
Van Gorp, Mazanek and Rose (Eds.):
Fifth Transformation Tool Contest (TTC 2011)
EPTCS 74, 2011, pp. 1–5, doi:10.4204/EPTCS.74.1

c© M. Herrmannsdoerfer
This work is licensed under the
Creative Commons Attribution License.

GMF: A Model Migration Case for the Transformation Tool
Contest

Markus Herrmannsdoerfer
Institut für Informatik, Technische Universität München

herrmama@in.tum.de

Using a real-life evolution taken from the Graphical Modeling Framework, we invite submissions to
explore ways in which model transformation and migration tools can be used to migrate models in
response to metamodel adaptation.

1 Model Migration

Modeling languages and thus their metamodels are subject to evolution [2]. When a metamodel is
adapted, existing models may no longer conform to the adapted metamodel and thus need to be migrated.
Model migration is a special case of exogenous model transformation [7], since original and adapted
metamodel are usually different from each other. However, the metamodel versions also share some sim-
ilarity, as the metamodel is usually not completely changed during metamodel adaptation [14]. Conse-
quently, migrating transformation definitions usually contain identity rules for the unchanged metamodel
parts. To remove this boilerplate code, different approaches have been proposed [13].

Manual specification approaches—like Sprinkle’s language [14], MCL [8] and Epsilon Flock [11]—
extend transformation languages so that they automatically copy model elements that are unaffected by
metamodel adaptations. Operator-based approaches—like Ecoral [15] and COPE [4]—provide reusable
operators that encapsulate recurring metamodel adaptations and model migrations. Metamodel matching
approaches—like Cicchetti’s approach [1] and AML [3]—automatically derive a transformation defini-
tion from the difference between two metamodel versions. The existing approaches mostly use or extend
existing model transformation languages and tools.

To compare the different ways in which model migration can be defined, we propose a real-life case
from the evolution of the Graphical Modeling Framework (GMF). The case is already well-researched,
as it has been used in an empirical [5] and a comparative study [10]. It exhibits a number of differences
to last year’s migration case [12]: (1) Most of the metamodel remains the same which is more typical for
model migration. (2) The migration is more complex and thus requires more expressive transformation
languages. (3) GMF provides a reference migrator implemented in Java which defines the migration
semantics. (4) GMF provides a number of test cases which can be used for validating the solutions.

2 Graphical Modeling Framework

The Graphical Modeling Framework (GMF)1 is a widely used open source framework for the model-
driven development of diagram editors based on the Eclipse Modeling Framework (EMF). GMF is a
prime example for a Model-Driven Architecture (MDA) [6], as it strictly separates platform-independent

1http://www.eclipse.org/modeling/gmp/

http://dx.doi.org/10.4204/EPTCS.74.1
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://www.eclipse.org/modeling/gmp/

2 GMF: A Model Migration Case for the Transformation Tool Contest

(a) Definition

(b) Implementation

Figure 1: Graphical Modeling Framework

models (PIM), platform-specific models (PSM) and code. GMF is implemented on top of the Eclipse
Modeling Framework (EMF)2 and the Graphical Editing Framework (GEF)3. Figure 1(a) shows the GMF
dashboard which supports the process of creating the models of the diagram editor.

The GMF models are based on a domain model expressed in Ecore from which an appropriate
domain generator model can be derived. GMF provides wizards to derive the following models from
the domain model: the graphical definition model defines the graphical elements like nodes and edges
in the diagram, and the tooling definition model defines the tools available to author a diagram. The
mapping model maps graphical elements from the graphical definition model and the tools from the
tooling definition model to the constructs from the domain model. The mapping model is transformed
into a diagram generator model from which a diagram editor can be generated. The diagram generator
model can be altered to customize the code generation.

Figure 1(b) shows the diagram editor generated from GMF models defined for a statemachine mod-
eling language. The diagram editor shows the graphical elements in the diagram and the tools in the
palette. GMF also provides more advanced features like e. g. annotating, zooming and layouting for the
generated editor. The properties of a graphical element can be accessed through the properties view.

3 Evolution of GMF Graph

Here, we consider one of those metamodels—GMF Graph—to which graphical definition models have
to conform.

