
S. Maneth (Ed.): Workshop on Trends in Tree
Automata and Tree Transducers (TTATT 2013).
EPTCS 134, 2013, pp. 49–59, doi:10.4204/EPTCS.134.6

c© Ryo Iwase, Yasunori Ishihara, & Toru Fujiwara
This work is licensed under the
Creative Commons Attribution License.

Toward Security Verification against Inference Attacks on
Data Trees

Ryo Iwase Yasunori Ishihara Toru Fujiwara
Graduate School of Information Science and Technology, Osaka University

{r-iwase,ishihara,fujiwara}@ist.osaka-u.ac.jp

This paper describes our ongoing work on security verification against inference attacks on data trees.
We focus on infinite secrecy against inference attacks, which means that attackers cannot narrow
down the candidates for the value of the sensitive information to finite by available information to
the attackers. Our purpose is to propose a model under which infinite secrecy is decidable. To be
specific, we first propose tree transducers which are expressive enough to represent practical queries.
Then, in order to represent attackers’ knowledge, we propose data tree types such that type inference
and inverse type inference on those tree transducers are possible with respect to data tree types, and
infiniteness of data tree types is decidable.

1 Introduction

Nowadays, many organizations utilize and store information in databases. These databases may contain
highly confidential information. One of the important problems on achieving database security for these
database systems is to ensure the security against inference attacks. Inference attacks mean that users
infer the information which they cannot access directly by using the authorized queries and the result of
them. In order to ensure the security of databases, it is important to figure out the possibility in advance
that the sensitive information can be leaked by inference attacks.

Example 1: We show an example of inference attacks on XML databases. We consider an XML doc-
umentI (see Fig. 1) representing the correspondence between student name, origin, and the amount of
the scholarship, and valid against the following schema:

faculty → (student{@scholarship})∗

student{@scholarship} → name{@str},origin{@str}

That is, thefaculty element has zero or morestudent elements as its children. Eachstudent element
has ascholarship as a data value which is a nonnegative integer without upper limit, and has aname
element and anorigin element as its children. Each ofname andorigin element has astr as a string data
value.

Let T1 be an authorized query extracting the name and the origin of each student. LetT2 be an
authorized query extracting the origin of the student who receives the most amount of the scholarship,
and T3 be an authorized query extracting the origin and scholarship of the student who receives the
second most amount of the scholarship. Moreover, we set the sensitive information to the amount of the
scholarship which a student of a given name receives, and letTA , TB, TC, andTD be the unauthorized
queries extracting the amount of the scholarship of the student of the name A, B, C, and D, respectively
(i.e., extracting the sensitive information). Now, we assume that the results ofT1, T2, andT3 are the trees
shown in Figs. 2, 3, and 4, respectively.

http://dx.doi.org/10.4204/EPTCS.134.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

50 Toward Security Verification against Inference Attacks on Data Trees

�������

��				

����

�

������

������

�������

��				

����

��

������

������

�������

��				

����

��

������

������

�������

���			

����

��

������

������

�������

Figure 1: An XML DocumentI .

�������

��	

����

�

������

������

�������

��	

����

��

������

������

�������

��	

����

��

������

������

�������

��	

����

��

������

������

�����������

Figure 2: The result ofT1.

�������

��	

����

������

���������������

Figure 3: The result ofT2.

�������

��				

����

������

���������������

Figure 4: The result ofT3.

