
Van Gorp, Mazanek and Rose (Eds.):
Fifth Transformation Tool Contest (TTC 2011)
EPTCS 74, 2011, pp. 302–324, doi:10.4204/EPTCS.74.25

c© Á. Hegedüs, Z. Ujhelyi & G. Bergmann

Saying Hello World with VIATRA2 -
A Solution to the TTC 2011 Instructive Case∗

Ábel Hegedüs Zoltán Ujhelyi Gábor Bergmann
Fault Tolerant Systems Research Group

Department of Measurement and Information Systems
Budapest University of Technology and Economics, Hungary

hegedusa@mit.bme.hu ujhelyiz@mit.bme.hu bergmann@mit.bme.hu

The paper presents a solution of the Hello World! An Instructive Case for the Transformation Tool
Contest using the VIATRA2 model transformation tool.

1 Introduction

Automated model transformations play an important role in modern model-driven system engineering
in order to query, derive and manipulate large, industrial models. Since such transformations are fre-
quently integrated into design environments, they need to provide short reaction time to support software
engineers.

The objective of the VIATRA2 (VIsual Automated model TRAnsformations [9]) framework is to
support the entire life-cycle of model transformations consisting of specification, design, execution, val-
idation and maintenance.

Model representation. VIATRA2 uses the VPM (Visual and Precise Metamodeling) approach [8]
for describing modeling languages and models. The main reason for selecting VPM instead of a MOF-
based metamodeling approach is that VPM supports arbitrary metalevels in the model space. As a direct
consequence, models taken from conceptually different domains (and/or technological spaces) can be
easily integrated into the VPM model space. The flexibility of VPM is demonstrated by a large number
of already existing model importers accepting the models of different BPM formalisms, UML models of
various tools, XSD descriptions, and EMF models.

Graph transformation (GT) [3] based tools have been frequently used for specifying and executing
complex model transformations. In GT tools, graph patterns capture structural conditions and type
constraints in a compact visual way. At execution time, these conditions need to be evaluated by graph
pattern matching, which aims to retrieve one or all matches of a given pattern to execute a transformation
rule. A graph transformation rule declaratively specifies a model manipulation operation, that replaces
a match of the LHS (left-hand side) graph pattern with an image of the RHS (right-hand side) pattern.

Transformation description. Specification of model transformations in VIATRA2 combines the vi-
sual, declarative rule and pattern based paradigm of graph transformation and the very general, high-level
formal paradigm of abstract state machines (ASM) [2] into a single framework for capturing transfor-
mations within and between modeling languages [7]. A transformation is defined by an ASM machine
that may contain ASM rules (executable command sequences), graph patterns, GT rules, as well as ASM
functions for temporary storage. An optional main rule can serve as entry point. For model manipulation
and pattern matching, the transformation may rely on the metamodels available in the VPM model space;
such references are made easier by namespace imports.

∗This work was partially supported by ICT FP7 SecureChange (ICT-FET-231101) European Project.

http://dx.doi.org/10.4204/EPTCS.74.25

Á. Hegedüs, Z. Ujhelyi & G. Bergmann 303

Transformation Execution. Transformations are executed within the framework by using the VI-
ATRA2 interpreter. For pattern matching both (i) local search based pattern matching (LS) and (ii)
incremental pattern matching (INC) are available. This feature provides the transformation designer ad-
ditional opportunities to finetune the transformation either for faster execution (INC) or lower memory
consumption (LS) [5].

2 Transformation tasks

The VIATRA2 framework has been applied to the subtasks of the Hello World! case [6] using the VI-
ATRA2 Textual Command Language (VTCL) [1]. Since the case was intended to provide beginners
with instructive transformations, we decided to show as many features of the VIATRA2 framework as
possible, while also keeping each example as simple as possible. Therefore, each task was solved by
multiple variants, which may share pattern definitions, but are otherwise different from each other. The
differences are explained at the description of each task.

2.1 Hello World!

This task included very basic model construction, model-to-model and model-to-text transformations.
Since VTCL combines two formalisms for specifying graph transformations, we implemented the dif-
ferent parts of the task with both declarative ASM rules (see Listing 1) and graph transformation rules
(see Listing 2). The difference is how much of the model manipulation is described declaratively by
GT rules (composed of a LHS and RHS pattern, and potentially an additional ASM action), as opposed
to elementary manipulation operations issued in ASM rules; see the homepage1 for advice on choosing
between the two alternative approaches in practice. Although the task seems almost trivial, the accom-
panying transformation definition is not especially short. This may be taken as a disadvantage of VTCL,
but we would like to note, that the we feel that the verbose self-descriptive nature of VTCL aids in
comprehension.

2.2 Count Matches with certain Properties

This task included parts, where the number of matches are counted using transformations. In the ASM
variant (see Listing 4), the counting and matching are clearly separated, since the patterns describe what
we look for and the forall construct iterates through the matches to count them.

To demonstrate reusability and modularity in VTCL, each part reuses the same ASM rule for creating
the result structure. Additionally, the solution references graph patterns defined externally in a separate
VTCL file (see Listing 3), which acts as a library of common graph patterns. Several further solutions
also reuse these patterns. In each case, the VTCL machine corresponding to the library must be loaded
first.

The verbosity, once again, is partly voluntary: many of the statements in the graph patterns of List-
ing 3 merely assert the type of nodes, and could be safely omitted thanks to type inference. While such
verbosity aids in understanding the graph pattern, it does not neccessarily place any additional burden
on the developer, as patterns like these can easily be created by selecting some related elements in the
model and then exporting their configuration as a graph pattern.

1 http://wiki.eclipse.org/VIATRA2/UseCases/TransformationBestPractices

http://wiki.eclipse.org/VIATRA2/UseCases/TransformationBestPractices

304 Saying Hello World with VIATRA2 - A Solution to the TTC 2011 Instructive Case

The upcoming match counting feature of VIATRA2 is still under development (and currently only
partially supported), but it will allow for a more elegant solution (see Listing 5) of this task. We expect
that this solution (and other transformations using match counting within a graph pattern) will be fully
supported in release 3.3 of VIATRA2.

2.3 Reverse Edges

In this task, the edges of the graph had to be reversed by the transformation. As before, we created both
an ASM (see Listing 6) and a GT rule variant (see Listing 7). However, here the ASM variant shows an
interesting feature of VIATRA2, as the relations are not modified, only their type is changed from src to
trg, and the other way around. Furthermore, we implemented a third variant (see Listing 8) that reverses
the edges by switching the target of the src relation with the target of the trg relation.

Note that using the appropriate conditional language elements (if, try), our solutions are tolerant of
dangling edges. By ignoring this possibility, the transformation could have been made somewhat simpler.

