
U. Dal Lago and V. de Paiva (Eds.) Second Joint International

Workshop on Linearity & Trends in Linear Logic and Applications.

EPTCS 353, 2021, pp. 94–108, doi:10.4204/EPTCS.353.5

© M. Hasegawa

This work is licensed under the

Creative Commons Attribution License.

A Braided Lambda Calculus

Masahito Hasegawa

Research Institute for Mathematical Sciences
Kyoto University

Kyoto, Japan

hassei@kurims.kyoto-u.ac.jp

We present an untyped linear lambda calculus with braids, the corresponding combinatory logic, and

the semantic models given by crossed G-sets.

1 Introduction

Braids A braid with n-strands [3, 4, 9] is n copies of the interval [0,1] smoothly embedded in the cube

[− 1
2
, 1

2
]× [0,1]× [0,1] (Figure 1) such that

• each t ∈ [0,1] is mapped to a point in the plane {(x,y,z) | z = t}

• the end points 0 ∈ [0,1] are sent to the n points {(0, k
n−1

,0) | k = 0, . . . ,n−1}

• the end points 1 ∈ [0,1] are sent to the n points {(0, k
n−1

,1) | k = 0, . . . ,n−1}

Two braids are identified if there is a continuous deformation between them preserving the boundaries

(the ambient isotopy). It is well-known that braids (modulo ambient isotopy) can be identified with their

projections to a plane modulo Reidemeister moves, and also with the elements of the braid group:

{braids of n-strands}/ambient isotopy
∼= {braid diagrams of n-strands}/Reidemeister moves
∼= Braid group Bn

A braided lambda calculus In this paper, we introduce an untyped linear lambda calculus with braids,

in which every permutation/exchange of variables is realized by a braid. Thus, for a term M with n

(ordered) free variables and a braid s with n strands, we introduce a term [s]M in which the free variables

are permutated by s:
x1,x2, . . . ,xn ⊢ M s : braid with n strands

xs(1),xs(2), . . . ,xs(n) ⊢ [s]M
braid

✲

✻

�
�

��✠

�
�

�
�

�
�

• • • •

• • • •

x

y

z

1

1

2
3

1
3

01
2

− 1
2

• • • •

• • • •

σ1σ2
3σ1σ2

braid with 4 strands braid diagram element of the braid group B4

Figure 1: Braids

http://dx.doi.org/10.4204/EPTCS.353.5
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

M. Hasegawa 95

For instance, we have two braided C-combinators

C+ ≡ λ f xy.

[
y

x

f

x
y

f

]

(f yx) C− ≡ λ f xy.

[
y

x

f

x
y

f

]

(f yx)

which are “implementations” of the standard C-combinator λ f xy. f yx using braids. The idea of realizing

a braided calculus as a planar calculus enriched with explicit braids is not new, see for instance [5].

Why braids? Braids do not play a serious role in most of the conventional computational models, and

for the time being this work is largely a mathematical exercise with no immediate application. Neverthe-

less, let us say a little bit more on the motivation of this work and its potential applications.

Extensionally, permutations (symmetry/exchange) are used for swapping two data. On the other

hand, braids provide non-extensional information on how to implement permutations in three dimen-

sions. If braids have some computational meaning, it should be something about low-level (intermediate)

codes to be compiled in some 3D computational architectures. One such computational model allowing

“braids for implementation” reading is Topological Quantum Computation [10], where the topological

information of anyons in 3D space-time does matter; we hope that this work will find some usage in this

context. In a larger perspective, this work forms part of our research project on relating low-level codes

and low-dimensional topology via categorical machineries.

From a more abstract point of view, our braided lambda calculus and the corresponding braided

combinatory algebras are algebraic structures which can be described in terms of PROBs (products and

braids categories), the braided version of PROPs (products and permutations categories). It seems that

the theory of PROBs is a sort of folklore and there are very few published works on it (cf. [12, 16]);

we expect that the braided lambda calculus serves as a good test case of PROBs, e.g. the treatment of

substitutions in braided algebras.

Why linear? Our calculus is linear, as there is no non-trivial braid in a non-linear setting. When the

tensor product is cartesian, any braid σA,B : A×B →B×A is equal to the symmetry 〈π ′
A,B,πA,B〉 : A×B→

B×A because
σA,B = 〈πB,A,π

′
B,A〉 ◦σA,B 〈π,π ′〉= id

= 〈πB,A ◦σA,B,π
′
B,A ◦σA,B〉

= 〈π ′
A,B,πA,B〉

where πB,A ◦σA,B = π ′
A,B because

πB,A ◦σA,B = (idB×!A)◦σA,B

= σ1,B ◦ (!A × idB) naturality of σ

= idB ◦π ′
A,B σ1,B = idB

= π ′
A,B

Similarly π ′
B,A ◦ σA,B = πA,B holds. Hence linearity is essential for studying a braided calculus in a

meaningful way.

