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Visibly pushdown transducers (VPTSs) are visibly pushdowtomata extended with outputs. They
have been introduced to model transformations of nestedsyae. words with a call/return struc-
ture. As trees and more generally hedges can be linearitredvirell) nested words, VPTs are a
natural formalism to express tree transformations evetligt streaming. This paper aims at charac-
terizing precisely the expressive power of VPTs with respeother tree transducer models.

1 Introduction

Visibly pushdown machines|[1], automadHA) or transducers, are pushdown machines such that stack
behavior is synchronized with the structure of the inputdvdtrecisely, the input alphabet is partitioned
into call and return symbols. When reading a call symbol tleemime must push a symbol onto the
stack, and when reading a return symbol it must pop a symbuwi the stack.

Visibly pushdown transducerd/PTs) [10,[11,[5,/12] extend visibly pushdown automaita [1] with
outputs. Each transition is equipped with an output word ihappended to the output tape whenever
the transition is triggered. A/PT thus transforms an input word into an output word obtainethas
concatenation of all the output words produced along a sgfiglerun on that inputVPTs are a strict
subclass of pushdown transduce?3 §) and strictly extend finite state transducers. Severallpnabthat
are undecidable fdPTs are decidable fo¥PTs, most notably: functionality (in PiME), k-valuedness
(in NPTiME) and functional equivalence ¥ TIME-C) [B]. VPTs are closed by regular look-ahead
which makes them a robust class of transformations [6].

Unranked trees and more generally hedges can be lineantedéll-nested words over a structured
alphabet (such as XML document8)PT are therefore a suitable formalism to express hedge tnansfo
mations. In particular, they can express operations suciods deletion, renaming and insertion. As
they process the linearization from left to right, they dsoan adequate formalism to model and ana-
lyze transformations in streaming, as showriin MP.Ts output strings, therefore on well-nested inputs
they define hedge-to-string transformations, and if th@wtustrings are well-nested too, they define
hedge-to-hedge transformations.

In this paper, we characterize the expressive poweérRts w.r.t. their ability to express hedge-
to-string H2S), and hedge-to-hedgeH2H) transformations. To do so, we define a top-down model
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of hedge-to-string transducers, inspired by classicaldimpn tree transducers. They correspond to
parameter-free linear order-preserving macro foreststhacers that output strings! [9]. We define a
syntactic restriction oH2S that captures exactlyPTs, and show that if th&PTs runs on binary en-
codings of hedges, then they have exactly the same exprgsziver ad12S. We show that those results
still hold when both models are restricted to hedge-to-kadansformations. Based on those results, we
compareVPTs with classical ranked tree transducers, such as top-daverttansducers [2] and macro
tree transducers |[3].

2 Transducer Models for Nested Words and Hedges

Words and Nested WordsThe set of finite words over a (finite) alphal¥eis denoted by*, and the
empty word is denoted bg. A structured alphabeis a pairzZ = (Z¢, Z;) of disjoint alphabets, of call and
return symbols respectively. Given a structured alphabete always denote b¥. andZ, its implicit
structure, and identifig with 2 U Z,.

A nested words a finite word over a structured alphabet. The setvefl-nested word®ver a
structured alphabeX is the least set, denoted b, that satisfiegi) € € #5, (ii) for all ww € #5,
ww € #5 (closure under concatenation), afil) for all we #5, c€ 2., r € Z;, cwr € #5. E.g. on
> = ({c1,¢2},{r}), the nested word;rcyr is well-nested whilec; is not. Finally, note that any well-
nested wordw is either empty or can be decomposed uniquelyas cwirw, wherec € Z.,r € Z;,
Wi, Wp € #5.

HedgesLet A be an alphabet. We I&A) be the signaturg0,-} U{a | a€ A} where 0 is a constant
symbol,a € A are unary symbols ands a binary symbol. The set tledgess# overA is the quotient
of the freeS(A\)-algebra by the associativity oand the axioms th=h-0= h. The constant O is called
the empty hedge. We may wrigginstead ofa(0), and omit- when it is clear from the context/nranked
treesare particular hedges of the forath) whereh € J#. Note that any hedgeis either empty or can
be decomposed &s= a(h;) - hy.

