
S. Maneth (Ed.): Workshop on Trends in Tree
Automata and Tree Transducers (TTATT 2013).
EPTCS 134, 2013, pp. 17–26, doi:10.4204/EPTCS.134.3

c© M. Caralp, E. Filiot, P.-A. Reynier, F. Servais and J.-M. Talbot
This work is licensed under the
Creative Commons Attribution License.

Expressiveness of Visibly Pushdown Transducers∗

Mathieu Caralp Pierre-Alain Reynier Jean-Marc Talbot
Laboratoire d’Informatique Fondamentale de Marseille

Aix-Marseille Université & CNRS, France

{mathieu.caralp,pierre-alain.reynier,jean-marc.talbot}@lif.univ-mrs.fr

Emmanuel Filiot†

CS Department
Université Libre de Bruxelles, Belgium

efiliot@ulb.ac.be

Frédéric Servais
Hasselt University and transnational University of Limburg

Belgium

frederic.servais@gmail.com

Visibly pushdown transducers (VPTs) are visibly pushdown automata extended with outputs. They
have been introduced to model transformations of nested words, i.e. words with a call/return struc-
ture. As trees and more generally hedges can be linearized into (well) nested words, VPTs are a
natural formalism to express tree transformations evaluated in streaming. This paper aims at charac-
terizing precisely the expressive power of VPTs with respect to other tree transducer models.

1 Introduction

Visibly pushdown machines [1], automata (VPA) or transducers, are pushdown machines such that stack
behavior is synchronized with the structure of the input word. Precisely, the input alphabet is partitioned
into call and return symbols. When reading a call symbol the machine must push a symbol onto the
stack, and when reading a return symbol it must pop a symbol from the stack.

Visibly pushdown transducers (VPTs) [10, 11, 5, 12] extend visibly pushdown automata [1] with
outputs. Each transition is equipped with an output word that is appended to the output tape whenever
the transition is triggered. AVPT thus transforms an input word into an output word obtained asthe
concatenation of all the output words produced along a successful run on that input.VPTs are a strict
subclass of pushdown transducers (PTs) and strictly extend finite state transducers. Several problems that
are undecidable forPTs are decidable forVPTs, most notably: functionality (in PTIME), k-valuedness
(in NPTIME) and functional equivalence (EXPTIME-C) [5]. VPTs are closed by regular look-ahead
which makes them a robust class of transformations [6].

Unranked trees and more generally hedges can be linearized into well-nested words over a structured
alphabet (such as XML documents).VPT are therefore a suitable formalism to express hedge transfor-
mations. In particular, they can express operations such asnode deletion, renaming and insertion. As
they process the linearization from left to right, they are also an adequate formalism to model and ana-
lyze transformations in streaming, as shown in [4].VPTs output strings, therefore on well-nested inputs
they define hedge-to-string transformations, and if the output strings are well-nested too, they define
hedge-to-hedge transformations.

In this paper, we characterize the expressive power ofVPTs w.r.t. their ability to express hedge-
to-string (H2S), and hedge-to-hedge (H2H) transformations. To do so, we define a top-down model

∗This work has been supported by the PEPS project SOSP (“Synthesis of Stream Processors”) funded by CNRS and by the
project ECSPER (ANR-09-JCJC-0069) funded by the ANR.

†FNRS Research Associate (“Chercheur Qualifié”)

http://dx.doi.org/10.4204/EPTCS.134.3
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

18 Expressiveness of Visibly Pushdown Transducers

of hedge-to-string transducers, inspired by classical top-down tree transducers. They correspond to
parameter-free linear order-preserving macro forest transducers that output strings [9]. We define a
syntactic restriction ofH2S that captures exactlyVPTs, and show that if theVPTs runs on binary en-
codings of hedges, then they have exactly the same expressive power asH2S. We show that those results
still hold when both models are restricted to hedge-to-hedge transformations. Based on those results, we
compareVPTs with classical ranked tree transducers, such as top-down tree transducers [2] and macro
tree transducers [3].

2 Transducer Models for Nested Words and Hedges

Words and Nested WordsThe set of finite words over a (finite) alphabetΣ is denoted byΣ∗, and the
empty word is denoted byε . A structured alphabetis a pairΣ = (Σc,Σr) of disjoint alphabets, of call and
return symbols respectively. Given a structured alphabetΣ, we always denote byΣc andΣr its implicit
structure, and identifyΣ with Σc∪Σr .