2http://www.eclipse.org/modeling/emf
3http://www.eclipse.org/gef

http://www.eclipse.org/modeling/emf
http://www.eclipse.org/gef

M. Herrmannsdoerfer 3

DiagramElement

Node Compartment Connection DiagramLabel

CanvasFigureGallery

name: String

Figure

* nodes
* compartments

* connections
* labels

*

figures

* figures

*

children
figure

1

*

referencing-

Elements

RoundedRectangle PolylineConnection

(a) Metamodel

statemachine: Canvas

Default: FigureGallery

StateFigure: RoundedRectangle

StateNameFigure: Label

TransitionFigure: PolylineConnection

TransitionEffectFigure: Label

TransitionTriggerFigure: Label

Transition: ConnectionState: Node

StateName: DiagramLabel

TransitionTrigger: DiagramLabel

TransitionEffect: DiagramLabel

figure figure figurefigure figure

(b) Model

Figure 2: GMF version 1.0

Figure 2(a) shows the part of the GMF Graph metamodel that has changed from GMF version 1.0 to
2.1 as a class diagram. The GMF Graph metamodel describes the appearance of the generated diagram
editor. The classes Canvas, Figure, Node, DiagramLabel, Connection, and Compartment are used to
represent components of the diagram editor to be generated. Figure 2(b) shows the model to define the
graphical elements of the statemachine modeling language in a modified object diagram—objects that
are contained in other objects by means of a composition are shown inside these objects.

The evolution in the GMF Graph metamodel was driven by analyzing the usage of the Figure.refe-
rencingElements reference, which relates Figures to the DiagramElements that use them. As described
in the GMF Graph documentation4, the referencingElements reference increased the effort required to
reuse figures—a common activity for users of GMF. Furthermore, referencingElements was used only
by the GMF code generator to determine whether an accessor should be generated for nested Figures.

In GMF 2.1, the Graph metamodel was evolved to make reusing figures more straightforward by
introducing a proxy for Figure, termed FigureDescriptor. Figure 3(a) highlights the changes that have
been made to the GMF Graph metamodel. The original referencingElements reference was removed, and
an extra class, ChildAccess, was added to make more explicit the original purpose of referencingElem-
ents—accessing nested Figures. Figure 3(b) shows the migrated model of the graphical elements of the
statemachine modeling language. Instances of FigureDescriptor and ChildAccess have been introduced
as interfaces for the figures that can now be more easily reused using these interfaces.

GMF provides a migrator that produces a model conforming to the evolved Graph metamodel from
a model conforming to the original Graph metamodel5. In GMF, the migration is implemented in Java6.
The version control system of GMF provides test models to validate the migrator which can be used to
validate the submitted solutions7. The GMF source code includes two example editors, for which the
version control system contains versions conforming to GMF 1.0 and GMF 2.1.

4http://wiki.eclipse.org/GMFGraph_Hints
5http://wiki.eclipse.org/GMF_Migration
6http://dev.eclipse.org/viewcvs/viewvc.cgi/org.eclipse.gmp/org.eclipse.gmf.tooling/plugins/

org.eclipse.gmf.graphdef/src/org/eclipse/gmf/internal/graphdef/util/MigrateFactory2005.java?

root=Modeling_Project&view=log
7http://dev.eclipse.org/viewcvs/viewvc.cgi/org.eclipse.gmp/org.eclipse.gmf.tooling/tests/org.

eclipse.gmf.tests/models/migration/?root=Modeling_Project

http://wiki.eclipse.org/GMFGraph_Hints
http://wiki.eclipse.org/GMF_Migration
http://dev.eclipse.org/viewcvs/viewvc.cgi/org.eclipse.gmp/org.eclipse.gmf.tooling/plugins/org.eclipse.gmf.graphdef/src/org/eclipse/gmf/internal/graphdef/util/MigrateFactory2005.java?root=Modeling_Project&view=log
http://dev.eclipse.org/viewcvs/viewvc.cgi/org.eclipse.gmp/org.eclipse.gmf.tooling/plugins/org.eclipse.gmf.graphdef/src/org/eclipse/gmf/internal/graphdef/util/MigrateFactory2005.java?root=Modeling_Project&view=log
http://dev.eclipse.org/viewcvs/viewvc.cgi/org.eclipse.gmp/org.eclipse.gmf.tooling/plugins/org.eclipse.gmf.graphdef/src/org/eclipse/gmf/internal/graphdef/util/MigrateFactory2005.java?root=Modeling_Project&view=log
http://dev.eclipse.org/viewcvs/viewvc.cgi/org.eclipse.gmp/org.eclipse.gmf.tooling/tests/org.eclipse.gmf.tests/models/migration/?root=Modeling_Project
http://dev.eclipse.org/viewcvs/viewvc.cgi/org.eclipse.gmp/org.eclipse.gmf.tooling/tests/org.eclipse.gmf.tests/models/migration/?root=Modeling_Project