Hedges over\ can be naturally encoded as well-nested words over thetstagc alphabef\s =
(A¢,\r) where/A¢; and/\, are new alphabets respectively defined\gy= {c, |a€ A} andA, ={ra | ac
A}. This correspondence is given via a morphigm .7Za — #, inductively defined bylin(0) = € and
lin(a(hy).h2) = calin(hy)ralin(hy). E.g. forA = {a,b}, we havein(ab(ab)) = CaraCoCalaColbrb-

Conversely, any well-nested word over a structured alphabzan be encoded as an hedge over
the product alphabeX. x X, via the mappinghedge : #s — % .5, defined ashedge(¢) = 0 and
hedge(cwarwy) = (c,r)(hedge(w1)) - hedge(w.) for all (c,r) € X x Z; and allwy,w, € #5.

Binary Trees We consider here an alphab&taugmented with some special symhal We define the
set ofbinary trees#, as a particular case of unranked trees over{_L}. Binary trees are defined
recursively as(i) L € Zx, and(ii) for all f € A, if t3,t; € Ba thenf(tity) € Ba.

There is a well-known correspondence between hedges aadyhiiees by means of an encoding
called the first-child next-sibling encoding. This encagia given by the mappinécns defined as:(i)
fens(0) = L, (i) fens(f(hy)hy) = f(fens(hy)fens(hy)) for all hy,hy in 4.

The strong relationship between hedges and well-nestedswaamn be considered when restricted to
binary trees: we defingg# 5, the set of binary well-nested words over the structuredaiph(A; U
{LchArU{L;}) as the least set satisfyindi) LcL, € Z# a, and (i) for all fc € A¢, fr € Ay, if
W0, W3 € B p, thenfowws f, € B 5. Note that the morphisriin applied on binary trees fromg,
yields binary nested words i#% ..



M. Caralp, E. Filiot, P.-A. Reynier, F. Servais and J.-M.brl 19

Finally, we can define the first-child next-sibling encodioighedges as binary trees, directly on
linearizations; consider a structured alphabeixtended a& |, = (ZcU{L¢}, % U{L;}). For all well-
nested wordsv over Z, we definefcns(w) over the alphabeX; recursively agi) fens(€) = LeLr and
(i) fens(ewarwy) = cfens(wq) fens(we) r for all wy, wo € #5.

Visibly Pushdown TransducersLet X be a structured alphabet, aAde an alphabet. Aisibly push-
down transducefrom X to A (the class is denotedPT(%,A)) is a tupleA = (Q,1,F,I",d) whereQ s a
finite set of stated, C Q the set of initial stated; C Q the set of final states, the (finite) stack alphabet,
1 ¢ T is the bottom stack symbol, add= ;W & is the transition relation where:

e O CQxZ:xTI xA*xQ are thecall transitions
e & COxZ xI xA*x Qare thereturn transitions

A configuration ofA is a pair(q,0) whereqe Qando € L -I* is a stack content. Lat=a;...a
be a (nested) word ab, and(q,0), (q, 0”) be two configurations oA. A run of the VPT A overw from
(g,0) to (d/,0’) is a (possibly empty) sequence of transitigns- tit,...t € d* such that there exist
Qo,q1,---0 € Qanday,...q € L - with (qo,00) = (q,0), (q1,0) = (q,0’), and for each & k<1,
we have eithe(i) tx = (0k_1,8, ¥, Wk, 0k) € & andok = 0k_1Y, or (i) tk = (Gk-1, &, ¥, Wk, 0k) € &, and
ok-1 = oky. When the sequence of transitions is empiyg) = (¢, o).