A nested wordis a finite word over a structured alphabet. The set ofwell-nested wordsover a
structured alphabetΣ is the least set, denoted byWΣ, that satisfies(i) ε ∈ WΣ, (ii) for all w,w′ ∈ WΣ,
ww′ ∈ WΣ (closure under concatenation), and(iii) for all w ∈ WΣ, c ∈ Σc, r ∈ Σr , cwr ∈ WΣ. E.g. on
Σ = ({c1,c2},{r}), the nested wordc1rc2r is well-nested whilerc1 is not. Finally, note that any well-
nested wordw is either empty or can be decomposed uniquely asw = cw1rw2 wherec ∈ Σc, r ∈ Σr ,
w1,w2 ∈ WΣ.

HedgesLet Λ be an alphabet. We letS(Λ) be the signature{0, ·} ∪ {a | a∈ Λ} where 0 is a constant
symbol,a∈ Λ are unary symbols and· is a binary symbol. The set ofhedgesHΛ overΛ is the quotient
of the freeS(Λ)-algebra by the associativity of· and the axioms 0·h= h·0= h. The constant 0 is called
the empty hedge. We may writea instead ofa(0), and omit· when it is clear from the context.Unranked
treesare particular hedges of the forma(h) whereh∈ HΛ. Note that any hedgeh is either empty or can
be decomposed ash= a(h1) ·h2.

Hedges overΛ can be naturally encoded as well-nested words over the structured alphabetΛs =
(Λc,Λr) whereΛc andΛr are new alphabets respectively defined byΛc = {ca | a∈ Λ} andΛr = {ra | a∈
Λ}. This correspondence is given via a morphismlin : HΛ → WΛs inductively defined by:lin(0) = ε and
lin(a(h1).h2) = calin(h1)ralin(h2). E.g. forΛ = {a,b}, we havelin(ab(ab)) = caracbcaracbrbrb.

Conversely, any well-nested word over a structured alphabet Σ can be encoded as an hedge over
the product alphabetΣc × Σr , via the mappinghedge : WΣ → HΣc×Σr defined ashedge(ε) = 0 and
hedge(cw1rw2) = (c, r)(hedge(w1)) ·hedge(w2) for all (c, r) ∈ Σc×Σr and allw1,w2 ∈ WΣ.

Binary Trees We consider here an alphabetΛ augmented with some special symbol⊥. We define the
set ofbinary treesBΛ as a particular case of unranked trees overΛ∪ {⊥}. Binary trees are defined
recursively as:(i) ⊥ ∈ BΛ, and(ii) for all f ∈ Λ, if t1, t2 ∈ BΛ then f (t1 t2) ∈ BΛ.

There is a well-known correspondence between hedges and binary trees by means of an encoding
called the first-child next-sibling encoding. This encoding is given by the mappingfcns defined as:(i)
fcns(0) =⊥, (ii) fcns(f (h1)h2) = f (fcns(h1) fcns(h2)) for all h1,h2 in HΛ.

The strong relationship between hedges and well-nested words can be considered when restricted to
binary trees: we defineBW Λs the set of binary well-nested words over the structured alphabet(Λc∪
{⊥c},Λr ∪ {⊥r}) as the least set satisfying:(i) ⊥c⊥r ∈ BW Λs and (ii) for all fc ∈ Λc, fr ∈ Λr , if
wb

1,w
b
2 ∈ BW Λs then fcwb

1wb
2 fr ∈ BW Λs. Note that the morphismlin applied on binary trees fromBΛ

yields binary nested words inBW Λs.

M. Caralp, E. Filiot, P.-A. Reynier, F. Servais and J.-M. Talbot 19

Finally, we can define the first-child next-sibling encodingof hedges as binary trees, directly on
linearizations; consider a structured alphabetΣ extended asΣ⊥ = (Σc∪{⊥c},Σr ∪{⊥r}). For all well-
nested wordsw over Σ, we definefcns(w) over the alphabetΣ⊥ recursively as(i) fcns(ε) = ⊥c⊥r and
(ii) fcns(cw1rw2) = cfcns(w1) fcns(w2) r for all w1,w2 ∈ WΣ.

Visibly Pushdown TransducersLet Σ be a structured alphabet, and∆ be an alphabet. Avisibly push-
down transducerfrom Σ to ∆ (the class is denotedVPT(Σ,∆)) is a tupleA= (Q, I ,F,Γ,δ) whereQ is a
finite set of states,I ⊆ Q the set of initial states,F ⊆ Q the set of final states,Γ the (finite) stack alphabet,
⊥ /∈ Γ is the bottom stack symbol, andδ = δc⊎δr is the transition relation where:

• δc ⊆ Q×Σc×Γ×∆∗×Q are thecall transitions,

• δr ⊆ Q×Σr ×Γ×∆∗×Q are thereturn transitions.