Ryo Iwase, Yasunori Ishihara, & Toru Fujiwara 51

Then, we know that from the result ofT1, the student whose origin is Kyoto is only B, and from
the result ofT3, the student whose origin is Kyoto receives 50,000 yen as a scholarship. Therefore,
we find that B receives 50,000 yen. That is, the resultTB(I) of TB is identified by inference attacks.
Moreover, from the result ofT2, we know that a student whose origin is Osaka receives the most amount
of the scholarship. Here, considering that the origin of thestudent who receives the most amount of the
scholarship is Osaka, we find that D receives less than 50,000yen. Therefore, we can narrow down the
number of the candidates ofTD(I) to 50000. However, we cannot identify the person who receives the
most amount of the scholarship because we know that there aretwo students whose origins are Osaka.
Also, we do not know the most amount of the scholarship. Therefore, we cannot narrow down the number
of the candidates of each ofTA(I) andTC(I) to a finite number. �

The protection of sensitive information in XML databases has been studied in terms of access control.
In [5], an access control model to protect information is proposed. In the model, information to be
protected is represented by a path expression, and for each information, the authorizations of users are
defined clearly. Ref. [4] discusses access control in the presence of insertions and updates of a database.

In our previous work [7], we formulated the security againstinference attacks on XML databases
and proposed a verification method of the security called infinite secrecy. The whole picture of our
verification is shown in Fig. 5. The notion of infinite secrecyis as follows: Suppose that the following
information is available to a user:

• The authorized queriesT1, T2, . . ., Tn,

• The resultsT1(D), T2(D), . . ., Tn(D) of the authorized queries on an XML documentD,

• The schemaAG of D, and

• The queryTS to retrieve the sensitive information.

Then, the candidate setC of the values of the sensitive information inferred by the user is

C = {TS(D
′) | D′ ∈ TL(AG),T1(D

′) = T1(D),T2(D
′) = T2(D), . . . ,Tn(D

′) = Tn(D)},

whereTL(AG) denotes the set of trees valid againstAG. If |C| is infinite, then we say thatD is infinitely
secret with respect to TS. In the example above,I is infinitely secret with respect toTA andTC, and is
not with respect toTB andTD. The proposed verification method can only handle queries represented by
relabeling or deleting the specified nodes in an XML document. Since the set of labels is finite in the
formulation, the verification method of the security with queries involving infinite data value comparisons
has not been studied.

We consider the verification of infinite secrecy against inference attacks on data trees. The verifica-
tion method consists of the following three steps:

1. Construct a candidate set of XML documentD from the authorized queriesT1, T2, . . ., Tn, their
resultsT1(D), T2(D), . . ., Tn(D), and the schemaAG.

2. Construct a candidate setC of the value ofTS(D) from the candidate set ofD andTS.

3. Decide whether the number of the elements ofC is infinite.

In the verification,type inferenceand inverse type inferenceon tree transducers are used at steps 2 and
1, respectively.Type inferenceis to construct the candidate setDoc′out of output trees of a tree transducer
from the tree transducer and the candidate setDocin of input trees.Inverse type inferenceis to construct
the candidate setDoc′in of input trees of a tree transducer from the tree transducer and the candidate set
Docout of output trees. To verify the security according to these steps, the models must satisfy three

52 Toward Security Verification against Inference Attacks on Data Trees

���������	
������	
��

���

������������ ����

������	�����	��	
��������

����
�
���
���	���
��

����	��������������

�����	
������	
��

�����������������

��������
�����������������������

�����������
�
���
���	���
��

��������
�
���
���	���
��

Figure 5: The whole picture of our verification.

requirements. First, tree transducers must be able to represent practically significant queries. Second,
type inference and inverse type inference on tree transducers must be possible. Third, it must be decidable
whether the number of the candidates of the sensitive information is infinite.

In this paper, we discuss a verification method of the security against inference attacks on data trees.
We propose models satisfying the aforementioned three requirements. First, we propose tree transducers
on data trees which are expressive enough to represent practical queries. Operations corresponding to
projection, selection, and natural join in the relational algebra are allowed in queries by using those tree
transducers. Then, in order to represent attackers’ knowledge, we proposedata tree typessuch that type
inference and inverse type inference on those tree transducers are possible with respect to data tree types,
and infiniteness of data tree types is decidable. A data tree type consists of a non-deterministic finite tree
automaton, a mapping from the set of the pairs of the states ofthe tree automaton and the labels of the
nodes to the set of variables, and a finite set of conditional expressions between variables or between a
variable and a constant. Until now, we have provided inversetype inference on several tree transducers
and type inference on data-rewriting transducers, and haveprovided an algorithm to decide infiniteness
of data tree types.