2.4 Simple Migration

In this task, the input graph is transformed to a graph conforming to another metamodel. As the case
description did not specify it, we implemented both a copy (see Listing 9 and Listing 11) and an in-place
(retyping) variant (Listing 10 and Listing 12) for both the core and the topology changing transformation.
The copy variants simply create the graph using the other metamodel, while the in-place variants use the
above mentioned feature of VIATRA2 and change the type of the elements without modifying the rest of
the model.

2.5 Delete Node with Specific Name and its Incident Edges

This task included delete transformations for one specific node and it’s incident edges. We implemented
an ASM (Listing 13 and Listing 15) and a GT variant (Listing 14 and Listing 16) for both the core task
and the optional task.

2.6 Insert Transitive Edges

Finally, the last task dealt with inserting transitive edges between nodes. In this case we provide three
versions, each with two implementations using ASM rules and GT rules.

• First, closely following the original problem specification, we insert edges between nodes that are
2-hop reachable through an inner node (see Listing 17 and Listing 18), i.e. if there are two nodes
that are not connected directly, but through an intermediate node, we establish a direct connection
between them.

• In the next version, we iterate this step as long as applicable so that eventually all transitive reach-
ability edges are inserted (see Listing 19 and Listing 20). Note, that although there is only a slight
difference in the code of the first two versions, they are independent in implementation.

• Finally, we present a solution where all missing transitive reachability edges are detected and
inserted in a single step (see Listing 21 and Listing 22). The transformation relies on a graph
pattern that expresses full transitive reachability in the graph, using the recursive pattern definition
feature of VIATRA2. One could even argue that actually inserting the missing reachability edges
is not necessary in many cases if such pattern matching capability is at our disposal. Note that

Á. Hegedüs, Z. Ujhelyi & G. Bergmann 305

due to the recursive nature of the pattern, the current version of the incremental pattern matcher
would not work correctly (in case of deleting edges from graphs containing cycles), therefore the
default local search-based graph pattern matcher is used. For the other tasks and solution variants
the incremental pattern matcher is used.

3 Conclusion

In the current paper we have presented our VIATRA2 based implementation for the Hello World! case
study [6].

The high points of our solution are (i) the different variants that are self-descriptive and instructive,
(ii) the reusable patterns, (iii) the support for recursive matching and (iv) match counting. Furthermore,
the dynamic type modification (metamodel manipulation in general) is a highly usable feature especially
for migration problems.

On the other hand, since VIATRA2 does not handle EMF models natively, importing and exporting
of models is required. Furthermore, as the transformation language is quite verbose, transformations
may appear more complex than they really are (note however, that conciseness was not our primary goal
when creating these instructive examples).

Our overall impression is that this simple case study is an excellent basis of comparison of various
model transformation tools, filling a long-standing gap.

References
[1] András Balogh & Dániel Varró (2006): Advanced Model Transformation Language Constructs in the VIATRA2

Framework. In: ACM Symposium on Applied Computing — Model Transformation Track (SAC 2006), ACM
Press, Dijon, France, pp. 1280–1287, doi:10.1145/1141277.1141575.

[2] E. Börger & R. Stärk (2003): Abstract State Machines. A method for High-Level System Design and Analysis.
Springer-Verlag.

[3] Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski & Grzegorz Rozenberg, editors (1999): Handbook on
Graph Grammars and Computing by Graph Transformation. 2: Applications, Languages and Tools, World
Scientific.

[4] Ábel Hegedüs, Zoltán Ujhelyi & Gábor Bergmann (2011): SHARE demo related to the paper Saying Hello
World with VIATRA2 - A Solution to the TTC Instructive Case. Available at http://is.ieis.tue.nl/
staff/pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntu-11_TTC11_VIATRA.vdi.

[5] Ákos Horváth, Gábor Bergmann, István Ráth & Dániel Varró (2010): Experimental assessment of combining
pattern matching strategies with VIATRA2. International Journal on Software Tools for Technology Transfer
(STTT) 12, pp. 211–230, doi:10.1007/s10009-010-0149-7.

[6] Steffen Mazanek (2011): Hello World! An Instructive Case for the Transformation Tool Contest. In Pieter
Van Gorp, Steffen Mazanek & Louis Rose, editors: TTC 2011: Fifth Transformation Tool Contest, Zürich,
Switzerland, June 29-30 2011, EPTCS.

[7] Dániel Varró & András Balogh (2007): The Model Transformation Language of the VIATRA2 Framework.
Science of Computer Programming 68(3), pp. 214–234, doi:10.1016/j.scico.2007.05.004.

[8] Dániel Varró & András Pataricza (2003): VPM: A visual, precise and multilevel metamodeling framework for
describing mathematical domains and UML. Journal of Software and Systems Modeling 2(3), pp. 187–210,
doi:10.1007/s10270-003-0028-8.

[9] VIATRA2 Framework: An Eclipse GMT Subproject: Available at http://www.eclipse.org/gmt/.

http://dx.doi.org/10.1145/1141277.1141575
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntu-11_TTC11_VIATRA.vdi
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntu-11_TTC11_VIATRA.vdi
http://dx.doi.org/10.1007/s10009-010-0149-7
http://dx.doi.org/10.1016/j.scico.2007.05.004
http://dx.doi.org/10.1007/s10270-003-0028-8
http://www.eclipse.org/gmt/

306 Saying Hello World with VIATRA2 - A Solution to the TTC 2011 Instructive Case

A Solution demo and implementation

The deployable implementation and source code is available as an Eclipse online update site (http://
mit.bme.hu/~ujhelyiz/viatra/ttc11/) and the project including the transformations as an archive
(http://mit.bme.hu/~ujhelyiz/viatra/ttc11-helloworld.zip)

The SHARE image [4] usable for demonstration purposes contains our solution for both the Hello
World! and Program Understanding cases.

B Appendix - Hello World! transformations

B.1 Hello World!

import datatypes; // imported parts of the model -space are usable by local name

import nemf.packages;

import nemf.ecore.datatypes;

@incremental // uses incremental pattern -matcher

machine helloWorldASM{

rule main() = seq{

println("2.1 Hello World transformation started");

10 println("Creating Simple Model with ASM Rule");

call createSimpleModelInstance(); // invokes the ASM Rule

let Greeting = undef in seq{ // define local variable

println("Creating Extended Model with ASM Rule");

call createExtendedModelInstance(Greeting);

println("Executing model -to-text with ASM Rule");

call outputGreeting(Greeting);

}

println("2.1 Hello World transformation finished");

20 }

// ASM Rule variant of simple Hello World model instance creation

rule createSimpleModelInstance() =

let Greeting = undef , Text = undef , TextRelation = undef in seq{

// entity creation with explicit parent (in)

new(helloworld.Greeting(Greeting) in nemf.resources);

new(EString(Text) in Greeting);

// setting entity value to some primitive datatype value

30 setValue(Text ,"Hello world");