A configuration ofA is a pair(q,σ) whereq∈ Q andσ ∈ ⊥·Γ∗ is a stack content. Letw= a1 . . .al

be a (nested) word onΣ, and(q,σ),(q′,σ ′) be two configurations ofA. A run of theVPT A overw from
(q,σ) to (q′,σ ′) is a (possibly empty) sequence of transitionsρ = t1t2 . . . tl ∈ δ ∗ such that there exist
q0,q1, . . .ql ∈ Q andσ0, . . .σl ∈ ⊥·Γ∗ with (q0,σ0) = (q,σ), (ql ,σl) = (q′,σ ′), and for each 0< k≤ l ,
we have either(i) tk = (qk−1,ak,γ ,wk,qk) ∈ δc andσk = σk−1γ , or (ii) tk = (qk−1,ak,γ ,wk,qk) ∈ δr , and
σk−1 = σkγ . When the sequence of transitions is empty,(q,σ) = (q′,σ ′).

The outputof ρ is the wordw ∈ ∆∗ defined as the concatenationw = w1 . . .wl when the sequence
of transitions is not empty andε otherwise. Initial (resp. final) configurations are pairs(q,⊥) with
q ∈ I (resp. withq ∈ F). A run is acceptingif it starts in an initial configuration and ends in a final
configuration. The transducerA defines a relation from nested words to words defined as the setof pairs
(u,w) ∈ Σ∗×∆∗ such that there exists an accepting run onu producingw as output. From now on, we
confuse the transducer and the transduction it represents.Note that since we accept by empty stack and
there is no return transition on empty stack,A accepts only well-nested words, and thus is included into
WΣ ×∆∗.

Hedge-to-string TransducersWe present now a model of hedge-to-string transducers (H2S) that run
directly on hedges, and is closer to classical transducers thanVPTs are. In particular, this model is a
syntactic subclass of macro forest transducers (MFT) [9] with no parameters, no swapping and no copy.

Let Λ and∆ be two finite alphabets. Anhedge-to-string transducerfrom Λ to ∆ (the class is denoted
H2S(Λ,∆)) is a tupleT = (Q, I ,δ) whereQ is a set of states,I ⊆ Q is a set of initial states andδ is a set
of rules of the form:1

q(0)→ ε q(f (x1) ·x2)→ w1q1(x1)w2q2(x2)w3

whereq,q1,q2 ∈ Q, f ∈ Λ andw,w1,w2,w3 ∈ ∆∗.
The semantics ofT is defined via mappingsJqK : HΛ → 2∆∗

for all q∈ Q as follows:

JqK(0) =

{

{ε} if q(0)→ ε ∈ δ
/0 otherwise

JqK(f (h) ·h′) =
⋃

q(f (x1)·x2)→
w1q1(x1)w2q2(x2)w3

w1 · Jq1K(h) ·w2 · Jq2K(h
′) ·w3

1We consider linear and order-preserving rules only.

20 Expressiveness of Visibly Pushdown Transducers

The transduction of anH2S T = (Q, I ,δ) is defined as the relation{(h,s) | ∃q∈ I , s∈ JqK(h)}. When
s∈ JqK(h) for someH2S T, we may say that the computation of theH2S T on the hedgeh leads toq
producings.
We say thatT is tail-recursivewhenever in any rule, we havew3 = ε . We denote byH2Str the class of
tail-recursiveH2S.

Example 1. Let Λ be a finite alphabet. Consider T1 ∈ H2S(Λ,Λ) defined by Q= I = {q,q′} and the
following rules, for all f∈ Λ:

q(0)→ ε q′(0)→ ε q(f (x1) ·x2)→ q′(x1)q(x2) f

The domain of T1 is the set of strings overΛ (viewed as a particular case of hedges) and T1 defines the
mirror image of strings.

Example 2. LetΛ be a finite alphabet andΛs be its structured version. We define T2 ∈H2S(Λ,Λs) which
can non-deterministically root any subhedge of the input hedge under a new symbol# and output the lin-
earization of the new hedge. For instance, the input tree f(abcd) can be non-exhaustively translated into
the stringlin(f (a#(bc)d)) or the stringlin(f (#(ab)#(cd))). Formally, T2 is defined by Q= {q0,q1,q2},
I = {q0} andδ defined as the following set of rules: (observe that T2 ∈ H2Str)

qi(0)→ ε ∀i ∈ {0,2} q0(f (x1) ·x2)→ cf q0(x1)r f q0(x2)
q0(f (x1) ·x2)→ c#cf q2(x1)r f r#q0(x2) q0(f (x1) ·x2)→ c#cf q2(x1)r f q1(x2)
q1(f (x1) ·x2)→ cf q2(x1)r f r#q0(x2) q1(f (x1) ·x2)→ cf q2(x1)r f q1(x2)
q2(f (x1) ·x2)→ cf q2(x1)r f q2(x2)

Hedge-to-hedge TransducersWe consider now transducers running on hedges but producing(repre-
sentations of) hedges as well-nested words. We define them asrestrictions of the two models we have
considered so far.