Why untyped? Our calculus is untyped. Compared to the typed case (including braided MLL [5] and

tensorial logic [11]), we have a simpler syntax and subtler, more challenging semantics - while the simply

typed braided lambda calculus can be modelled by any braided monoidal closed category, the untyped

96 A Braided Lambda Calculus

x λx.M M N [s]M

M ✐λ
N

M

✐@ s M

Figure 2: Term graphs

calculus requires a reflexive object, which is hard to find in the well-known braided categories in TQFT

[15]. We overcome this difficulty by using a braided relational model constructed in our previous work

[7]. As far as we know, this is the first non-trivial example of a reflexive object in a non-symmetric ribbon

category.

Contributions Our contributions are summarized as follows.

• We formulate a braided lambda calculus whose syntax is a mild modification of the untyped linear

lambda calculus with explicit braids (Section 2).

• We introduce the corresponding combinatory logic and show the combinatory completeness which

ensures that our combinatory logic is as expressive as the braided lambda calculus (Section 3).

• We give categorical semantics given by reflexive objects in braided monoidal closed categories,

and present some concrete models using crossed G-sets (Section 4).

2 A Braided Lambda Calculus

2.1 Syntax of the Calculus

The untyped braided lambda calculus is an extension of the planar lambda calculus (the linear lambda

calculus with no exchange)1 with a rule for introducing braided terms.

x ⊢ x
variable

Γ,x ⊢ M

Γ ⊢ λx.M
abstraction

Γ ⊢ M Γ′ ⊢ N

Γ,Γ′ ⊢ M N
application

x1,x2, . . . ,xn ⊢ M s : braid with n strands

xs(1),xs(2), . . . ,xs(n) ⊢ [s]M
braid

where s(i) denotes the outcome of applying the permutation on {1,2, . . . ,n} induced by s to i. Formally,

a braid with n strands will be an element of the braid group Bn, and the braided term [s]M is the result of

the group action of Bn on terms with n free variables. However, for readability, we might present braids

graphically, often with labels indicating the correspondence to variables.

It will be helpful to look at term graphs corresponding to terms (Figure 2), especially when discussing

the equational theory of the braided lambda calculus.

1In the literature, there are (at least) two different notions of “planar lambda terms”. Some authors employ the “left”

abstraction rule (e.g. [18])
x,Γ ⊢ M

Γ ⊢ λx.M
whereas others (e.g. [2, 14]) use the “right” abstraction rule as we do in the present

paper; see [18] for some comparison. Our choice has the advantage of preservation of planarity under the βη-conversions, and

allows simpler semantics by reflexive objects in monoidal (right) closed categories.

M. Hasegawa 97

Example 1 (braided C-combinator) The derivation of the combinator C+ in the introduction is

f ⊢ f y ⊢ y

f ,y ⊢ f y x ⊢ x

f ,y,x ⊢ f yx s =
y
x
f

x
y
f

f ,x,y ⊢ [s] (f yx)

f ,x ⊢ λy.[s](f yx)

f ⊢ λxy.[s](f yx)

⊢ λ f xy. [s] (f yx)

and the term graph corresponding to C+ is

❣λ❣λ❣λ❣@
❣@

Remark 1 (Contexts are redundant) In the braided lambda calculus, the context is always uniquely

determined by the term, thus redundant. Given a braided lambda term M, we define the list cxt(M) of free

variables in M as follows: cxt(x) = x, cxt(M N) = cxt(M),cxt(N), cxt(λx.M) = Γ where cxt(M) = Γ,x,

and cxt([s]M) = s(cxt(M)) where s(x1, . . . ,xn) = xs(1), . . . ,xs(n). It follows that Γ ⊢ M iff cxt(M) = Γ.

Hence the context of a braided term is unique: if both Γ ⊢ M and Γ′ ⊢ M are derivable, then Γ is identical

to Γ′.