// create relation between elements

new(helloworld.Greeting.text(TextRelation ,Greeting ,Text));

}

// ASM Rule variant of extended Hello World model instance creation

rule createExtendedModelInstance(out Greeting) =

let GreetingMessage = undef , GreetingMessageRelation = undef ,

Text = undef , TextRelation = undef , Person = undef ,

PersonRelation = undef , Name = undef , NameRelation = undef in seq{

40 new(helloworldext.Greeting(Greeting) in nemf.resources);

new(helloworldext.GreetingMessage(GreetingMessage) in Greeting);

new(helloworldext.Greeting.greetingMessage(GreetingMessageRelation ,

Greeting ,GreetingMessage));

new(EString(Text) in GreetingMessage);

setValue(Text ,"Hello");

new(helloworldext.GreetingMessage.text(TextRelation ,GreetingMessage ,Text));

http://mit.bme.hu/~ujhelyiz/viatra/ttc11/
http://mit.bme.hu/~ujhelyiz/viatra/ttc11/
http://mit.bme.hu/~ujhelyiz/viatra/ttc11-helloworld.zip

Á. Hegedüs, Z. Ujhelyi & G. Bergmann 307

new(helloworldext.Person(Person) in Greeting);

50 new(helloworldext.Greeting.person(PersonRelation ,Greeting ,Person));

new(EString(Name) in Person);

setValue(Name ,"TTC Participants");

new(helloworldext.Person.name(NameRelation ,Person ,Name));

}

// ASM Rule variant of model -to -text transformation

rule outputGreeting(in Greeting) = let Output = undef , ResR = undef ,

Result = undef in seq{

/* parameters of "choose" are set by the patternmatcher

60 based on matches to the patterns after "find" */

try choose GreetingMessageText ,PersonName with

find TextAndNameForGreeting(Greeting ,GreetingMessageText ,PersonName) do seq{

new(result.StringResult(Output) in nemf.resources);

new(EString(Result) in Output);

new(result.StringResult.result(ResR ,Output ,Result));

// value can be set baseed on values from other elements

setValue(Result ,(value(GreetingMessageText) + " " + value(PersonName) + "!"));

}

}

70
// finds (or creates) Greeting , GreetingMessage .Text and Person.Name

pattern TextAndNameForGreeting(Greeting ,Text ,Name) = {

helloworldext.Greeting(Greeting) in nemf.resources;

helloworldext.GreetingMessage(GreetingMessage);

helloworldext.Greeting.greetingMessage(GreetingMessageRelation ,

Greeting ,GreetingMessage);

EString(Text);

80 helloworldext.GreetingMessage.text(TextRelation ,GreetingMessage ,Text);

helloworldext.Person(Person);

helloworldext.Greeting.person(PersonRelation ,Greeting ,Person);

EString(Name);

helloworldext.Person.name(NameRelation ,Person ,Name);

}

}

Listing 1: Hello World transformation, ASM variant

import datatypes; // imported parts of the model -space are usable by local name

import nemf.packages;

import nemf.ecore.datatypes;

@incremental // uses incremental patternmatcher

machine helloWorldGT{

rule main() = seq{

println("2.1 Hello World transformation started");

10 /* "choose" executes once or fails if it cannot , the "try" keyword will let

the transformation continue even if the "choose" fails */

try choose with apply createSimpleModelInstanctGT()

do println("Creating Simple Model with ASM Rule");

let Greeting = undef in seq{

try choose with apply createExtendedModelInstanctGT(Greeting)

do println("Creating Extended Model with ASM Rule");

println("Executing model -to-text with ASM Rule");

try choose with apply outputGreetingGT(Greeting) do skip;

}

20 println("2.1 Hello World transformation finished");

}

// finds (or creates) Greeting , GreetingMessage .Text and Person.Name

308 Saying Hello World with VIATRA2 - A Solution to the TTC 2011 Instructive Case

pattern TextAndNameForGreeting(Greeting ,Text ,Name) = {

helloworldext.Greeting(Greeting) in nemf.resources;

helloworldext.GreetingMessage(GreetingMessage) in Greeting;

helloworldext.Greeting.greetingMessage(GreetingMessageRelation ,

30 Greeting ,GreetingMessage);

EString(Text) in GreetingMessage;

helloworldext.GreetingMessage.text(TextRelation ,GreetingMessage ,Text);

helloworldext.Person(Person) in Greeting;

helloworldext.Greeting.person(PersonRelation ,Greeting ,Person);

EString(Name) in Person;

helloworldext.Person.name(NameRelation ,Person ,Name);

}

40 // GT Rule variant of simple Hello World model instance creation

gtrule createSimpleModelInstanctGT() = {

// the " precondition " is true before the application of the GT Rule

precondition pattern empty ()= {

// negative application condition (must not match)

neg pattern existsGreeting(Greeting) = {

helloworld.Greeting(Greeting);

}

}

// the " postcondition " is true after the application of the GT Rule

50 postcondition pattern createdGreeting(Text) = {

helloworld.Greeting(Greeting) in nemf.resources;

EString(Text) in Greeting;

helloworld.Greeting.text(TextRelation ,Greeting ,Text);

}

action { // additional ASM based manipulations after GT Rule application

setValue(Text ,"Hello world");

}

}

60 // GT Rule variant of extended Hello World model instance creation

gtrule createExtendedModelInstanctGT(out Greeting) = {

precondition pattern empty ()= {

neg pattern existsGreeting(Greeting) = {

helloworldext.Greeting(Greeting);

}

}

postcondition find TextAndNameForGreeting(Greeting , Text , Name)

action {

70 setValue(Text ,"Hello");

setValue(Name ,"TTC Participants");

}

}

// GT Rule variant of model -to -text transformation

gtrule outputGreetingGT(in Greeting) = {

precondition find TextAndNameForGreeting(Greeting , GreetingMessageText , PersonName)

postcondition pattern outputString(Result) = {

80 result.StringResult(Output) in nemf.resources;

EString(Result) in Output;

result.StringResult.result(ResR ,Output ,Result);

}

action{

setValue(Result , value(GreetingMessageText) + " " + value(PersonName) + "!");

}

}

Á. Hegedüs, Z. Ujhelyi & G. Bergmann 309

}

Listing 2: Hello World transformation, GT variant

B.2 Common patterns for the Graph metamodels

import datatypes;

import nemf.packages;

import nemf.ecore.datatypes;

machine graphPatterns

{

// simple type wrapper for Graph

pattern Graph(Graph) = {

graph1.Graph(Graph);

10 }

// simple type wrapper for Node

pattern SimpleNode(Node) = {

graph1.Node(Node);

}

// finds the nodes and name relation of a node

pattern NodesRelations(Graph ,Node ,NodesRelation ,NameRelation) = {

graph1.Node(Node);

20 graph1.Graph(Graph);

graph1.Graph.nodes(NodesRelation ,Graph ,Node);