We assume the output alphabet∆ to be structured as(∆c,∆r). We define anH2S(Λ,∆) to be an
hedge-to-hedge transducer (H2H(Λ,∆)) if any rhs w1q1(x1)w2q2(x2)w3 of its transition rules satisfies
w1w2w3 ∈ W∆. We denoteH2Htr the class ofH2H that are additionally tail-recursive.

Using the direct relationship between well-nested words and hedges, we may define hedge-to-hedge
transducers by means of a restriction in the definition ofVPT: this restriction asks the nesting level of the
input and the output words to be synchronized, that is the nesting level of the output just before reading
a call (on the input) must be equal to the nesting level of the output just after reading the matching return
(on the input). This simple syntactic restriction yields a subclass ofVPTs [5].

This synchronization is enforced syntactically on stack symbols, these symbols being shared by
matching call and return transitions.

LetA=(Q, I ,F,Γ,δ)∈VPT(Σ,∆). ThenA iswell-nestedif for all γ ∈Γ, all transitions(q,c,γ ,w,q′)∈
δc and(p, r,γ ,w′, p′) ∈ δr , it holds thatww′ ∈ W∆. We denote bywnVPT the class of well-nestedVPTs.

Hedge-to-binary tree TransducersWe consider transducers running on hedges and producing (repre-
sentations of) binary trees as binary well-nested words. Wedefine them as restrictions of hedge-to-hedge
transducers.

Let ∆⊥ = (∆⊥
c ,∆⊥

r) be a structured output alphabet such that∆⊥
c ,∆⊥

r contain two special symbols
⊥c,⊥r respectively. We define aH2H(Λ,∆⊥) to be an hedge-to-binary tree transducer (H2B(Λ,∆⊥)) if
any right hand-sidew1q1(x1)w2q2(x2)w3 of its transition rules satisfiesw1 = cw′

1, w2 = w′′
1w′

2, w3 = w′
3 r

for somec in ∆⊥
c , r in ∆⊥

r , w′
1⊥c⊥rw′′

1 andw′
2⊥c⊥rw′

3 in BW ∆⊥.

M. Caralp, E. Filiot, P.-A. Reynier, F. Servais and J.-M. Talbot 21

VPT ≡ H2Str (VPT◦ fcns≡ H2S

(Lemma 3) (Lemma 2) (Lemma 5)

((

fcns−1◦H2B (wnVPT≡ H2Htr (wnVPT◦ fcns≡ H2H

(Lemma 1) (Lemma 4) (Lemma 2) (Lemma 6)

Figure 1: Expressivness results in a nutshell

Hedge-to-binary tree transducers are close to linear and order-preserving top-down ranked tree trans-
ducers. They will serve us to compare the expressiveness ofH2H to this latter class of transducers defined
on the first-child next-sibling encoding of input and outputhedges.

3 Some Results on Expressiveness

In the sequel, we assume that input hedges accepted by transducers are non-empty. This restriction is
done without loss of generality. We depict on Figure 1 the results we obtained.

3.1 Definitions of expressiveness

Let Σ be a structured alphabet and∆ be a finite alphabet. We denote byT (WΣ,∆∗) the set of trans-
ductions fromWΣ to ∆∗. First observe that the semantics of a transducerA ∈ VPT(Σ,∆) is an element
of T (WΣ,∆∗). Second, given a transducerT ∈ H2S(Σc×Σr ,∆), we have thatT ◦hedge ∈ T (WΣ,∆∗).
Hence, up to the mappinghedge, we can thus compare the expressiveness of a subclassC1 of VPT(Σ,∆)
and of a subclassC2 of H2S(Σc×Σr ,∆), by their interpretation as transductions fromWΣ to ∆∗.

Formally, givenA∈VPT(Σ,∆) andT ∈H2S(Σc×Σr ,∆), we say thatA andT are equivalent, denoted
A≡ T, wheneverA= T ◦hedge. Given a subclassC1 of VPT(Σ,∆) and a subclassC2 of H2S(Σc×Σr ,∆),
we say thatC1 is more expressive thanC2 (resp. less expressive), denotedC1 ⊇ C2 (resp. C1 ⊆ C2),
whenever we have:

• for everyT ∈ C2, there existsA∈ C1 such thatA≡ T

• for everyA∈ C1, there existsT ∈ C2 such thatA≡ T, respectively

Last, we writeC1 ≡ C2 wheneverC1 andC2 are expressively equivalent meaning that bothC1 ⊇ C2 and
C1 ⊆ C2 hold.

3.2 Comparing expressiveness

We first recall in the framework we proposed here a known expressiveness result [11] comparingH2H
andH2B.

Lemma 1. Let∆ = (∆c,∆r) and∆⊥ = (∆c∪{⊥c},∆r ∪{⊥r}) be two structured alphabets.