2 Preliminaries

We usedata trees[3][2] as a model of XML documents. We define data trees as follows.

Definition 1: Let Σ be a finite set of labels including special symbols♯ and $, andD be a countable
infinite set of data values on which a total order< is defined. We assume thatD is a set of integers or
rational numbers. A data treet is a 3-tuple〈T, l ,ρ〉, where

• T is a set of nodes, which is a prefix-closed finite subset ofN
∗ such that for allj < i andv∈N

∗, if
v· i ∈ T thenv· j ∈ T,

• l is a mapping fromT to Σ, and

• ρ is a mapping fromT to D.

Ryo Iwase, Yasunori Ishihara, & Toru Fujiwara 53

That is, each node has just one label and one data value. InT, ε is called the root node, and for any two
nodesv, v· i ∈ T, v is called the parent ofv· i, andv· i is called thei-th child ofv. �

We usenon-deterministic finite tree automata(NFTAs) to represent XML schemas.

Definition 2: An NFTA A is a 4-tuple(Q,Σ,q0,R), where

• Q is a finite set of states,

• Σ is a finite set of labels,

• q0 ∈ Q is the initial state, and

• R is a set of transition rules in the form of(q,a,e), whereq∈Q, a∈ Σ, ande is a non-deterministic
finite automaton overQ.

A run of an NFTA assigns states to nodes of an input tree according to the transition rules. Formally,
we define a runrt

A of A= (Q,Σ,q0,R) againstt = 〈T, l ,ρ〉 as a mapping fromT to Q with the following
properties:

• rt
A(ε) = q0.

• For each nodev∈ T with n children, there exists a transition rule(q,a,e) ∈ R such thatrt
A(v) = q,

l(v) = a, andrt
A(v·1)r

t
A(v·2) · · · r

t
A(v·n) is in the string language represented bye.

t is accepted byA if there exists a run ofA againstt. Let TL(A) denote the set of data trees accepted by
A. �

3 Proposed Models

3.1 Queries

We use deterministic tree transducers to represent queries. We define seven types of tree transducers for
our verification.

• A deterministic top-down relabeling tree transducer[7] relabels the current node according to the
state of the node and assigns states to the children of the node, traversing in a top-down manner.

• A deterministic bottom-up relabeling tree transducer[7] relabels the current node according to the
label of the node and the states of the children, traversing in a bottom-up manner.

• A deterministic deleting tree transducer[7] deletes nodes labeled by♯ and subtrees rooted by $.

• A deterministic data-rewriting tree transducerrewrites the data value of all the nodes which have
a specified labela to a specified valued. The operation by a data-rewriting tree transducer cor-
responds to projection in the relational algebra. Formally, given labela and data valued, a de-
terministic data-rewriting tree transducer transformst = 〈T, l ,ρ〉 into t ′ = 〈T, l ,ρ ′〉, whereρ ′ is a
mapping defined as follows:

ρ ′(v) =

{

d if l(v) = a,
ρ(v) otherwise.

54 Toward Security Verification against Inference Attacks on Data Trees

• A deterministic data-relabeling tree transducerrelabels all the nodes which have a specified label
a and data valued to a specified labela′. The operation by a data-relabeling tree transducer
corresponds to selection in the relational algebra. Formally, given labelsa, a′, and data valued, a
deterministic data-relabeling tree transducer transforms t = 〈T, l ,ρ〉 into t ′ = 〈T, l ′,ρ〉, wherel ′ is
a mapping defined as follows:

l ′(v) =

{

a′ if l(v) = a andρ(v) = d,
l(v) otherwise.