EString(Name);

graph1.Node.name(NameRelation ,Node ,Name);

}

// finds name from the name relation of a node

pattern nameOfNode(NameRelation ,Name) = {

graph1.Node(Node);

EString(Name);

30 graph1.Node.name(NameRelation ,Node ,Name);

}

// simple type wrapper for Edge

pattern Edge(Edge) = {

graph1.Edge(Edge);

}

// simple type wrapper for Edge in Graph

pattern EdgeOfGraph(Graph ,Edge) = {

40 graph1.Edge(Edge);

graph1.Graph(Graph);

graph1.Graph.edges(EdgesRelation ,Graph ,Edge);

}

// finds the edges relation for a node

pattern EdgesRelation(Graph ,Edge ,EdgesRelation) = {

graph1.Edge(Edge);

graph1.Graph(Graph);

graph1.Graph.edges(EdgesRelation ,Graph ,Edge);

50 }

// finds src relation for Edge

pattern srcAndRelForEdge(Edge ,From ,SourceRelation) = {

graph1.Node(From);

graph1.Edge(Edge);

graph1.Edge.src(SourceRelation ,Edge ,From);

}

// finds trg relation for Edge

310 Saying Hello World with VIATRA2 - A Solution to the TTC 2011 Instructive Case

60 pattern trgAndRelForEdge(Edge ,To,TargetRelation) = {

graph1.Node(To);

graph1.Edge(Edge);

graph1.Edge.trg(TargetRelation ,Edge ,To);

}

// finds looping edges

pattern loopingEdge(Edge) = {

find edgeFromToInternal(Edge ,Node ,Node);

}

70
// From is connected with an edge To

shareable pattern edgeFromToInternal(Edge ,From ,To) = {

graph1.Node(From);

graph1.Node(To);

find srcAndRelForEdge(Edge ,From ,SourceRelation);

find trgAndRelForEdge(Edge ,To ,TargetRelation);

}

// From is connected with an edge To

80 shareable pattern edgeFromTo(From ,To) = {

find edgeFromToInternal(Edge ,From ,To);

}

// From is connected with an edge To and both in Graph

pattern edgeFromToInGraph(From ,To,Graph) = {

find edgeFromToInternal(Edge ,From ,To);

graph1.Graph(Graph);

graph1.Graph.edges(EdgesRelation ,Graph ,Edge);

}

90

// finds isolated nodes

pattern isolatedNode(Node) = {

graph1.Node(Node);

neg find srcAndRelForEdge(Edge ,Node ,SourceRelation); // is not a source

neg find trgAndRelForEdge(Edge ,Node ,TargetRelation); // is not a target

}

// three node in a circle

100 pattern circleOfThreeNode(Node ,Inner1 ,Inner2) = {

graph1.Node(Node);

find edgeFromTo(Node ,Inner1);

find edgeFromTo(Inner1 ,Inner2);

find edgeFromTo(Inner2 ,Node);

}

// edge with either source or target missing

pattern danglingEdge(Edge) = {// has source but no target

find srcAndRelForEdge(Edge ,From ,SourceRelation);

110 neg find trgAndRelForEdge(Edge ,To,TargetRelation);

} or { // has target but no source

find trgAndRelForEdge(Edge ,To ,TargetRelation);

neg find srcAndRelForEdge(Edge ,From ,SourceRelation);

}

// finds the Source of Edge and the corresponding node in the evolved model

pattern OldAndNewSourceOfEdge(Edge ,Source ,Node2) = {

find srcAndRelForEdge(Edge ,Source ,SourceRelation);

graph2.Node(Node2);

120 relation(Traceability ,Source ,Node2);

}

// finds the Target of Edge and the corresponding node in the evolved model

pattern OldAndNewTargetOfEdge(Edge ,Target ,Node2) = {

Á. Hegedüs, Z. Ujhelyi & G. Bergmann 311

find trgAndRelForEdge(Edge ,Target ,TargetRelation);

graph2.Node(Node2);

relation(Traceability ,Target ,Node2);

}

130 // finds traceability relations between nodes

pattern TraceabilityRelation(Traceability) = {

graph1.Node(Node);

graph2.Node(Node2);

relation(Traceability ,Node ,Node2);

}

// finds From and To of an edge and the corresponding new nodes

shareable pattern oldAndNewEdgeFromTo(From ,NewFrom ,To ,NewTo) = {

find edgeFromTo(From ,To);

140 graph1.Node(From);

graph3.Node(NewFrom);

graph1.Node(To);

graph3.Node(NewTo);

relation(Tr1 ,From ,NewFrom);

relation(Tr2 ,To,NewTo);

}

// finds N1 node

pattern N1Node(Node) = {

150 graph1.Node(Node);

EString(Name);

graph1.Node.name(NameRel ,Node ,Name);

check(value(Name) == "n1");

}

// Edge is connected to Node

pattern connectedEdge(Node ,Edge) = {

find srcAndRelForEdge(Edge ,Node ,SourceRelation);

} or {

160 find trgAndRelForEdge(Edge ,Node ,TargetRelation);

}

// From and To (in Graph) are 2-hop transitively connected but not explicitly

pattern transitiveEdgeMissing2hop(From ,To ,Graph) = {

find edgeFromToInGraph(From ,Inner ,Graph);

find edgeFromToInGraph(Inner ,To ,Graph);

neg find edgeFromToInGraph(From ,To,Graph);

}

170 // From and To (in Graph) are transitively connected but not explicitly

@localsearch

pattern transitiveEdgeMissing(From ,To,Graph) = {

find transitiveConnected(From ,To,Graph);

neg find edgeFromToInGraph(From ,To,Graph);

}

// From and To (in Graph) are transitively connected

@localsearch

pattern transitiveConnected(From ,To,Graph) = {

180 find edgeFromToInGraph(From ,Inner ,Graph);

find edgeFromToInGraph(Inner ,To ,Graph);

} or {

find edgeFromToInGraph(From ,Inner ,Graph);

find transitiveConnected(Inner ,To ,Graph);

}

}

Listing 3: Common graph patterns

312 Saying Hello World with VIATRA2 - A Solution to the TTC 2011 Instructive Case

B.3 Count Matches with certain Properties

import datatypes;

import nemf.packages;

import nemf.ecore.datatypes;

@incremental

machine countMatchesASM{

rule main() = seq{

println("2.2 Count matches transformation started");

10 println("Counting number of nodes with ASM Rule");

call countNodes();

println("Counting looping edges with ASM Rule");

call countLoopingEdges();

println("Counting isolated nodes with ASM Rule");

call countIsolatedNodes();

println("Counting circles of three with ASM Rule");

call countCirclesOfThree();

println("Counting dangling edges with ASM Rule");

call countDanglingEdges();

20 println("2.2 Count matches transformation finished");