1. For any T∈ H2B(Λ,∆⊥), there exists T′ ∈ H2H(Λ,∆) such that T′ = fcns−1◦T.

2. There exists T′ ∈ H2H(Λ,∆) such that there is no T∈ H2B(Λ,∆⊥) satisfying T′ = fcns−1◦T.

22 Expressiveness of Visibly Pushdown Transducers

Proof. For Point (1), it is enough to applyfcns−1 to the right-hand side of transition rules ofT (keeping
sub-expressions(q(xi) unchanged) to obtainT ′. For Point (2), for any well-nested wordu let us define
its size|u| as the number of symbols occurring in it and its height||u|| as: (i) ||u|| = 0 if u = ε and
(ii) ||cvrw|| = max(1+ ||v||, ||w||) if u= cvrw. Size and height can be defined on hedgesh accordingly
by considering size and heigth oflin(h). The following facts can easily be proved: (Fact 1) One can
devise a transducerT ′ that flattens its input into a sequence (T ′(f (h1)h2) = cf r f T ′(h1)T ′(h2)). Then,
|T ′(h)| = 2|h| and||T ′(h)|| = 1. (Fact 2) For allT in H2B(Λ,∆⊥), there existskT in N such that for all
hedgesh, ||T(h)|| ≤ kT ||h||; (Fact 3) Ifw∈ W∆, ||w||= 1 and|w|= n then||fcns(w)||= n.

Now, consider the familyHn|n∈N of hedgeshsuch that||h||= nand|h|= 2n. For anyh∈Hn, |T ′(h)|=
2n+1 and ||T ′(h)|| = 1. Hence,||fcns(T ′(h))|| = 2n+1. Assuming thatT exists yields||fcns(T ′(h))|| =
2n+1 = ||T(h)|| ≤ kTn for some constantkT for all n. Contradiction.

It turns out thatH2S are stricly more expressive thanVPTs. Formally:

Lemma 2. There exists T∈ H2S(Σc×Σr ,∆) such that for all A∈ VPT(Σ,∆), T ◦hedge 6≡ A.

Proof. Consider the variant over the input alphabetΣc×Σr of the transducerT defined in Example 1. It
is easy to see this transducer produces an output (after anhedge application) only on nested words from
(Λc.Λr)

∗. Over such input words, anyVPT admits only finitely many configurations in its accepting runs
and thus, is equivalent to some finite state transducer. But it is well known that finite state transducer can
not compute the mirror image of its inputs.

Informally, this is due to the abitility thatH2S have to ”complete” the output once the current hedge
is processed. This ability vanishes when tail-recursiveH2S are considered.

Lemma 3. VPT(Σ,∆)≡ H2Str(Σc×Σr ,∆).

(Sketch).Intuitively, in order to transformA ∈ VPT(Σ,∆) into T ∈ H2Str(Σc×Σr ,∆), we proceed as
follows. States ofT are pairs of states ofA, corresponding to states reached respectively at the beginning
and at the end of the processing of an hedge. More formally, the following rule will exist inT iff there
exist a call transition onc from p to p1, a matching return onr from p2 to q1, the hedge represented by
x1 (resp. byx2) can be processed from statep1 to statep2 (resp. fromq1 to q):

(p,q)((c, r)(x1) ·x2)→ w1 · (p1, p2)(x1) ·w2 · (q1,q)(x2)

The wordw1 (resp.w2) is the output of the call transition (resp. of the return transition). It is worth
observing that this encoding directly implies the tail-recursive property ofT.

The converse construction follows the same ideas. The stackis used to store the transition used on
the call symbol, to recover it when reading the return symbol.

Lemma 2 still holds even if we restrictH2S toH2H, because the transducer defining the transduction
of Example 1 is actually anH2H. Similarly, Lemma 3 also holds when restricted to hedge-to-hedge
transductions (the same constructions apply):

Lemma 4. wnVPT(Σ,∆)≡ H2Htr(Σc×Σr ,∆).

M. Caralp, E. Filiot, P.-A. Reynier, F. Servais and J.-M. Talbot 23

Removing the tail-recursive assumption As we have seen in the proof of Lemma 3, the behavior of
aVPT is naturally encoded by a tail-recursiveH2S. Intuitively, the wordw3 of rules ofH2S should be
produced after having processed the whole hedge.

We prove now that if we runVPTs on thefcns encoding of hedges, then we can express anyH2S-
definable transduction. Intuitively, in thefcns encoding, the return symbol of the root of the first tree of
the hedge is encountered at the end of the processing of the hedge. As a consequence, the wordw3 can
be output when processing this symbol. Formally, we have:

Lemma 5. VPT(Σ⊥,∆)◦ fcns≡ H2S(Σc×Σr ,∆).