• A deterministic min-data-relabeling tree transducerrelabels all the nodes which have the min-
imum value of the nodes labeled by a specified labela to a specified labela′. A deterministic
min-data-relabeling tree transducer is used for representing an operation like natural join in the
relational algebra. Formally, given labelsa anda′, a deterministic min-data-relabeling tree trans-
ducer transformst = 〈T, l ,ρ〉 into t ′ = 〈T, l ′,ρ〉, wherel ′ is a mapping defined as follows:

l ′(v) =

{

a′ if l(v) = a andρ(v) = min{ρ(v′) | l(v′) = a},
l(v) otherwise.

• A deterministic max-data-relabeling tree transduceris a counterpart of a deterministic min-data-
relabeling tree transducer. Formally, given labelsa anda′, a deterministic max-data-relabeling tree
transducer transformst = 〈T, l ,ρ〉 into t ′ = 〈T, l ′,ρ〉, wherel ′ is a mapping defined as follows:

l ′(v) =

{

a′ if l(v) = a andρ(v) = max{ρ(v′) | l(v′) = a},
l(v) otherwise.

The procedures of natural join by min/max-data-relabelingtree transducers are as follows. We consider
an XML document which have the information of two relationsA andB. First, choose a pair of nodesp
andq, wherep andq correspond to a tuple ofA andB, respectively. Second, relabel their nodes to a new
labela′ by a bottom-up/top-down relabeling tree transducer. Third, relabel all the nodes labeled bya′ to
a new labelb′ by a min/max-data-relabeling tree transducer. If the values of p andq are the same, then
both p andq are labeled byb′, and we can join these two nodes. Otherwise, we need to chooseanother
pair because we cannot join these two nodes.

A query is a composition of these tree transducers satisfying the following restrictions. First, every
query must be a composition of zero or more tree transducers except deleting tree transducers followed by
a deleting tree transducer. Second, no constituent tree transducers of the unauthorized queryTS relabels
a node to♯. These restrictions are necessary for type inference to be possible. Without these restrictions,
candidates for the value of the sensitive information cannot be represented by an NFTA even if we do
not consider data values. For example, consider an NFTAA= (Q,Σ,q0,R), where

• Q= {q0,qa,qb}, and

• R= {(q0, r,qaqbqa),(qa,a,ε),(qb,b,qaqbqa|ε)}.

For trees accepted byA, consider the trees obtained by relabeling the nodes labeled by b to ♯ and then
deleting the nodes labeled by♯. The resulting trees have the root node labeled byr, and the strings
obtained by the concatenation of labels of its children is the form ofanban, which cannot be represented
by an NFTA.

Queries appeared in Example 1 can be represented by the proposed tree transducers. For example,
TA can be represented as follows.

Ryo Iwase, Yasunori Ishihara, & Toru Fujiwara 55

1. Relabel thename nodes which have the value “A” toname′ by a data-relabeling tree transducer.

2. Relabel thestudent nodes which have aname node as a child to $ by a bottom-up relabeling tree
transducer.

3. Relabel thename′ nodes andorigin nodes to♯ by a top-down/bottom-up relabeling tree tranducer.

4. Delete nodes by a deleting tree transducer.

The others can also be represented similarly.

3.2 Data tree types

We introducedata tree typesto represent sets of data trees, which model user’s knowledge during infer-
ence attacks. A data tree type is defined as a finite union ofatomic data tree types. Similarly to existing
research on incomplete information like [1], we use variables and conditional expressions on them to
represent undetermined data values. However, there are several novelties in our model. First, each vari-
able is associated with a pair of a state of an NFTA and a label,rather than a node of a fixed tree. Hence,
one atomic data tree type can handle infinitely many variations of tree shapes (up to the expressive power
of NFTAs). This is useful for type inference involving relabeling and deleting tree transducers. Next,
our model uses two kinds of variables.S-variablesare ordinary ones, and all data values of nodes which
have the same s-variable must be the same.M-variablesare novel ones, and all data values of nodes
which have the same m-variable are not necessarily the same,but satisfy conditional expressions on the
m-variable. M-variables are useful for inverse type inference involving data-rewriting tree transducers.
For example, consider inverse type inference on data-rewriting tree transducers which rewrites the data
value of all the nodes labeled bya to valued. We cannot know data values of the nodes labeled bya in
input trees since these values have already been rewritten to d. By the following definition ofθ , these
nodes may have the same variable if a run of an NFTA assigns thesame state to these nodes. On the
other hand, these nodes may have different values. Since m-variable can have more than one value, we
can represent values of these nodes by an m-variable.