4 GMF: A Model Migration Case for the Transformation Tool Contest

DiagramElement

Node Compartment Connection DiagramLabel

CanvasFigureGallery

name: String

RealFigure

* nodes
* compartments

* connections
* labels

*

figures

*

figures

accessor 1

FigureDescriptor ChildAccess

Figure

*

accessors

1

actualFigure

* children

1 figure

*

descriptors
RoundedRectangle PolylineConnection

(a) Metamodel

statemachine: Canvas

Default: FigureGallery

StateFigure: FigureDescriptor

StateFigure: RoundedRectangle

StateNameFigure: Label

TransitionFigure: FigureDescriptor

TransitionFigure: PolylineConnection

TransitionEffectFigure: Label

TransitionTriggerFigure: Label

Transition: Connection

State: Node

StateName: DiagramLabel

TransitionTrigger: DiagramLabel

TransitionEffect: DiagramLabel

figure

figure

getFigureStateNameFigure: ChildAccess

getFigureTransitionTriggerFigure: ChildAccess

getFigureTransitionEffectFigure: ChildAccess

figure

figure

figure accessor figurefigure figureaccessor accessor

(b) Model

Figure 3: GMF version 2.1

4 Tasks and Criteria

Core Task. The case consists of a core task and two extensions. The core task is to use a model trans-
formation or migration tool to perform the migration explained in Section 3. Submissions are evaluated
according to the following criteria:

• Expressiveness: Is the language on which the transformation tool is based expressive enough to
specify the migration? Or is it required to use a programming language to be able to completely
specify the migration?

• Correctness: Does the transformation correctly migrate the test cases included in the case re-
sources? Does the transformation produce a model equivalent to the model migrated by the GMF
migrator?

• Conciseness: How much code is required to specify the transformation? Is the size of the code
proportional to the number of differences between the metamodel versions or to the size of the
metamodel versions?

• Maintainability: How easy is it to read and understand the transformation? How easy is it to
modify or extend the transformation?

The case resources include the different GMF Graph metamodel versions as well as the test models.

Multi-File Models. In GMF, models can be split over several files to be able to modularize them.
When migrating a multi-file model, the modularization should be preserved by the transformation. In
this extension, submissions should show that they are able to preserve the modularization into files. To
facilitate this, the case resources include multi-file models for both metamodel versions.

GMF Map metamodel. The GMF Map metamodel defines the structure to which mapping models
need to conform. It has also been adapted from GMF 1.0 to GMF 2.1, but the migration is much more

M. Herrmannsdoerfer 5

simple than in case of GMF Graph8. However, this migrating transformation poses a number of other
challenges. (1) The GMF Map metamodel refers to other metamodels, and thus GMF Map models also
refer to models of these metamodels. A transformation needs to be able to preserve these references.
(2) The GMF Map metamodel has been released one more time than the GMF Graph metamodel. Thus,
a transformation needs to detect the version of the model and appropriately migrate it to the newest
version of the metamodel. To be able to do this, the transformation tool needs to be able to chain
transformation definitions [9]. In this extension, submissions should show that they are able to cope with
these challenges. To facilitate this, the case resources include the different versions of the GMF Map
metamodel as well as test models.

References
[1] Antonio Cicchetti, Davide Di Ruscio, Romina Eramo & Alfonso Pierantonio (2008): Automating Co-

evolution in Model-Driven Engineering. In: EDOC ’08, doi:10.1109/EDOC.2008.44.

[2] Jean-Marie Favre (2003): Meta-Model and Model Co-evolution within the 3D Software Space. In: ELISA
’03.

[3] Kelly Garcés, Frédéric Jouault, Pierre Cointe & Jean Bézivin (2009): Managing Model Adaptation by Precise
Detection of Metamodel Changes. In: ECMDA-FA ’09, doi:10.1007/978-3-642-02674-4 4.

[4] Markus Herrmannsdoerfer, Sebastian Benz & Elmar Juergens (2009): COPE - Automating Coupled Evolu-
tion of Metamodels and Models. In: ECOOP ’09, doi:10.1007/978-3-642-03013-0 4.