The outputof p is the wordw € A* defined as the concatenatisn= w; ...w; when the sequence
of transitions is not empty ane otherwise. Initial (resp. final) configurations are pdigs_L) with
g e | (resp. withg € F). A run is acceptingif it starts in an initial configuration and ends in a final
configuration. The transducérdefines a relation from nested words to words defined as the pairs
(u,w) € Z* x A* such that there exists an accepting runugeroducingw as output. From now on, we
confuse the transducer and the transduction it represipte. that since we accept by empty stack and
there is no return transition on empty stagkaccepts only well-nested words, and thus is included into
Ws x .

Hedge-to-string TransducersWe present now a model of hedge-to-string transdudd®$) that run

directly on hedges, and is closer to classical transdubans\PTs are. In particular, this model is a

syntactic subclass of macro forest transducers (MET) [8) wd parameters, no swapping and no copy.
Let A andA be two finite alphabets. Ahedge-to-string transducdrom A to A (the class is denoted

H2S(A,A)) is a tupleT = (Q,1,0) whereQ is a set of states,C Q is a set of initial states andlis a set

of rules of the form

q(0) — ¢ q(f(X1) - X2) = W01 (X1) W02 (X2) W3

whereq,q;,q2 € Q, f € A andw,wy,Wo, w3 € A*,
The semantics of is defined via mappingfy] : 7 — 22 for all g € Q as follows:

[ {e} ifq0)—e€cd
[a)(0) B { 0 otherwise
[al (f(h)-H) = U wa[au](h)-we- [a2] () - ws
a(f (xa)x2)—

W10 (X1)W202(%2 ) W3

1We consider linear and order-preserving rules only.
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The transduction of aH2S T = (Q, I, d) is defined as the relatiof(h,s) | 3q< |, s [q](h)}. When
se [q](h) for someH2S T, we may say that the computation of tH&S T on the hedgé leads toq
producings.

We say thafl is tail-recursivewhenever in any rule, we hawe; = €. We denote byH2S,, the class of
tail-recursiveH2S.

Example 1. Let A be a finite alphabet. Consider E H2S(A,A) defined by Q=1 = {g,q'} and the
following rules, for all fe A:

a0 —¢  d0)—e  q(f(x)-x)—d(x)a(x)f

The domain of Tis the set of strings ovek (viewed as a particular case of hedges) andi&fines the
mirror image of strings.

Example 2. LetA be a finite alphabet ands be its structured version. We definecTH2S (A, Ag) which
can non-deterministically root any subhedge of the inpdgesunder a new symb#land output the lin-
earization of the new hedge. For instance, the input trea¢€d) can be non-exhaustively translated into
the stringlin( f(a#(bc)d)) or the stringlin(f (#(ab)#(cd))). Formally, T, is defined by G= {qo, 01,02},

| ={qo} and d defined as the following set of rules: (observe that H2S;,)

q.(O) — €& Vie {0, 2} qo(f(xl) -Xg) — Cs qO(Xl)rqu(Xz)
Go(f(X1) - X2) = CuCraa(X)r1r#0o(X2) Qo(f(X1) - X2) — CuCrGa(Xa)r 1oha(X2)
Ou(f(x1)-X2) = CrOa(Xa)rersbo(x2) O f(X1)-X2) — Crl2(X1)rg1(x2)
G2(f(X1) - X2) — CrO2(X1)r 1 d2(X2)

Hedge-to-hedge TransducerdVe consider now transducers running on hedges but prodcpge-
sentations of) hedges as well-nested words. We define theastitions of the two models we have
considered so far.

We assume the output alphalfeto be structured agAc,A;). We define arH2S(A,A) to be an
hedge-to-hedge transducét2H(A,A)) if any rhswigp (x1)Wa02(X2)Ws of its transition rules satisfies
wiwows € #p. We denoteH2H,, the class oH2H that are additionally tail-recursive.

Using the direct relationship between well-nested wordtslatdges, we may define hedge-to-hedge
transducers by means of a restriction in the definitiod®T : this restriction asks the nesting level of the
input and the output words to be synchronized, that is themekevel of the output just before reading
a call (on the input) must be equal to the nesting level of titput just after reading the matching return
(on the input). This simple syntactic restriction yieldsuadass oVPTs [5].