In what follows, s-variables and m-variables are written asẍ andx̃, respectively. We also write simply
like x when we do not differentiate two kinds of variables.

Definition 3: An atomic data tree type Docis a 3-tuple〈A,θ ,E〉, where

• A= (Q,Σ,q0,R) is an NFTA;

• θ is a mapping fromQ×Σ to the set of variables; and

• E is a finite set of conditional expressions in the following form:

– x op ÿ, where op∈ {<,>,⊆},

– d op y, where op∈ {∈, 6∈} andd is a constant, and

– x̃⊆ ỹ. �

The semantics of an atomic data tree type is defined as follows. Let σ be a mapping from a set of
variables to the power set of values satisfying the following conditions:

• for all s-variables ¨x, |σ(ẍ)|= 1, and

• for all m-variables ˜x, |σ(x̃)| ≥ 0.

We extend the definition ofσ toward conditional expressions as follows:

• σ(x op ÿ) = {a opb | a∈ σ(x),b∈ σ(y)}, where op∈ {<,>},

56 Toward Security Verification against Inference Attacks on Data Trees

• σ(x⊆ ÿ) = {σ(x)⊆ σ(ÿ)},

• σ(d op y) = {d op σ(y)}, where op∈ {∈, 6∈} andd is a constant,

• σ(x̃⊆ ỹ) = {σ(x̃)⊆ σ(ỹ)}, and

• σ(E) =
⋃

x op y∈E

σ(x opy).

We assume thatD is a set of integers or rational numbers. Therefore, each meaning of< and> is the
same as that in sets of integers or rational numbers.

A data treet = 〈T, l ,ρ〉 belongs tothe set of data trees represented by an atomic data tree type
Doc= 〈A,θ ,E〉 if there exist a runrt

A and a mappingσ such that for allv∈ T, ρ(v) ∈ σ(θ(rt
A(v), l(v))),

and all the conditional expressions inσ(E) hold. LetTL(Doc) denote the set of data trees which belongs
to Doc.

4 Decidability

In this section, we refer to the detail of type inference and inverse type inference, and provide an algo-
rithm to decide infiniteness of data tree types.

4.1 Type inference and inverse type inference

As stated already, we have proved the correctness of inversetype inference on several tree transducers
and type inference on data-rewriting transducers. In this section, we show the detail of inverse type
inference on data-rewriting tree transducers.

For a data-rewritng tree transducer which rewrites the datavalue of all the nodes labeled bya to
valued, the data tree typeDoc′ = 〈A′,θ ′,E′〉 of input trees is constructed from the data tree typeDoc=
〈A,θ ,E〉 of output trees, whereA= (Q,Σ,q0,R). The detail of〈A′,θ ′.E′〉 is as follows.

• A′ = A.

• θ ′(q,c) =

{

x̃′ if c= a,
θ(q,c) otherwise.

Here,x̃′ is a variable which do not appear inDoc.

• E′ = E∪{d ∈ θ(q,a) | (q,a,e) ∈ R}.

Proof. First, let t ′ = 〈T, l ,ρ ′〉 ∈ TL(〈A′,θ ′,E′〉) be an input tree. There exist a runrt ′
A′ and a

mappingσ ′, and the following properties hold:

• for all v∈ T, ρ(v) ∈ σ ′(θ ′(rt ′
A′(v), l(v))), and

• all the conditional expressions inσ ′(E′) hold.