(Sketch).A construction similar to the one presented in the proof of Lemma 3, based on pairs of states
of theVPT, can be used to build an equivalentH2S. It will not necessarily be tail-recursive as the output
of the return transition will be produced last. Note also that to handle empty subtrees encoded by⊥c⊥r ,
the resultingH2S may associate a non-empty output word to leafs. It is howevernot difficult to simulate
such rules.

Conversely, the construction is a bit more complex. States of theVPT store the rule that is applied
at the previous level, and the position in this rule (beginning, middle, or end). A special case is that of
the first level, as there is no previous level. In this case, westore the initial state we started from. This
information is stored in the stack, so as to recover it and faithfully simulate the application of the rule.
The case of rules associated with leafs is handled using the⊥c,⊥r symbols, and dedicated rules. Details
can be found in the Appendix.

Lemma 6. wnVPT(Σ⊥,∆)◦ fcns≡ H2H(Σc×Σr ,∆).

3.3 Comparison with other tree transducer models

H2S correspond to parameter-less macro forest transducers [9]without swapping nor copying, that output
strings. Therefore by Lemma 3,VPTs are strictly less expressive than mfts. Macro tree transducers
(mtts) are transducers on ranked trees [3]. To compare them with VPTs, which run on (linearization
of) hedges, we use the first-child next-sibling encoding. Asshown in [9], any mft is equivalent to the
composition of two mtts on those encodings. Linear-size increase transformations (or transducers) are
those transformations such that the size of an output is linearly bounded by the size of the input. In
[7] it is shown that any linear-size increase transformation defined by an arbitrary composition of mtts
is definable by a single linear-size increase mtt. Therefore, linear-size increase mfts are equivalent to
linear-size increase mtts. SinceVPTs clearly define linear-size increase transformations, theyare also
strictly included in mtts.

Top-down ranked tree transducers with the linear and non-swapping restrictions are equivalent to
H2B transducers on first-child next-sibling encodings. By Lemma 1, we get that they are strictly less
expressive thanwnVPTs, and thereforeVPTs. The arguments on the size of the ouputs in the proof
of Lemma 1 still applies when dropping that restriction (theyield transduction cannot be defined), and
therefore top-down ranked tree transducers are incomparable withVPTs. For the same reasons, bottom-
up tree transducers are also incomparable withVPTs.

Finally, let us mention theuniform tree transducersintroduced by Neven and Martens [8], and in-
spired by the XSLT language. These transducers can duplicate subtrees, but must use the same state to
transform all the children of a node. For those reasons they are incomparable withVPTs [11].

24 Expressiveness of Visibly Pushdown Transducers

A Appendix: Proof of Lemma 3 and 4

Proof. Let A= (Q, I ,F,Γ,δ) ∈ VPT(Σ,∆). We defineT = (Q′, I ′,δ ′) ∈ H2Str(Σc×Σr ,∆) as follows:

• Q′ = {(q1,q2) ∈ Q2 | ∃w∈ WΣ s.t. (q1,⊥)
w
−→ (q2,⊥)}

• I ′ = Q′∩ (I ×F)

• for all c∈ Σc, r ∈ Σr , and all statesp1, p2,q1,q2,q′1 such that(q1,q2),(p1, p2),(q′1,q2)∈Q′, if there
exist transitions(q1,c,γ ,w1, p1) ∈ δc, (p2, r,γ ,w2,q′1) ∈ δr , we build the rule:

(q1,q2)((c, r)(x1) ·x2)→ w1 · (p1, p2)(x1) ·w2 · (q
′
1,q2)(x2)

In addition, we also have:
(q1,q2)(0)→ ε ∈ δ ′ ⇐⇒ q1 = q2

It can be shown by induction that for all well-nested wordsw∈ WΣ, T has a computation overhedge(w)
leading to(q1,q2) producingw′ iff A admits a run from(q1,⊥) to (q2,⊥) overw producingw′. Observe
also that by definitionT is tail-recursive.

Notice that ifA is awnVPT, then we havew1w2 ∈WΣ, and thusT ∈ H2H. This proves one direction
of Lemma 4.

Conversely, let us consider the transducerT = (Q, I ,δ) from H2Str(Σc×Σr ,∆). We defineA =
(Q′, I ′,F ′,Γ′,δ ′) ∈ VPT(Σ,∆) as follows: Q′ = Q, I ′ = I , F ′ = {q ∈ Q | q(0) → ε ∈ δ}, Γ′ = δ and
for every rulet = q((c, r)(x1) ·x2)→ w1q1(x1)w2q2(x2) ∈ δ , we add the following rules toδ ′:

(q,c, t,w1,q1) {(q′, r, t,w2,q2) | q′ ∈ F ′}

It can be shown by induction that for all well-nested wordw ∈ WΣ, B has a computation over
hedge(w) leading toq producingw′ iff A admits a run from(q,⊥) to (q′,⊥) over w producingw′,
for someq′ ∈ F ′.