This synchronization is enforced syntactically on stacklsgls, these symbols being shared by
matching call and return transitions.

LetA=(Q,I,F,I,0) € VPT(Z,A). ThenAiswell-nestedf for all y< I, all transitions(q,c, y,w,q ) €
o and(p,r,y,wW,p') € &, it holds thatww € #,5. We denote bywnVPT the class of well-nestedPTs.

Hedge-to-binary tree TransducersWe consider transducers running on hedges and producipge{re
sentations of) binary trees as binary well-nested wordsd&¥ae them as restrictions of hedge-to-hedge
transducers.

Let At = (AL, A¢) be a structured output alphabet such thatA;- contain two special symbols
L, Ly respectively. We define l2H(A,A) to be an hedge-to-binary tree transdudd2i (A, A')) if
any right hand-sidev 0 (x1)Wa202(X2)Ws of its transition rules satisfies; = cw,, wo = WjW,, wg = w;r
for somecin Ag, rin AF, Wi Lc Lw] andw) Le L wyin BH 5.
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VPT = H2S;, C VPT ofcns = H2S
(LemmdB) (Lemmd2) (Lemmdb)
Ut Ut
fens 1o H2B C wnVPT = H2H,, C wnVPT ofcns = H2H
(Lemmd1) (Lemmd4) (Lemmd2) (Lemmd6)

Figure 1: Expressivness results in a nutshell

Hedge-to-binary tree transducers are close to linear atet-@reserving top-down ranked tree trans-
ducers. They will serve us to compare the expressivendsatbto this latter class of transducers defined
on the first-child next-sibling encoding of input and outpetiges.

3 Some Results on Expressiveness

In the sequel, we assume that input hedges accepted by urmnsdare non-empty. This restriction is
done without loss of generality. We depict on Figure 1 theltesve obtained.

3.1 Definitions of expressiveness

Let X be a structured alphabet afdbe a finite alphabet. We denote by (#5,A*) the set of trans-
ductions from#s to A*. First observe that the semantics of a transdécerVPT(Z,A) is an element
of 7 (#5,0%). Second, given a transducére H2S(Z; x Z;,A), we have thall o hedge € .7 (#5,A%).
Hence, up to the mappirtgdge, we can thus compare the expressiveness of a suls€jasfsvVPT(Z,A)
and of a subclas®?, of H2S(Z:xZ,A), by their interpretation as transductions frafg to A*.

Formally, giverA € VPT(Z,A) andT € H2S(Z:x Z;,A), we say thaA andT are equivalent, denoted
A=T, wheneveA=T ohedge. Given a subclasg; of VPT(Z,A) and a subclasg, of H2S(Z:x Z;,A),
we say thats) is more expressive thdd, (resp. less expressive), denotéd D 4, (resp. 61 C 6>),
whenever we have:

e for everyT € %>, there existA € €, suchthaA =T
o for everyA € 61, there existS € %> such thatA =T, respectively

Last, we writeé1 = %> whenevers; and%, are expressively equivalent meaning that bétho 4, and
%1 C %> hold.

3.2 Comparing expressiveness

We first recall in the framework we proposed here a known esgiveness result [11] comparimtPH
andH2B.

Lemma 1. LetA = (A¢, A ) andAt = (AU { L}, Ay U{L}) be two structured alphabets.
1. For any Te H2B(A,AL), there exists Te H2H(A,A) such that T=fens 1o T.
2. There exists Te H2H(A,A) such that there is no & H2B(A,A') satisfying T = fcns 2o T.
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Proof. For Point[(1), it is enough to appfgns~* to the right-hand side of transition rules Bf(keeping
sub-expression&y(x; ) unchanged) to obtaifi’. For Point[(2), for any well-nested wordlet us define
its size|u| as the number of symbols occurring in it and its heighf| as: (i) |jul| =0 if u= ¢ and
(i) [levrw]] = max1+||v|],||w]|) if u= cvrw. Size and height can be defined on hedgeascordingly
by considering size and heigth tf(h). The following facts can easily be proved: (Fact 1) One can
devise a transducél’ that flattens its input into a sequenc€ ((f (hy)hz) = c¢r¢ T'(hy)T'(hy)). Then,
IT/(h)| = 2|h| and||T’(h)|| = 1. (Fact 2) For alll in H2B(A,A"), there existsr in N such that for all
hedged, ||T (h)|| < kr||h||; (Fact 3) Ifw € #4, ||w|| = 1 and|w| = n then||fcns(w)|| = n.