2.2 Equational Theory

The βη-theory of the braided lambda calculus has the usual βη axioms plus structural axioms for braids:

β (λx.M)N = M[x := N]
η λx.M x = M

strid [idn]M = M (M has n free variables)
strcomp [s]([s′]M) = [ss′]M
strapp ([s]M)([s′]N) = [s⊗ s′](M N)
strabs [s](λx.M) = λx.[s⊗ id1]M

where idn stands for the trivial braid with n strands (the unit element e of the braid group Bn), ss′ is the

composition of s and s′ while s⊗ s′ the parallel composition (Figure 3). The structural axioms identify

two terms when they have the same underlying term graph (Figure 5). It might be worth pointing out that

our calculus has some resemblance to the calculi with explicit substitutions [1]: braids can be thought as

special substitutions (enriched with some extra information).

In the β rule, the substitution M[x := N] means replacing the (unique) free variable x in M by N

and also x-labelled strings occuring in braids in M by Γ-strings where Γ ⊢ N. (When N contains no

free variable, all x-strings are removed.) This informal definition can be justified if we look at the

corresponding term graphs: intuitively,

([
y

x
x
y

]

(yx)
)

[x := (x1 x2)] should be

[
y

x2

x1

x2

x1

y

]

(y(x1 x2))

98 A Braided Lambda Calculus

because they express the same term graph (modulo continuous deformation):

✐@
✐@

y

x2

x1
=

✐@ ✐@

y

x2

x1

Similarly,

([
y

x
x
y

]

(yx)
)

[x := λ z.z] should be [y y] (y(λ z.z)) =strid
y(λ z.z).

✐λ ✐@

y

=
✐λ ✐@

y

=
✐λ ✐@

y

Thus substitution is much subtler than one might first guess. Below we discuss the formal definition of

substitution, in which braids are algebraically handled as elements of the braid group.

2.3 Formal Treatment of Braids and Substitution

The braid group Let Bn be the Artin braid group [3, 4, 9] generated by n−1 generators σ1,σ 2, . . . ,σ n−1

with relations

• σ iσ j = σ jσ i for 1 ≤ i, j ≤ n−1 with |i− j| ≥ 2, and

• σ iσ i+1σ i = σ i+1σ iσ i+1 for 1 ≤ i ≤ n−1.

The following geometric reading in terms of braid diagrams may be useful for understanding the be-

haviour of the generators σ i and σ−1
i :

1

j−1
j

j+1
j+2

n

1

j−1
j

j+1
j+2

n

✘✘✘✘❳❳ ❳❳

.

.

.

.

.

.

1

j−1
j

j+1
j+2

n

1

j−1
j

j+1
j+2

n

❳❳❳❳✘✘
✘✘

.

.

.

.

.

.

1

j−1
j

j+1
j+2
j+3

n

1

j−1
j

j+1
j+2
j+3

n

.

.

.

.

.

.

✏✏✏✏✏✏
PP PP ✏✏✏

PP PPPP PP
=

1

j−1
j

j+1
j+2
j+3

n

1

j−1
j

j+1
j+2
j+3

n

.

.

.

.

.

.

✏✏✏✏✏✏✏✏✏ PP PPPP PPPP PP

σ j σ−1
j σ jσ j+1σ j = σ j+1σ jσ j+1

In the sequel we will denote the unit element (idn) of the braid group by e.

id3

s s′

ss′

s

s′

s⊗ s′

Figure 3: Operations on braids

M. Hasegawa 99

M ✐λ
✐@

N

=β

M

N

M
✐@ ✐λ =η

M

Figure 4: βη axioms

strid

idn

M = M

strcomp s s′ M = s s′ M

ss′

strapp

s

s′

M

N
✐@ =

s

s′

M

N
✐@

s⊗ s′

strabs Ms
✐λ = Ms

✐λ
s⊗ id1

Figure 5: Structural axioms

100 A Braided Lambda Calculus

1

j−1

j

j+1

j+2

n

1

j−1

j

j+1

j+2

n

✘✘✘✘❳❳
❳❳

.

.

.

.

.

.

1

j−1

j

j+1

j+2

j+3

j+4

n+2

1

j−1

j

j+1

j+2

j+3

j+4

n+2

✘✘✘✘✘✘✘✘✘✘✘✘

.

.

.

.

.

.

1

j−1

j

j+1

n−1

1

j−1

j

j+1

n−1

.

.

.

.

.

.

σ j σ j[j := 3] = σ j+2σ j+1σ j σ j[j := 0] = e(= idn−1)

Figure 6: Substitution map

Defining substitutions Define the substitution map (−)[i := m] : Bn → Bn+m−1 for 1 ≤ i ≤ n and m ≥ 0

as follows.

• e[i := m]≡ e.

• (σ js)[i := m]≡ σ j+m−1(s[i := m]) when i ≤ j−1.