Notice that that ifB∈ H2H, then we havew1w2 ∈ WΣ, and thusA is a well-nestedVPT. This proves
the other direction of Lemma 4.

B Appendix: Proof of Lemma 5 and 6

Proof. Let A= (Q, I ,F,Γ,δ) ∈ VPT(Σ⊥,∆). We first define the two following sets:

X={(p,q) ∈ Q2| there exists a run(p,⊥)
cwr
−−→ (q,⊥) in A, with c∈ Σc, r ∈ Σr ,w∈ WΣ⊥

}

X⊥={(p,q) ∈ Q2| there exists a run(p,⊥)
⊥c⊥r−−−→ (q,⊥) in A}

We defineB= (Q′, I ′,δ ′)∈H2S(Σc×Σr ,∆) as follows:Q′ =X∪X⊥, I ′ =X∩(I ×F), for all (p,q) ∈X⊥,
and all transitions(p,⊥c,γ ,w, p′), (p′,⊥r ,γ ,w′,q), we add the following rule toδ ′: (p,q)(0) → ww′.

In addition, for everyc ∈ Σc, r ∈ Σr , and for every statesp,q, p1, p2, p3 such that(p,q) ∈ X, and
(p1, p2),(p2, p3) ∈ Q′, if there exist a transition(p,c,γ ,w1, p1) ∈ δc and a transition(p3, r,γ ,w3,q) ∈ δr ,
we build the rule:

(p,q)((c, r)(x1) ·x2)→ w1 · (p1, p2)(x1) · (p2, p3)(x2) ·w3

M. Caralp, E. Filiot, P.-A. Reynier, F. Servais and J.-M. Talbot 25

It can be shown by induction that for all well-nested wordw ∈ WΣ, B has a computation over
hedge(w) leading to(q1,q2) producingw′ iff A admits a run from(q1,⊥) to (q2,⊥) over fcns(w) pro-
ducingw′.

Observe also thatB does not comply with the definition ofH2S as the first set of rules may produce
non-empty words. However, it is easy to transformB to ensure this property as follows: for every rule
(p,q)(0) → x, build a state(p,x,q), and add the rule(p,x,q)(0) → ε . Then, modify the second set of
rules by replacing(p,q) by (p,x,q), and introducingx at the convenient position in the output of the rule.
Note that this transformation will result in non-empty ”w2” words.

In addition, we assumed that input words are non-empty. As a consequence, thefcns encodings
considered as input are different from the word⊥c⊥r . This justifies that the initial states can be taken in
X only. This also implies that the removing of non-empty leaf rules described before is correct, as every
leaf rule will be applied in the context of some rule associated with an internal node.

Last, for the proof of Lemma 6, it is easy to verify that ifA is awnVPT, thenB∈ H2H.

Conversely, let us consider the transducerB=(Q, I ,δ) inH2S(Σc×Σr ,∆). We defineA=(Q′, I ′,F ′,Γ′,δ ′)
in VPT(Σ⊥,∆) as follows:

Q′ = {(q, i) | q ∈ I , i ∈ {0,1}} ∪ {(t, i) | t ∈ δ , i ∈ {0,1,2}} ∪ {q⊥}, I ′ = I ×{0}, F ′ = I × {1},
Γ′ = Q′, and for every rulet = q((c, r)(x1) ·x2)→ w1q1(x1)w2q2(x2)w3 ∈ δ such thatq∈ I , we add the
two following rules toδ ′:

((q,0),c,(q,0),w1,(t,0)) ((t,2), r,(q,0),w3,(q,1))

In addition, for every two rules

t = q((c, r)(x1) ·x2)→ w1q1(x1)w2q2(x2)w3 ∈ δ
t ′ = q′((c′, r ′)(x1) ·x2)→ w′

1q′1(x1)w′
2q′2(x2)w′

3 ∈ δ

andi ∈ {0,1} such thatq′i = q, we add the two following rules toδ ′:

((t ′, i),c,(t ′, i),w1,(t,0))

((t,2), r,(t ′ , i),w3x,(t ′, i +1)) wherex=

{

w′
2 if i = 0

ε otherwise

Last, we consider rules associated with leafs: for every rule q(0) → ε , we add the two following
transitions: (provided that thei-th state of the rulet is q)

((t, i),⊥c,(t, i),ε ,q⊥) (q⊥,⊥r ,(t, i),ε ,(t, i +1))

It can be shown by induction that for all well-nested wordw ∈ WΣ, B has a computation over
hedge(w) leading toq producingw′ iff the two following properties are verified:

• if q∈ I , thenA admits a run from(q,0) to (q,1) over fcns(w) producingw′

• for every(t, i)∈ δ ×{0,1,2} such thatt = p((c, r)(x1) ·x2)→w1q1(x1)w2q2(x2)w3 ∈ δ andqi = q,
A admits a run from(t, i) to (t, i+1) overfcns(w) producingw′x, wherex= ε if i = 1, andx= w2

otherwise.