Now, consider the family,ncy of hedges such that|h|| = nand|h| = 2". For anyh € Hy, [T'(h)| =
21 and||T’(h)|| = 1. Hence)||fcns(T’(h))|| = 2", Assuming thafl exists yields||fcns(T(h))|| =
21 — ||IT(h)|| < krn for some constarkr for all n. Contradiction. O

It turns out thatH2S are stricly more expressive thafi°Ts. Formally:

Lemma 2. There exists & H2S(Z:x Z,,A) such that for all Ac VPT(Z,A), T o hedge # A.

Proof. Consider the variant over the input alphaBgt< Z; of the transduceT defined in Examplell. It
is easy to see this transducer produces an output (afterdga application) only on nested words from
(A¢./\r)*. Over such input words, anyPT admits only finitely many configurations in its acceptingsun
and thus, is equivalent to some finite state transducer.tBsvell known that finite state transducer can
not compute the mirror image of its inputs. O

Informally, this is due to the abitility thai2S have to "complete” the output once the current hedge
is processed. This ability vanishes when tail-recursl28 are considered.

Lemma 3. VPT(Z,A) = H2S;, (Zcx Zp, Q).

(Sketch). Intuitively, in order to transformA € VPT(Z,A) into T € H2S, (ZcxZr,A), we proceed as
follows. States off are pairs of states @&, corresponding to states reached respectively at thetiagin
and at the end of the processing of an hedge. More formabyfaltiowing rule will exist inT iff there
exist a call transition oe from p to p;, a matching return onfrom p, to q;, the hedge represented by
X1 (resp. byxy) can be processed from stgigto statep, (resp. fromq; to g):

(P, a)((c,r)(x1) - X2) — Wy - (P1, P2)(X1) - W2+ (q1,9) (X2)

The wordw; (resp.ws) is the output of the call transition (resp. of the returmsidion). It is worth
observing that this encoding directly implies the tailtnesive property off .

The converse construction follows the same ideas. The &acded to store the transition used on
the call symbol, to recover it when reading the return symbol O

Lemmd2 still holds even if we restriet2S to H2H, because the transducer defining the transduction
of Example[l is actually arl2H. Similarly, LemmdB also holds when restricted to hedgbddge
transductions (the same constructions apply):

Lemma 4. wnVPT(Z,A) = H2Hy (Scx ;. A).
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Removing the tail-recursive assumption As we have seen in the proof of Lemina 3, the behavior of
aVPT is naturally encoded by a tail-recursit#S. Intuitively, the wordws of rules ofH2S should be
produced after having processed the whole hedge.

We prove now that if we ruVPTs on thefcns encoding of hedges, then we can express -
definable transduction. Intuitively, in tHens encoding, the return symbol of the root of the first tree of
the hedge is encountered at the end of the processing of tlgeehds a consequence, the wavglcan
be output when processing this symbol. Formally, we have:

Lemma5. VPT(Z,,A) ofcns = H2S(Scx %, A).

(Sketch).A construction similar to the one presented in the proof ahb@[3, based on pairs of states
of theVPT, can be used to build an equivalé#2S. It will not necessarily be tail-recursive as the output
of the return transition will be produced last. Note alsd thehandle empty subtrees encodedlhy! ,
the resultingH2S may associate a non-empty output word to leafs. It is howewetdifficult to simulate
such rules.