}

// ASM Rule variant of simple node counting

rule countNodes() = let Count = 0 in seq {

// "forall" is executed on each match of the patterns after "find"

forall Node with find graphPatterns.SimpleNode(Node) do seq{

update Count = Count +1; // update overwrites a variable

}

30 // creates EMF model for result

call createResult(Count , "Number of nodes");

}

// ASM Rule variant of looping edge counting

rule countLoopingEdges() = let Count = 0 in seq {

forall Edge with find graphPatterns.loopingEdge(Edge) do seq{

update Count = Count +1;

}

40 call createResult(Count , "Number of looping edges");

}

// ASM Rule variant of isolated node counting

rule countIsolatedNodes() = let Count = 0 in seq {

forall Node with find graphPatterns.isolatedNode(Node) do seq{

update Count = Count +1;

}

call createResult(Count , "Number of isolated nodes");

50 }

// ASM Rule variant of circle of three counting

rule countCirclesOfThree() = let Count = 0 in seq {

forall Node ,Inner1 ,Inner2 with

find graphPatterns.circleOfThreeNode(Node ,Inner1 ,Inner2) do seq{

update Count = Count +1;

}

call createResult(Count , "Number of nodes in circles of three");

60 }

// ASM Rule variant of dangling edge counting

rule countDanglingEdges() = let Count = 0 in seq {

Á. Hegedüs, Z. Ujhelyi & G. Bergmann 313

forall Edge with find graphPatterns.danglingEdge(Edge) do seq{

update Count = Count +1;

}

call createResult(Count , "Number of dangling edges");

}

70
// ASM Rule for result storing

rule createResult(in ResultValue , in Name) = let Result = undef ,

Value = undef , ResR = undef in seq{

new(result.IntResult(Result) in nemf.resources);

new(EInt(Value) in Result);

new(result.IntResult.result(ResR ,Result ,Value));

rename(Value ,Name);

setValue(Value , ResultValue);

}

80 }

Listing 4: Count matches transformation, ASM variant

import datatypes;

import nemf.packages;

import nemf.ecore.datatypes;

@incremental

machine countMatchesMC{

rule main() = seq{

println("2.2 Count matches transformation started");

10 println("Counting number of nodes with MCRule");

call countNodesMC();

println("Counting looping edges with MC Rule");

call countLoopingEdgesMC();

println("Counting isolated nodes with MC Rule");

call countIsolatedNodesMC();

println("Counting circles of three with MC Rule");

call countCirclesOfThreeMC();

println("Counting dangling edges with MC Rule");

call countDanglingEdgesMC();

20 println("2.2 Count matches transformation finished");

}

pattern countNodesPattern(N) = {

find graphPatterns.SimpleNode(Node) # N; // counts the number of nodes

}

// MC Rule variant of simple node counting

rule countNodesMC() = seq {

30 try choose Count with find countNodesPattern(Count) do

let Result = undef , ResR = undef , NodeCount = undef in seq{

call createResult2(Count , "Number of nodes");

}

}

pattern countLoopingEdgesPattern(N) = {

find graphPatterns.loopingEdge(Edge) # N;

}

40 // MC Rule variant of looping edge counting

rule countLoopingEdgesMC() = seq {

try choose Count with find countLoopingEdgesPattern(Count) do

let Result = undef , ResR = undef , LoopCount = undef in seq{

call createResult2(Count , "Number of looping edges");

314 Saying Hello World with VIATRA2 - A Solution to the TTC 2011 Instructive Case

}

}

pattern countIsolatedNodesPattern(N) = {

50 find graphPatterns.isolatedNode(Node) # N;

}

// MC Rule variant of isolated node counting

rule countIsolatedNodesMC() = seq {

try choose Count with find countIsolatedNodesPattern(Count) do

let Result = undef , ResR = undef , IsolatedCount = undef in seq{

call createResult2(Count , "Number of isolated nodes");

}

60 }

pattern countCirclesOfThreePattern(N) = {

find graphPatterns.circleOfThreeNode(Node ,Inner1 ,Inner2) # N;

}

// MC Rule variant of circles of three counting

rule countCirclesOfThreeMC() = seq {

try choose Count with find countCirclesOfThreePattern(Count) do

70 let Result = undef , ResR = undef , CircleCount = undef in seq{

call createResult2(Count , "Number of nodes in circles of three");

}

}

pattern countDanglingEdgesPattern(N) = {

find graphPatterns.danglingEdge(Node) # N;

}

// MC Rule variant of dangling edge counting

80 rule countDanglingEdgesMC() = seq {

try choose Count with find countDanglingEdgesPattern(Count) do

let Result = undef , ResR = undef , DanglingCount = undef in seq{

call createResult2(Count , "Number of dangling edges");

}

}

// ASM Rule for result storing

rule createResult2(in ResultValue , in Name) = let Result = undef ,

90 Value = undef , ResR = undef in seq{

new(result.IntResult(Result) in nemf.resources);

new(EInt(Value) in Result);

new(result.IntResult.result(ResR ,Result ,Value));

rename(Value ,Name);

setValue(Value , ResultValue);

}

}

Listing 5: Count matches transformation, match count variant

B.4 Reverse Edges

import datatypes;

import nemf.packages;

import nemf.ecore.datatypes;

@incremental

machine reverseEdgesASM{

rule main() = seq{

Á. Hegedüs, Z. Ujhelyi & G. Bergmann 315

println("2.3 Reverse edges transformation started");

10 call reverseEdges();

println("2.3 Reverse edges transformation finished");

}

// ASM Rule variant for reverse edges

rule reverseEdges() = seq{

forall Edge with find graphPatterns.Edge(Edge) do let SR = undef , TR = undef in seq{

// finds src relation if exists

println(" > Reversing " + name(Edge) + " edge.");

20 try choose Source , SourceRelation with

find graphPatterns.srcAndRelForEdge(Edge ,Source ,SourceRelation) do seq{

update SR = SourceRelation;

}

// finds trg relation if exists

try choose Target , TargetRelation with

find graphPatterns.trgAndRelForEdge(Edge ,Target ,TargetRelation) do seq{

update TR = TargetRelation;

}

if(SR != undef) seq{

30 // replace instanceOf relation

// instanceOf is a relation type , which can be dynamically deleted

delete(instanceOf(SR,nemf.packages.graph1.Edge.src));

new(instanceOf(SR,nemf.packages.graph1.Edge.trg)); // and created

}

if(TR != undef) seq{

// replace instanceOf relation

delete(instanceOf(TR,nemf.packages.graph1.Edge.trg));

new(instanceOf(TR,nemf.packages.graph1.Edge.src));

}

40 }

}

}

Listing 6: Reverse edges transformation, ASM variant

import datatypes;

import nemf.packages;

import nemf.ecore.datatypes;