• (σ js)[i := m]≡ σ j(s[i := m]) when i ≥ j+2.

• (σ js)[j := m]≡

{
s[j+1 := 0] m = 0

σ j+m−1 · · ·σ j+1σ j(s[j+1 := m]) m ≥ 1

• (σ js)[j+1 := m]≡

{
s[j := 0] m = 0

σ jσ j+1 · · ·σ j+m−1(s[j := m]) m ≥ 1

• Similarly for σ−1
j s.

The substitution map is well-defined: s[i :=m] does not depend on the choice of g1, . . . ,gk ∈{σ±
1 , . . . ,σ

±
n }

such that s = g1 · · ·gk. Note that s[i := 1] ≡ s holds for any s ∈ Bn and i. We give some examples of the

substitution map in Figure 6.

In the sequel we identify an element of Bn with a braid with n strands. For a braided term [s]M with

x1,x2, . . . ,xn ⊢ M s ∈ Bn

xs(1),xs(2), . . . ,xs(n) ⊢ [s]M

and a term y1, . . . ,ym ⊢ N, we define the substitution ([s]M)[xi := N] as

([s]M)[xi := N] ≡
[
s[s−1(i) := m]

]
(M[xi := N])

2.4 Rewriting and Decidability

Let ≡str be the smallest congruence on braided lambda terms containing the equational theory of braid

groups and structural axioms. We say that a term M (1-step) βη-reduces to N modulo ≡str when there

exists M1 such that M ≡str M1 and M1 reduces to N via a single βη-reduction.

Theorem 1 The βη-reduction modulo ≡str is strong normalizing, and Church-Rosser modulo ≡str.

Proof (outline) For a braided lambda term M, let u(M) be the linear lambda term obtained by deleting all

braids in M; thus u(x) = x, u(λx.M) = λx.u(M), u(M N) = u(M)u(N) and u([s]M) = u(M). Then we

have that

M. Hasegawa 101

• If M 1-step βη-reduces to N, then u(M) 1-step βη-reduces to u(N) in the linear lambda calculus.

• If M ≡str M1, then u(M)≡ u(M1).

The strong normalization follows immediately from these observations as an infinite βη-reduction se-

quence modulo ≡str would give rise to an infnite βη-reduction sequence in the linear lambda calculus

(which of course is strongly normalizing).

The confluence of β -reduction modulo ≡str follows from the observation that when u(M) β -reduces

to N in the linear lambda calculus, there exists a braided term N0 such that M β -reduces to N0 modulo

≡str and u(N0) = N holds. This does not hold for the η-reduction: for M = λy. [
y
x

y
x] (xy), observe

that u(M) = λy.xy η-reduces to x while M is η-normal in the braided calculus. Fortunately the η-

postponement holds in this setting and we obtain the confluence of βη-reduction modulo ≡str.

Note that a normal form of β -reduction modulo ≡str is just a β -normal linear lambda term decorated

by braids, and a normal form of a braided term can be easily obtained by tracing the normalization of the

corresponding linear lambda term. Since the word problem for braid groups is decidable [3, 9] and so is

the equational theory of structural axioms, we conclude:

Theorem 2 The βη-theory of the braided lambda calculus (as given in Section 2.2) is decidable.

3 Combinatory Logic

3.1 Representing Braids by C±

For a braid s with n strands, let ⌈s⌉ be the combinator

λ f xs(1) . . .xs(n).[id1 ⊗ s](f x1 . . . xn)

In particular, when n = 2 ⌈σ 1⌉=
⌈ ⌉

= C+ and ⌈σ−1
1 ⌉=

⌈ ⌉
= C−.

As usual, we have the combinators I ≡ λx.x and B ≡ λxyz.x(yz).

Lemma 1 1. ⌈idn⌉ =βη I.

2. ⌈ss′⌉ =βη B⌈s⌉⌈s′⌉.

3. ⌈id1 ⊗ s⌉ =βη B⌈s⌉.

4. ⌈s⊗ id1⌉ =βη ⌈s⌉.

Below let us write Mn+1 N forM (Mn N) and M0 N for N.

Proposition 1 ⌈σi⌉=βη Bi−1C+ and ⌈σ−1
i ⌉=βη Bi−1C−.

Since any braid is given by composing e, σi and σ−1
i , we conclude:

Theorem 3 For any braid s, ⌈s⌉ is βη-equal to a combinator generated by B, I, C+ and C−.