Conversely, the construction is a bit more complex. StatéseoVPT store the rule that is applied
at the previous level, and the position in this rule (begignimiddle, or end). A special case is that of
the first level, as there is no previous level. In this casesioee the initial state we started from. This
information is stored in the stack, so as to recover it anthfidly simulate the application of the rule.
The case of rules associated with leafs is handled using ¢hé, symbols, and dedicated rules. Details
can be found in the Appendix. O

Lemma 6. wnVPT(Z,,A)ofens = H2H(Z:x Z,,A).

3.3 Comparison with other tree transducer models

H2S correspond to parameter-less macro forest transducesstf@jut swapping nor copying, that output
strings. Therefore by Lemnid ¥,PTs are strictly less expressive than mfts. Macro tree traressuc
(mtts) are transducers on ranked tre€s [3]. To compare thigm\i#?Ts, which run on (linearization
of) hedges, we use the first-child next-sibling encoding.sAswn in [9], any mft is equivalent to the
composition of two mtts on those encodings. Linear-sizeeiase transformations (or transducers) are
those transformations such that the size of an output islipéounded by the size of the input. In
[7] it is shown that any linear-size increase transfornmatiefined by an arbitrary composition of mtts
is definable by a single linear-size increase mtt. Therefiarear-size increase mfts are equivalent to
linear-size increase mtts. Sine®Ts clearly define linear-size increase transformations, tireyalso
strictly included in mtts.

Top-down ranked tree transducers with the linear and nappimg restrictions are equivalent to
H2B transducers on first-child next-sibling encodings. By Leafln we get that they are strictly less
expressive thawnVPTs, and therefore/PTs. The arguments on the size of the ouputs in the proof
of Lemmal still applies when dropping that restriction ($field transduction cannot be defined), and
therefore top-down ranked tree transducers are incomiganath VP Ts. For the same reasons, bottom-
up tree transducers are also incomparable WRITs.

Finally, let us mention theniform tree transducerstroduced by Neven and Marteris [8], and in-
spired by the XSLT language. These transducers can duplitddtrees, but must use the same state to
transform all the children of a node. For those reasons tfeinaomparable withVPTs [11]).
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A Appendix: Proof of Lemma 3 and 4

Proof. LetA= (Q,I,F,I",d) € VPT(Z,A). We defineT = (Q,1",d’) € H2S,(Zcx Z;,A) as follows:

o Q' ={(tn,0) € Q| 3we #5 st (a1, L) > (02, L)}
o '=Qn(IxF)

e forallce X, r € Z;, and all statep1, p2, g1, 0, g such that oy, az), (p1, p2), (o, G2) € Q' if there
exist transitiongqs, ¢, y,wi, p1) € &, (Pz,r, Y, W2,0}) € &, we build the rule:

(G1,92)((C,) (X1) - X2) = Wi - (P1, P2) (X1) - W2 - (G, G2) (X2)

In addition, we also have:
(01,02)(0) v €€ <= =0

It can be shown by induction that for all well-nested wonds #5, T has a computation ovéedge(w)
leading to(qs, g2) producingw’ iff A admits a run fron{qs, L) to (gp, L) overw producingw’. Observe
also that by definitio is tail-recursive.

Notice that ifAis awnVPT, then we havev,w, € #5, and thusT € H2H. This proves one direction
of Lemmd_ 4.

Conversely, let us consider the transdu@er (Q,1,d) from H2S, (Z.x%;,A). We defineA =
(Q,I',F.T",8") € VPT(Z,A) as follows: QY =Q, I’=1,F ={qe Q| q(0) —» e € 8}, "= 6 and
for every rulet = q((c,r)(X1) - X2) — w101 (X1)W202(%2) € o, we add the following rules to':

(q7cat7W17q1) {(q/7r7t7W27q2) ’ q/ S F/}

It can be shown by induction that for all well-nested ward=s #5, B has a computation over
hedge(w) leading toq producingw’ iff A admits a run from(g, L) to (¢, L) over w producingw/,
for someq € F'.