@incremental

machine reverseEdgesGT{

rule main() = seq{

println("2.3 Reverse edges transformation started");

10 forall Edge with apply reverseEdgesGT(Edge) do

println(" > Reversing " + name(Edge) + " edge.");

println("2.3 Reverse edges transformation finished");

}

// GT Rule variant for reverse edges

// note: add " shareable" keyword before "pattern" to

// actually reverse looping edges as well

gtrule reverseEdgesGT(out Edge) = {

precondition pattern edgeWithRelations(Edge ,From ,To,SourceRel ,TargetRel) = {

20 find graphPatterns.srcAndRelForEdge(Edge ,From ,SourceRel);

find graphPatterns.trgAndRelForEdge(Edge ,To,TargetRel);

}

postcondition pattern reversedEdges(Edge ,From ,To,SourceRel ,TargetRel) = {

find graphPatterns.srcAndRelForEdge(Edge ,To,SourceRel);

find graphPatterns.trgAndRelForEdge(Edge ,From ,TargetRel);

}

}

316 Saying Hello World with VIATRA2 - A Solution to the TTC 2011 Instructive Case

}

Listing 7: Reverse edges transformation, GT variant

import datatypes;

import nemf.packages;

import nemf.ecore.datatypes;

@incremental

machine reverseEdgesRel{

rule main() = seq{

println("2.3 Reverse edges transformation started");

10 call reverseEdges();

println("2.3 Reverse edges transformation finished");

}

// ASM Rule variant for reverse edges

rule reverseEdges () = seq{

forall Edge with find graphPatterns.Edge(Edge) do

let S = undef , SR = undef , T = undef , TR = undef in seq{

// finds src relation if exists

20 println(" > Reversing " + name(Edge) + " edge.");

try choose Source ,SourceRelation with

find graphPatterns.srcAndRelForEdge(Edge ,Source ,SourceRelation) do seq{

update S = Source;

update SR = SourceRelation;

}

// finds trg relation if exists

try choose Target ,TargetRelation with

find graphPatterns.trgAndRelForEdge(Edge ,Target ,TargetRelation) do seq{

update T = Target;

30 update TR = TargetRelation;

}

if(T != undef) seq{

println(" > Reversing target to source: " + name(T));

if(SR != undef) setTo(SR,T); // change target of relation

else seq{

delete(TR);

new(graph1.Edge.src(SR,Edge ,T));

}

}

40 if(S != undef) seq{

println(" > Reversing source to target: " + name(S));

if(TR != undef) setTo(TR,S);

else seq{

delete(SR);

new(graph1.Edge.trg(TR,Edge ,S));

}

}

}

}

50 }

Listing 8: Reverse edges transformation, relation manipulation variant

B.5 Simple Migration

import datatypes;

import nemf.packages;

import nemf.ecore.datatypes;

@incremental

Á. Hegedüs, Z. Ujhelyi & G. Bergmann 317

machine simpleMigration{

rule main() = seq{

10 println("2.4 Simple Migration (with copy) transformation started");

call migrateGraph();

println("2.4 Simple Migration (with copy) transformation finished");

}

// ASM Rule variant of simple migration transformation

rule migrateGraph() = seq{

forall Graph with find graphPatterns.Graph(Graph) do

let Graph2 = undef , GCSRel = undef in seq{

20 new(graph2.Graph(Graph2) in nemf.resources); // create graph

forall Node ,NodesRelation , NameRelation with

// for each node , create a new

find graphPatterns.NodesRelations(Graph ,Node ,NodesRelation , NameRelation) do

let Node2 = undef , Text = undef , TextRel = undef ,Traceability = undef in seq{

new(graph2.Node(Node2) in Graph2);

new(graph2.Graph.gcs(GCSRel ,Graph2 ,Node2));

new(EString(Text) in Node2);

try choose Name with find graphPatterns.nameOfNode(NameRelation ,Name) do seq{

30 setValue(Text ,value(Name));

}

new(graph2.GraphComponent.text(TextRel ,Node2 ,Text));

// store the traceability between old and new node

new(relation(Traceability ,Node ,Node2));

}

// for each edge , create a new

forall Edge ,EdgesRelation with

find graphPatterns.EdgesRelation(Graph ,Edge ,EdgesRelation) do

40 let Edge2 = undef ,Text = undef ,TextRel = undef , EvolvedRel = undef in seq{

new(graph2.Edge(Edge2) in Graph2);

new(graph2.Graph.gcs(GCSRel ,Graph2 ,Edge2));

new(EString(Text) in Edge2);

new(graph2.GraphComponent.text(TextRel ,Edge ,Text));

// each source relation is created to the corresponding node

forall Source ,Node2 with

find graphPatterns.OldAndNewSourceOfEdge(Edge ,Source ,Node2) do seq{

new(graph2.Edge.src(EvolvedRel ,Edge2 ,Node2));

}

50 forall Target ,Node2 with

find graphPatterns.OldAndNewTargetOfEdge(Edge ,Target ,Node2) do seq{

// each tagret relation is created to the corresponding node

new(graph2.Edge.trg(EvolvedRel ,Edge2 ,Node2));

}

}

// delete traceability models

forall Traceability with

find graphPatterns.TraceabilityRelation(Traceability) do seq{

60 delete(Traceability);

}

}

}

}

Listing 9: Simple Migration transformation, copy variant

import datatypes;

import nemf.packages;

import nemf.ecore.datatypes;

318 Saying Hello World with VIATRA2 - A Solution to the TTC 2011 Instructive Case

@incremental

machine simpleMigrationInplace{

rule main() = seq{

10 println("2.4 Simple Migration (in-place) transformation started");

call migrateGraphInplace();

println("2.4 Simple Migration (in-place) transformation finished");

}

// ASM Rule variant of simple migration in -place transformation

rule migrateGraphInplace() = seq{

// at this point , each Graph is transformed

forall Graph with find graphPatterns.Graph(Graph) do seq{

20 // each node is transformed using instanceOf changing

forall Node ,NodesRelation , NameRelation with

find graphPatterns.NodesRelations(Graph ,Node ,NodesRelation , NameRelation) do seq{

delete(instanceOf(Node ,nemf.packages.graph1.Node));

new(instanceOf(Node ,nemf.packages.graph2.Node));

delete(instanceOf(NodesRelation ,nemf.packages.graph1.Graph.nodes));

new(instanceOf(NodesRelation ,nemf.packages.graph2.Graph.gcs));

delete(instanceOf(NameRelation ,nemf.packages.graph1.Node.name));

new(instanceOf(NameRelation ,nemf.packages.graph2.GraphComponent.text));