[5] Markus Herrmannsdoerfer, Daniel Ratiu & Guido Wachsmuth (2009): Language Evolution in Practice: The
History of GMF. In: SLE ’09, doi:10.1007/978-3-642-12107-4 3.

[6] Anneke G. Kleppe, Jos Warmer & Wim Bast (2003): MDA Explained: The Model Driven Architecture:
Practice and Promise. Addison-Wesley.

[7] Tom Mens & Pieter Van Gorp (2006): A Taxonomy of Model Transformation. Electron. Notes Theor. Comput.
Sci. 152, pp. 125–142, doi:10.1016/j.entcs.2005.10.021.

[8] Anantha Narayanan, Tihamer Levendovszky, Daniel Balasubramanian & Gabor Karsai (2009): Automatic
Domain Model Migration to Manage Metamodel Evolution. In: MoDELS ’09, doi:10.1007/978-3-642-
04425-0 57.

[9] Jens von Pilgrim, Bert Vanhooff, Immo Schulz-Gerlach & Yolande Berbers (2008): Constructing and Visu-
alizing Transformation Chains. In: ECMDA-FA ’08, doi:10.1007/978-3-540-69100-6 2.

[10] Louis M. Rose, Markus Herrmannsdoerfer, James R. Williams, Dimitrios S. Kolovos, Kelly Garces,
Richard F. Paige & Fiona A.C. Polack (2010): A Comparison of Model Migration Tools. In: MoDELS
’10, doi:10.1007/978-3-642-16145-2 5.

[11] Louis M. Rose, Dimitrios S. Kolovos, Richard F. Paige & Fiona A. C. Polack (2010): Model Migration with
Epsilon Flock. In: ICMT ’10, doi:10.1007/978-3-642-13688-7 13.

[12] Louis M. Rose, Dimitrios S. Kolovos, Richard F. Paige & Fiona A.C. Polack (2010): Model Migration Case
for TTC 2010. In: TTC ’10.

[13] Louis M. Rose, Richard F. Paige, Dimitrios S. Kolovos & Fiona A.C. Polack (2009): An Analysis of Ap-
proaches to Model Migration. In: MoDSE-MCCM ’09.

[14] Jonathan Sprinkle & Gabor Karsai (2004): A Domain-Specific Visual Language For Domain Model Evolu-
tion. Journal of Visual Languages and Computing 15(3-4), pp. 291–307, doi:10.1016/j.jvlc.2004.01.006.

[15] Guido Wachsmuth (2007): Metamodel Adaptation and Model Co-adaptation. In: ECOOP ’07,
doi:10.1007/978-3-540-73589-2 28.

8http://dev.eclipse.org/viewcvs/viewvc.cgi/org.eclipse.gmp/org.eclipse.gmf.tooling/plugins/

org.eclipse.gmf.map/src/org/eclipse/gmf/internal/map/util/?root=Modeling_Project

http://dx.doi.org/10.1109/EDOC.2008.44
http://dx.doi.org/10.1007/978-3-642-02674-4_4
http://dx.doi.org/10.1007/978-3-642-03013-0_4
http://dx.doi.org/10.1007/978-3-642-12107-4_3
http://dx.doi.org/10.1016/j.entcs.2005.10.021
http://dx.doi.org/10.1007/978-3-642-04425-0_57
http://dx.doi.org/10.1007/978-3-642-04425-0_57
http://dx.doi.org/10.1007/978-3-540-69100-6_2
http://dx.doi.org/10.1007/978-3-642-16145-2_5
http://dx.doi.org/10.1007/978-3-642-13688-7_13
http://dx.doi.org/10.1016/j.jvlc.2004.01.006
http://dx.doi.org/10.1007/978-3-540-73589-2_28
http://dev.eclipse.org/viewcvs/viewvc.cgi/org.eclipse.gmp/org.eclipse.gmf.tooling/plugins/org.eclipse.gmf.map/src/org/eclipse/gmf/internal/map/util/?root=Modeling_Project
http://dev.eclipse.org/viewcvs/viewvc.cgi/org.eclipse.gmp/org.eclipse.gmf.tooling/plugins/org.eclipse.gmf.map/src/org/eclipse/gmf/internal/map/util/?root=Modeling_Project

	1 Model Migration
	2 Graphical Modeling Framework
	3 Evolution of GMF Graph
	4 Tasks and Criteria