AcknowledgmentsWe are very grateful to Sebastian Maneth and anonymous referees for helpful
comments on this paper.

26 Expressiveness of Visibly Pushdown Transducers

References

[1] Rajeev Alur & P. Madhusudan (2009):Adding nesting structure to words. Journal of the ACM56(3), pp.
1–43, doi:10.1145/1516512.1516518.

[2] Hubert Comon, Max Dauchet, Rémi Gilleron, Christof Löding, Florent Jacquemard, Denis Lugiez, Sophie
Tison & Marc Tommasi (2007):Tree Automata Techniques and Applications. Available athttp://tata.
gforge.inria.fr/.

[3] Joost Engelfriet & Sebastian Maneth (2003):Macro tree translations of linear size increase are MSO defin-
able. SIAM Journal on Computing32, pp. 950–1006, doi:10.1137/S0097539701394511.

[4] Emmanuel Filiot, Olivier Gauwin, Pierre-Alain Reynier& Frédéric Servais (2011):Streamability of Nested
Word Transductions. In: IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, 13, pp. 312–324, doi:10.4230/LIPIcs.FSTTCS.2011.312.

[5] Emmanuel Filiot, Jean-François Raskin, Pierre-AlainReynier, Frédéric Servais & Jean-Marc Talbot (2010):
Properties of Visibly Pushdown Transducers. In: Mathematical Foundations of Computer Science, pp. 355–
367, doi:10.1007/978-3-642-15155-2_32.

[6] Emmanuel Filiot & Frédéric Servais (2012):Visibly Pushdown Transducers with Look-Ahead. In: Inter-
national Conference on Current Trends in Theory and Practice of Computer Science, pp. 251–263, doi:10.
1007/978-3-642-27660-6_21.

[7] Sebastian Maneth (2003):The Macro Tree Transducer Hierarchy Collapses for Functions of Linear Size
Increase. In: IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer
Science, pp. 326–337, doi:10.1007/978-3-540-24597-1_28.

[8] Wim Martens & Frank Neven (2003):Typechecking Top-Down Uniform Unranked Tree Transducers. In:
International Conference on Database Theory, Lecture Notes in Computer Science2572, Springer, pp. 64–
78, doi:10.1007/3-540-36285-1_5.

[9] Thomas Perst & Helmut Seidl (2004):Macro Forest Transducers. Information Processing Letter89(3), pp.
141–149, doi:10.1016/j.ipl.2003.05.001.

[10] Jean-François Raskin & Frédéric Servais (2008):Visibly Pushdown Transducers. In: International Collo-
quium on Automata, Languages and Programming, Lecture Notes in Computer Science5126, pp. 386–397,
doi:10.1007/978-3-540-70583-3_32.

[11] Frédéric Servais (2011):Visibly Pushdown Transducers. Ph.D. thesis, Université Libre de Bruxelles. Avail-
able athttp://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-09292011-142239/.

[12] Slawomir Staworko, Grégoire Laurence, Aurélien Lemay & Joachim Niehren (2009):Equivalence of De-
terministic Nested Word to Word Transducers. In: Fundamentals of Computer Theory, Lecture Notes in
Computer Science5699, pp. 310–322, doi:10.1007/978-3-642-03409-1_28.

http://dx.doi.org/10.1145/1516512.1516518
http://tata.gforge.inria.fr/
http://tata.gforge.inria.fr/
http://dx.doi.org/10.1137/S0097539701394511
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.312
http://dx.doi.org/10.1007/978-3-642-15155-2_32
http://dx.doi.org/10.1007/978-3-642-27660-6_21
http://dx.doi.org/10.1007/978-3-642-27660-6_21
http://dx.doi.org/10.1007/978-3-540-24597-1_28
http://dx.doi.org/10.1007/3-540-36285-1_5
http://dx.doi.org/10.1016/j.ipl.2003.05.001
http://dx.doi.org/10.1007/978-3-540-70583-3_32
http://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-09292011-142239/
http://dx.doi.org/10.1007/978-3-642-03409-1_28

	1 Introduction
	2 Transducer Models for Nested Words and Hedges
	3 Some Results on Expressiveness
	3.1 Definitions of expressiveness
	3.2 Comparing expressiveness
	3.3 Comparison with other tree transducer models

	A Appendix: Proof of Lemma 3 and 4
	B Appendix: Proof of Lemma 5 and 6