}

30
// each edge is transformed using instanceOf changing

forall Edge ,EdgesRelation with

find graphPatterns.EdgesRelation(Graph ,Edge ,EdgesRelation) do

let Text = undef ,TextRel = undef in seq{

delete(instanceOf(Edge ,nemf.packages.graph1.Edge));

new(instanceOf(Edge ,nemf.packages.graph2.Edge));

delete(instanceOf(EdgesRelation ,nemf.packages.graph1.Graph.edges));

new(instanceOf(EdgesRelation ,nemf.packages.graph2.Graph.gcs));

new(EString(Text) in Edge);

40 new(graph2.GraphComponent.text(TextRel ,Edge ,Text));

}

// the graph is transformed

delete(instanceOf(Graph ,nemf.packages.graph1.Graph));

new(instanceOf(Graph ,nemf.packages.graph2.Graph));

}

}

}

Listing 10: Simple Migration transformation, in-place variant

import datatypes;

import nemf.packages;

import nemf.ecore.datatypes;

@incremental

machine simpleMigrationTopology{

rule main() = seq{

10 println("2.4 Simple Migration (topoogy change with copy) transformation started");

call topologyChange();

println("2.4 Simple Migration (topoogy change with copy) transformation finished");

}

// ASM Rule variant of topology -changing migration

rule topologyChange() = seq{

forall Graph with find graphPatterns.Graph(Graph) do

let NewGraph = undef , Rel = undef in seq{

Á. Hegedüs, Z. Ujhelyi & G. Bergmann 319

new(graph3.Graph(NewGraph) in nemf.resources);

20
forall Node ,NodesRelation , NameRelation with

find graphPatterns.NodesRelations(Graph ,Node ,NodesRelation , NameRelation) do

let NewNode = undef , Text = undef , Traceability = undef in seq{

new(graph3.Node(NewNode) in NewGraph);

new(graph3.Graph.nodes(Rel ,NewGraph ,NewNode));

new(EString(Text) in NewNode);

try choose Name with find graphPatterns.nameOfNode(NameRelation ,Name) do seq{

setValue(Text ,value(Name));

}

30 new(graph3.Node.text(Rel ,NewNode ,Text));

new(relation(Traceability ,Node ,NewNode));

}

forall From ,To,NewFrom ,NewTo with

find graphPatterns.oldAndNewEdgeFromTo(From ,NewFrom ,To ,NewTo) do

let LinksToRel = undef in seq{

new(graph3.Node.linksTo(LinksToRel ,NewFrom ,NewTo));

}

forall Traceability with

40 find graphPatterns.TraceabilityRelation(Traceability) do seq{

delete(Traceability);

}

}

}

}

Listing 11: Simple Migration Topology changing transformation, copy variant

import datatypes;

import nemf.packages;

import nemf.ecore.datatypes;

@incremental

machine simpleMigrationTopologyInplace{

rule main() = seq{

10 println("2.4 Simple Migration (topology change in-place) transformation started");

call topologyChangeInplace();

println("2.4 Simple Migration (topology change in-place) transformation finished");

}

// ASM Rule variant of topology -changing in -place migration

rule topologyChangeInplace() = seq{

forall Graph with find graphPatterns.Graph(Graph) do seq{

forall Node ,NodesRelation , NameRelation with

20 find graphPatterns.NodesRelations(Graph ,Node ,NodesRelation ,NameRelation) do

seq{ //

delete(instanceOf(Node ,nemf.packages.graph1.Node));

new(instanceOf(Node ,nemf.packages.graph3.Node));

delete(instanceOf(NodesRelation ,nemf.packages.graph1.Graph.nodes));

new(instanceOf(NodesRelation ,nemf.packages.graph3.Graph.nodes));

delete(instanceOf(NameRelation ,nemf.packages.graph1.Node.name));

new(instanceOf(NameRelation , nemf.packages.graph3.Node.text));

forall To with find graphPatterns.edgeFromTo(Node ,To) do

30 let LinksToRel = undef in seq{

new(graph3.Node.linksTo(LinksToRel ,Node ,To));

}

}

forall Edge ,EdgesRelation with

320 Saying Hello World with VIATRA2 - A Solution to the TTC 2011 Instructive Case

find graphPatterns.EdgesRelation(Graph ,Edge ,EdgesRelation) do seq{

delete(Edge);

}

40 delete(instanceOf(Graph ,nemf.packages.graph1.Graph));

new(instanceOf(Graph , nemf.packages.graph3.Graph));

}

}

}

Listing 12: Simple Migration Topology changing transformation, in-place variant

B.6 Delete Node with Specific Name and its Incident Edges

import datatypes;

import nemf.packages;

import nemf.ecore.datatypes;

@incremental

machine deleteNodeASM{

rule main() = seq{

println("2.5 Delete nodes transformation started");

10 call deleteNode();

println("2.3 Delete nodes transformation finished");

}

rule deleteNode() = seq{

try choose N1 with find graphPatterns.N1Node(N1) do seq{

delete(N1);

}

}

}

Listing 13: Delete node transformation, ASM variant

import datatypes;

import nemf.packages;

import nemf.ecore.datatypes;

@incremental

machine deleteNodeGT{

rule main() = seq{

println("2.5 Delete n1 node transformation (GT) started");

10 try choose with apply deleteNodeGT() do skip;

println("2.3 Delete n1 node transformation finished");

}

gtrule deleteNodeGT() = {

precondition find graphPatterns.N1Node(N1)

postcondition pattern noN1(N1) = {

neg find graphPatterns.N1Node(N1);

}

20 }

}

Listing 14: Delete node transformation, GT variant

import datatypes;

import nemf.packages;

Á. Hegedüs, Z. Ujhelyi & G. Bergmann 321

import nemf.ecore.datatypes;

@incremental

machine deleteNodeIncidentASM{

rule main() = seq{

println("2.5 Delete nodes transformation started");

10 println("Deleting incident edges as well");

call deleteNodeAndIncidentEdges();

println("2.3 Delete nodes transformation finished");

}

rule deleteNodeAndIncidentEdges() = seq{

try choose N1 with find graphPatterns.N1Node(N1) do seq{

forall Edge with find graphPatterns.connectedEdge(N1,Edge) do seq{

delete(Edge);

}

20 delete(N1);

}

}

}

Listing 15: Delete node and incident edges transformation, ASM variant

import datatypes;

import nemf.packages;

import nemf.ecore.datatypes;

@incremental

machine deleteNodeIncidentGT{

rule main() = seq{

println("2.5 Delete n1 node transformation (GT) started");

10 println("Deleting incident edges as well");

try choose with apply deleteNodeAndIncidentEdgesGT() do skip;

println("2.3 Delete n1 node transformation finished");

}

gtrule deleteNodeGT(in N1) = {

precondition find graphPatterns.N1Node(N1)

postcondition pattern noN1(N1) = {

neg find graphPatterns.N1Node(N1);

20 }

}

gtrule deleteNodeAndIncidentEdgesGT() = {

precondition find graphPatterns.N1Node(N1)

action{

forall Edge with apply deleteIncidentEdgesOfNode(N1 ,Edge) do skip;

try choose with apply deleteNodeGT(N1) do skip;