Then, by the definition of the tree transducer, the output tree t = 〈T, l ,ρ〉 is accepted byA since there
exists a runrt

A such thatrt
A = rt ′

A′ , and for allv ∈ T satisfying l(v) = a, we haveρ(v) = d. Here, let
σ = σ ′. Since all conditional expressions inσ ′(E′) hold, for all v ∈ T satisfying l(v) = a, ρ(v) ∈
σ(θ(rt

A(v), l(v))). Moreover,E ⊆ E′. Therefore, forrt
A andσ , the following properties hold:

• for all v∈ T, ρ(v) ∈ σ(θ(rt
A(v), l(v))), and

• all the conditional expressions inσ(E) hold.

Ryo Iwase, Yasunori Ishihara, & Toru Fujiwara 57

Hence,t ∈ TL(〈A,θ ,E〉).
Inversely, lett = 〈T, l ,ρ〉 ∈ TL(〈A,θ ,E〉) be an output tree. Then, for allv∈ T satisfyingl(v) = a, t

must satisfyρ ′(v) = d. There exist a runrt
A and a mappingσ , and the following properties hold:

• for all v∈ T, ρ(v) ∈ σ(θ(rt
A(v), l(v))), and

• all the conditional expressions inσ(E) hold.

Then, by the definition of the tree transducer, the input treet ′ = 〈T, l ,ρ ′〉 is accepted byA′ since there
exists a runrt ′

A′ such thatrt ′
A′ = rt

A. Moreover, we defineσ ′ as follows:

σ ′(x) =

{

{ρ(v) | l(v) = a} if x= x̃,
σ(x) otherwise.

Then, for allv ∈ T, ρ(v) ∈ σ ′(θ ′(rt ′
A′(v), l(v))). Moreover, since for allv ∈ T satisfying l(v) = a, d ∈

σ(θ(rt
A(v), l(v))), all conditional expression inσ ′(E′) hold. Hence,t ′ ∈ TL(〈A′,θ ′,E′〉). �

4.2 Infiniteness of data tree types

The following algorithm is to decide infiniteness of an inputdata tree typeDoc= (A,θ ,E), whereA=
(Q,Σ,q0,R). Before discussing the detail of the algorithm, we declare in advance that we can assume
that there is no conditional expression which cannot be satisfied inE for the following reason. If there
existed some conditional expressions which cannot be satisfied in E, then by the definition of data tree
types,TL(Doc) would be an emptyset. However, this assumption is contradictory sinceTL(Doc) must
contain at least the sensitive information.

The detail of the algorithm for deciding infiniteness is as follows.

1. Separate the number line into zones by constants inE. If D is an integer set, then we consider only
integers in each zone.

2. Find the assignmentσ satisfying all conditional expressions inE as follows.

2-1 For each s-variable inE, assign a zone non-deterministically and then break up zones accord-
ing to the assignment.

2-2 Assign a set of zones to each m-variable inE non-deterministically.

3. For each(q,a) such thatσ(θ(q,a)) = /0, constructRσ from R by rewriting each(q,a,e) ∈ R to
(q,a, /0), and check whetherTL(Aσ) is infinite whereAσ = (Q,Σ,q0,Rσ). If TL(Aσ) is infinite,
then output “Yes (i.e.,TL(Doc) is infinite).” Otherwise, if there exists a pair(q,a) such that
σ(θ(q,a)) is infinite and there ist = 〈T, l ,ρ〉 ∈ TL(Aσ) such that(q,a) = (rt

Aσ
(v), l(v)) for some

v∈ T, then output “Yes.” If there does not exist such pair(q,a), then output “No (i.e.,TL(Doc) is
finite).”

We show an example of an assignment and a breakup of zones. Consider the setE = {1 ∈ ẍ1,2 6∈
ẍ2,3∈ x̃1, x̃1 ⊆ x̃2}. First, as shown in Fig. 6, the number line is broken up into seven zones. Next, as
shown in Fig. 7, zone 2 and zone 7 are assigned to ¨x1 and ¨x2, respectively, and then zone 7 is broken
up into three zones 7-1, 7-2, and 7-3 by the assignment. Finally, as shown in Fig. 8, zones 5 and 6 are
assigned to ˜x1, and zones 1, 5, and 6 are assigned to ˜x2.