Notice that that iB € H2H, then we havev,w, € #5, and thusA is a well-nested/PT. This proves
the other direction of Lemnid 4. O

B Appendix: Proof of Lemma 5 and 6

Proof. LetA= (Q,l,F,I",0) € VPT(Z,,A). We first define the two following sets:

Ccwr,

X={(p,q) € Q?| there exists arufp, L) — (g, L) in A, withc € Zc,r € 3, we #5, }

X, ={(p,q) € Q?| there exists a rufp, L) N (g,L)in A}

We defineB= (Q',1’,d") € H2S(Z:x Z,,A) as follows: Q' = XUX , I’ =XN (I xF), forall (p,q) € X,
and all transitiongp, Lc,y,w, p'), (¢, Lr, y,W,q), we add the following rule td'": (p,q)(0) — ww'.

In addition, for everyc € %, r € %, and for every statep,q, p1, P2, ps such that(p,q) € X, and
(p1, P2), (P2, P3) € Q, if there exist a transitiofip, c, y, w1, p1) € & and a transitior{ ps, 1, y,Ws,q) € o,
we build the rule:

(p,a)((c,r)(xe) - X2) — Wi - (P1, P2)(X1) - (P2, P3)(X2) - W3
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It can be shown by induction that for all well-nested wavd= #5, B has a computation over
hedge(w) leading to(qy,dz) producingw’ iff A admits a run from(qy, L) to (g, L) over fens(w) pro-
ducingw’.

Observe also tha does not comply with the definition &f2S as the first set of rules may produce
non-empty words. However, it is easy to transfdBno ensure this property as follows: for every rule
(p,d)(0) — x, build a statgp,x,q), and add the rul¢p,x,q)(0) — €. Then, modify the second set of
rules by replacindp, q) by (p,x,q), and introducing at the convenient position in the output of the rule.
Note that this transformation will result in non-empty,” words.

In addition, we assumed that input words are non-empty. Asnseruence, th&ns encodings
considered as input are different from the wdrglL ;. This justifies that the initial states can be taken in
X only. This also implies that the removing of non-empty ledés described before is correct, as every
leaf rule will be applied in the context of some rule ass@&dawith an internal node.

Last, for the proof of Lemmia6, it is easy to verify thafifs awnVPT, thenB € H2H.

Conversely, let us consider the transduBer (Q,1,0) in H2S(Z:x Z;,A). We definlA= (Q/,I",F'.[",d")
in VPT(Z,,A) as follows:

Q={(ai)aelic{01}u{(ti)|tedic{012}u{a}, I"=1x{0}, F'=1x{1},
=@/, and for every rulé = g((c,r)(x1) - X2) — Wiqs (X1)W202(X2)ws € & such thag € |, we add the
two following rules tod’:

((q7 0)’ C, (q’ O)7W17 (t’ O)) ((t’ 2)7 r, (qa 0)7W37 (qa 1))
In addition, for every two rules

t = q((c,r)(X1)-Xz) — Wi (X1)Wa0(X2)W3 € O
t = d((c,r)(x) x2) = Wach (Xa)Wy05 (X)W € O

andi € {0,1} such thatf = g, we add the two following rules t&':

((t/’ i),C, (t/’ i)7W17 (t,O))

w, ifi=0

/s /A o
((t,2),r,(t",i),wax, (t',i+1)) wherex = { £ otherwise

Last, we consider rules associated with leafs: for every qu0) — ¢, we add the two following
transitions: (provided that theth state of the ruléis q)

((t7i)aJ—C7(tai)787qL) (qL;J—ﬁ(tai)?Sa (t7| +1))

It can be shown by induction that for all well-nested wavds #5, B has a computation over
hedge(w) leading tog producingw iff the two following properties are verified:

e if g I, thenA admits a run fron{q,0) to (g, 1) overfcns(w) producingw/

e forevery(t,i) € d x {0,1,2} such that = p((c,r)(x1)-X2) — W101(X1)W202(X2)W3 € 6 andg; = q,
Aadmits a run fromit, i) to (t,i + 1) overfcns(w) producingw'x, wherex = ¢ if i = 1, andx = ws
otherwise.

O
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