit to set the correct trigger value.
These three conventions and one fallback rule are specified as follows.

1. If the transition occurs in any method except run(), then that method’s name (members.Method.name)
shall be used as the trigger. For example, the activation of Closed in line 7 of Listing 1 occurs in
the close () method, so the trigger is close .

2. If the transition occurs inside a non-default case block (statements.NormalSwitchCase) of
a switch statement (statements.Switch) in the run() method, then the enumeration constant
(members.EnumConstant) used as condition of the corresponding case is the trigger. For exam-
ple, when activating SynReceived in line 11 of Listing 1, the trigger is SYN.

3. If the transition occurs inside a catch block (statements.CatchBlock) inside the run() method,
then the trigger is the name of the caught exception’s class.

4. If none of the three cases above apply, i.e., the activation call is inside the run() method but without
a surrounding switch or catch, the corresponding transition is triggered unconditionally. In that
case, the trigger attribute shall be set to −−.

Transformations may assume that the four different cases can be matched without ambiguity, e.g., there
is no catch block activating some state inside a surrounding switch, or vice versa.

Extension 2: Actions. The task of the second extension is to set the action attributes of transitions.
The action of a transition is specified as follows.

1. If the block (statements.StatementListContainer) containing the transition to the next state
contains a method call to the send() method, then that call’s enumeration constant parameter’s
name is the action. For example, the action attribute of the transition in line 11 of Listing 1 has to
be set to SYN ACK.

2. If there is no call to send() in the activation call’s block, the action of the corresponding transition
shall be set to −−. For example, the transition in line 7 of Listing 1 performs no action, and thus
the action has to be set to −−.

A visualization of the target state machine produced by the reference solution is shown in Figure 2.

3 Evaluation Criteria

As motivated in Section 1, the goal of this transformation case is supporting program understanding.
By facilitating a set of coding conventions, model transformations can be used to accomplish the task
of extracting the implicitly encoded state machine, in contrast to modeling it manually by thoroughly
inspecting all relevant classes of the system in question. In order to have a feasible solution, the time
needed for writing and executing the transformation must be comparable to the time that would be needed
for a code inspection and manually modelling the state machine. However, if we assume that the set
of coding conventions derived from the initial brief inspection is correct, it can be assumed that the
transformation produces a correct output without human mistakes.

Since the speed of writing a solution cannot be judged directly, understandability and conciseness
are used as objectively ascertainable measures relating to the implementation effort, weighted with 30%.
Ideally, each coding convention described in Section 2 results in a transformation rule in which the
statement of the convention is clearly visible.

The correctness of the solution is also important. If the model created by the transformation is
the foundation of weighty decisions, it would be fatal if it didn’t reflect the reality. The completeness
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v1 State

name = "Closed"

v4 State

name = "SynSent"

e2 : Transition
action = "SYN"
trigger = "connect"

v5 State

name = "Listen"

e1 : Transition
action = "--"
trigger = "listen"

v2 State

name = "TimeWait"

e18 : Transition
action = "--"
trigger = "TimeoutException"

v3 State

name = "CloseWait"

v10 State

name = "LastAck"

e3 : Transition
action = "FIN"
trigger = "close"

e15 : Transition
action = "--"
trigger = "close"

v6 State

name = "Established"

e17 : Transition
action = "ACK"
trigger = "SYN_ACK"

v9 State

name = "SynReceived"

e16 : Transition
action = "SYN_ACK"
trigger = "SYN"

e10 : Transition
action = "--"
trigger = "close"

e11 : Transition
action = "SYN"
trigger = "send"

e12 : Transition
action = "SYN_ACK"
trigger = "SYN"

e9 : Transition
action = "ACK"
trigger = "FIN"

v7 State

name = "FinWait1"

e8 : Transition
action = "FIN"
trigger = "close"

e21 : Transition
action = "ACK"
trigger = "FIN_ACK"

v8 State

name = "Closing"

e20 : Transition
action = "ACK"
trigger = "FIN"

v11 State

name = "FinWait2"

e19 : Transition
action = "--"
trigger = "ACK"

e13 : Transition
action = "--"
trigger = "ACK"

e7 : Transition
action = "--"
trigger = "RST"

e6 : Transition
action = "--"
trigger = "ACK"

e5 : Transition
action = "FIN"
trigger = "close"

e14 : Transition
action = "--"
trigger = "ACK"

e4 : Transition
action = "ACK"
trigger = "FIN"

Figure 2: The final state machine after performing the core and both extension tasks

of a solution is closely entangled to correctness, because an incomplete model may also lead to false
decisions. Both correctness and completeness are weighted with 17.5%.

The last property that will be judged is the performance, weighted with 5%. It is much less important
than the other criteria, but of course such a transformation should be applicable on common hardware in
acceptable time.
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