58 Toward Security Verification against Inference Attacks on Data Trees

� � �

������ ������ ������ �����	

�����
 ������ ������

Figure 6: The breakup of the number line into zones.

� � �

������ ������ ������ �����	
�

������ ������ ����� �����	
�

�����	
�

Figure 7: The assignment of zones to s-variable.

� � �

������ ������ ������ �����	
�

������ ������ ����� �����	
�

�����	
�

Figure 8: The assignment of zones to m-variable.

Ryo Iwase, Yasunori Ishihara, & Toru Fujiwara 59

5 Ongoing and Future Work

This paper has discussed security verification against inference attacks on data trees. We have proposed
tree transducers on data trees which can represent projection, selection, and natural join in the relational
algebra. Moreover, we have proposed data tree types for representing the candidate set of the value of
the sensitive information.

We are now trying to prove that type inference and inverse type inference are possible on queries
with respect to data tree types. We have done inverse type inference on several tree transducers and type
inference on data-rewriting transducers until now. One of our future work is to evaluate the complexity
of our method. Another future work is to consider inference attacks using functional dependencies [6]
on data trees.

References

[1] Serge Abiteboul, Luc Segoufin & Victor Vianu (2006):Representing and querying XML with incomplete
information. ACM Trans. Database Syst.31(1), pp. 208–254, doi:10.1145/1132863.1132869.

[2] Noga Alon, Tova Milo, Frank Neven, Dan Suciu & Victor Vianu (2001):XML with data values: typechecking
revisited. In: Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, PODS ’01, ACM, pp. 138–149, doi:10.1145/375551.375570.

[3] Mikoaj Bojańczyk, Anca Muscholl, Thomas Schwentick & Luc Segoufin (2009):Two-variable logic on data
trees and XML reasoning. J. ACM 56(3), pp. 13:1–13:48, doi:10.1145/1516512.1516515.

[4] James Cheney (2013):Static Enforceability of XPath-Based Access Control Policies. In: Proceedings of the
14th International Symposium on Database Programming Languages. Available athttp://arxiv.org/
abs/1308.0502.

[5] Ernesto Damiani, Sabrina De Capitani di Vimercati, Stefano Paraboschi & Pierangela Samarati (2002):A fine-
grained access control system for XML documents. ACM Trans. Inf. Syst. Secur.5(2), pp. 169–202, doi:10.
1145/505586.505590.

[6] Kenji Hashimoto, Hiroto Kawai, Yasunori Ishihara & ToruFujiwara (2012):Decidability of the Security
against Inference Attacks using a Functional Dependency onXML Databases. IEICE Transactions on Infor-
mation and SystemsE95-D(5), pp. 1365–1374, doi:10.1587/transinf.E95.D.1365.

[7] Kenji Hashimoto, Kimihide Sakano, Fumikazu Takasuka, Yasunori Ishihara & Toru Fujiwara (2009):Verifi-
cation of the Security against Inference attacks on XML Databases. IEICE Transactions on Information and
SystemsE92-D(5), pp. 1022–1032, doi:10.1587/transinf.E92.D.1022.

http://dx.doi.org/10.1145/1132863.1132869
http://dx.doi.org/10.1145/375551.375570
http://dx.doi.org/10.1145/1516512.1516515
http://arxiv.org/abs/1308.0502
http://arxiv.org/abs/1308.0502
http://dx.doi.org/10.1145/505586.505590
http://dx.doi.org/10.1145/505586.505590
http://dx.doi.org/10.1587/transinf.E95.D.1365
http://dx.doi.org/10.1587/transinf.E92.D.1022

	1 Introduction
	2 Preliminaries
	3 Proposed Models
	3.1 Queries
	3.2 Data tree types

	4 Decidability
	4.1 Type inference and inverse type inference
	4.2 Infiniteness of data tree types

	5 Ongoing and Future Work