}

30 }

gtrule deleteIncidentEdgesOfNode(in Node , out Edge) = {

precondition find graphPatterns.connectedEdge(Node ,Edge)

postcondition pattern noConnectingEdge(Node ,Edge) = {

graph1.Node(Node);

neg find graphPatterns.connectedEdge(Node ,Edge);

}

}

322 Saying Hello World with VIATRA2 - A Solution to the TTC 2011 Instructive Case

40 }

Listing 16: Delete node and incident edges transformation, GT variant

B.7 Insert Transitive Edges

import datatypes;

import nemf.packages;

import nemf.ecore.datatypes;

@incremental

machine transitiveEdgesASM{

rule main() = seq{

println("2.6 Transitive edges (R u R^2) transformation (ASM) started");

10 call insertTransitiveEdgesOnce();

println("2.6 Transitive edges transformation finished");

}

// ASM Rule variant for inserting edges

// between each pair of transitively connected nodes

rule insertTransitiveEdgesOnce() = seq{

forall From , To , Graph with

find graphPatterns.transitiveEdgeMissing2hop(From ,To ,Graph) do

let TransitiveEdge = undef , Rel = undef in seq{

20 new(graph1.Edge(TransitiveEdge) in Graph);

new(graph1.Graph.edges(Rel ,Graph ,TransitiveEdge));

new(graph1.Edge.src(Rel ,TransitiveEdge ,From));

new(graph1.Edge.trg(Rel ,TransitiveEdge ,To));

}

}

}

Listing 17: Insert transitive edges transformation, ASM variant

import datatypes;

import nemf.packages;

import nemf.ecore.datatypes;

@incremental

machine transitiveEdgesGT{

rule main() = seq{

println("2.6 Transitive edges (R u R^2) transformation (GT) started");

10 forall From , To with apply insertTransitiveEdgesOnceGT(From , To) do skip;

println("2.6 Transitive edges transformation finished");

}

// GT Rule for inserting transitive edges between From and To

gtrule insertTransitiveEdgesOnceGT(out From , out To) = {

precondition find graphPatterns.transitiveEdgeMissing2hop(From ,To ,Graph)

postcondition find graphPatterns.edgeFromToInGraph(From ,To ,Graph)

}

20 }

Listing 18: Insert transitive edges transformation, GT variant

import datatypes;

import nemf.packages;

import nemf.ecore.datatypes;

@incremental

Á. Hegedüs, Z. Ujhelyi & G. Bergmann 323

machine transitiveEdgesIterativeASM{

rule main() = seq{

println("2.6 Transitive edges (R u R^2) transformation (ASM) started");

10 println("Insert edges iteratively");

call insertTransitiveEdgesIterative();

println("2.6 Transitive edges transformation finished");

}

// ASM Rule variant for inserting edges between each transitively connected nodes

rule insertTransitiveEdgesIterative() = seq{

iterate choose From , To, Graph with

find graphPatterns.transitiveEdgeMissing2hop(From ,To ,Graph) do

let TransitiveEdge = undef , Rel = undef in seq{

20 new(graph1.Edge(TransitiveEdge) in Graph);

new(graph1.Graph.edges(Rel ,Graph ,TransitiveEdge));

new(graph1.Edge.src(Rel ,TransitiveEdge ,From));

new(graph1.Edge.trg(Rel ,TransitiveEdge ,To));

}

}

}

Listing 19: Insert all transitive edges iteratively transformation, ASM variant

import datatypes;

import nemf.packages;

import nemf.ecore.datatypes;

@incremental

machine transitiveEdgesIterativeGT{

rule main() = seq{

println("2.6 Transitive edges (R u R^2) transformation (GT) started");

10 println("Insert edges iteratively");

iterate choose From , To with apply insertTransitiveEdgesOnceGT(From , To) do skip;

println("2.6 Transitive edges transformation finished");

}

// GT Rule for inserting transitive edges between From and To

gtrule insertTransitiveEdgesOnceGT(out From , out To) = {

precondition find graphPatterns.transitiveEdgeMissing2hop(From ,To ,Graph)

postcondition find graphPatterns.edgeFromToInGraph(From ,To ,Graph)

20 }

}

Listing 20: Insert all transitive edges iteratively transformation, GT variant

import datatypes;

import nemf.packages;

import nemf.ecore.datatypes;

machine transitiveEdgesAllASM{

rule main() = seq{

println("2.6 Transitive edges (R u R^2 ... u R^n) transformation (ASM) started");

call insertTransitiveEdgesAll();

10 println("2.6 Transitive edges transformation finished");

}

// ASM Rule variant for inserting edges

// between each pair of transitively connected nodes

rule insertTransitiveEdgesAll() = seq{

forall From , To , Graph with

324 Saying Hello World with VIATRA2 - A Solution to the TTC 2011 Instructive Case

find graphPatterns.transitiveEdgeMissing(From ,To ,Graph) do

let TransitiveEdge = undef , Rel = undef in seq{

new(graph1.Edge(TransitiveEdge) in Graph);

20 new(graph1.Graph.edges(Rel ,Graph ,TransitiveEdge));

new(graph1.Edge.src(Rel ,TransitiveEdge ,From));

new(graph1.Edge.trg(Rel ,TransitiveEdge ,To));

}

}

}

Listing 21: Insert all transitive edges transformation, ASM variant

import datatypes;

import nemf.packages;

import nemf.ecore.datatypes;

machine transitiveEdgesAllGT{

rule main() = seq{

println("2.6 Transitive edges (R u R^2 ... u R^n) transformation (GT) started");

forall From , To with apply insertTransitiveEdgesAllGT(From , To) do skip;

10 println("2.6 Transitive edges transformation finished");

}

// GT Rule for inserting transitive edges between From and To

gtrule insertTransitiveEdgesAllGT(out From , out To) = {

precondition find graphPatterns.transitiveEdgeMissing(From ,To ,Graph)

postcondition find graphPatterns.edgeFromToInGraph(From ,To ,Graph)

}

}

Listing 22: Insert all transitive edges transformation, GT variant

	1 Introduction
	2 Transformation tasks
	2.1 Hello World!
	2.2 Count Matches with certain Properties
	2.3 Reverse Edges
	2.4 Simple Migration
	2.5 Delete Node with Specific Name and its Incident Edges
	2.6 Insert Transitive Edges

	3 Conclusion
	A Solution demo and implementation
	B Appendix - Hello World! transformations
	B.1 Hello World!
	B.2 Common patterns for the Graph metamodels
	B.3 Count Matches with certain Properties
	B.4 Reverse Edges
	B.5 Simple Migration
	B.6 Delete Node with Specific Name and its Incident Edges
	B.7 Insert Transitive Edges