3.2 Combinatory Completeness of BC±I

For the braided term xs(1),xs(2), . . . ,xs(n) ⊢ [s]M, we have

[s]M =βη ⌈s⌉(λx1 . . .xn.M)xs(1) . . .xs(n)

102 A Braided Lambda Calculus

because

⌈s⌉(λx1 . . .xn.M)xs(1) . . .xs(n) = (λ f xs(1) . . .xs(n).[id1 ⊗ s](f x1 . . . xn))(λx1 . . .xn.M)xs(1) . . .xs(n)

= (λxs(1) . . .xs(n).[s]((λx1 . . .xn.M)x1 . . . xn))xs(1) . . .xs(n)

= [s]((λx1 . . .xn.M)x1 . . . xn)
= [s]M

Thus any braided lambda term is equal to a planar lambda term (a term which does not involve the braid

rule) enriched with C+ and C−. In particular, for combinators we have

Theorem 4 Any closed term of the braided lambda calculus is βη-equal to a combinator generated by

B, I, C+ and C−.

This, in the context of combinatory logic, can be thought as a combinatory completeness. Indeed, we

have the following translation (−)♭ from the braided lambda calculus to BC±I-terms.

x♭ ≡ x (M N)♭ ≡ M♭N♭ (λx.M)♭ ≡ λ ∗x.M♭

([s]M)♭ ≡ ⌈s⌉(λ ∗x1 . . .xn.M
♭)xs(1) . . .xs(n) (cxt(M) = x1, . . . ,xn)

λ ∗x.x ≡ I λ ∗x.PQ ≡

{
C+ (λ ∗x.P)Q (x ∈ fv(P))
BP(λ ∗x.Q) (x ∈ fv(Q))

(To be precise, this determines a translation on terms modulo βη-equality, because Lemma 1 and Propo-

sition 1 define ⌈s⌉ only up to βη-equality. For instance, e = σ1σ−1
1 in B2 and ⌈e⌉ = λ f xy. f xy while

⌈σ1σ−1
1 ⌉= BC+C−, and they are βη-equal.)

Example 2 As an example involving a fairly complex braid, let us consider a Celtic C-combinator (in-

spired by the traditional Celtic braid):

λ f xyz.
[
(σ2σ−1

1 σ−1
3)4σ2

]
(f yxz) = λ f xyz.

f

x

y

z

f

y
x

z

(f yxz)

Thanks to the combinatory completeness and the translation above, we have that this combinator is

βη-equal to

BC+ (C− (B(BC−))
(BC+ (C− (B(BC−))

(BC+ (C− (B(BC−))
(BC+ (C− (B(BC−))C+)))))))

built from B, I, C+ and C−.

Therefore it is possible to formulate a braided combinatory logic with constants B, C±, I and an

appropriate set of axioms (say A) ensuring (i) M =A M′ implies λ ∗x.M =A λ ∗x.M′ and (ii) s = s′ in Bn

implies ⌈s⌉ =A ⌈s′⌉. Finding a complete (hopefully finite) axiomatization (which should satisfy (i) and

(ii) above) is left as future work.

For comparison, in Figure 7 we give an axiomatization of the linear combinatory logic BCI which

is sound and complete for the βη-theory of the linear lambda calculus.2 We expect that a complete

2This axiomatization is our own version (and might contain some redundancies); we were unable to find such a complete

axiomatization of BCI in the literature, though we think that an axiomatization like ours should be known to specialists. For

reference, we include an outline of the proof of completeness in Appendix A.

M. Hasegawa 103

BLM N = L(M N) (B)
CLM N = LN M (C)

IM = M (I)
BI = I

CBI = I

B(BB)B = B(CBB)(BBB)
B(BC)(BBB) = B(CBC)(BBB)

B(BB)C = BC(B(BC)B)
BCC = I Reidemeister II

B(BC)(BC(BC)) = BC(B(BC)C) Reidemeister III

Figure 7: A complete axiomatization of BCI

axiomatization of BC±I can be given like this axiomatization of BCI, with some needed modifications.

For instance, Reidemeister II and Reidemeister III should be replaced by the braided versions

BC±C∓ = I Reidemeister II

B(BC+)(BC+ (BC+)) = BC+ (B(BC+)C+) Reidemeister III

which amount to ⌈σ1σ−1
1 ⌉ = ⌈σ−1

1 σ1⌉ = I and ⌈σ1σ2σ1⌉ = ⌈σ2σ1σ2⌉. It seems much more difficult to

find a braided variant of the axiom (C): when the terms L, M, N have l, m, n free variables respectively,

we have

C+LM N =

✟
✟
✟
✟

✟
✟
✟
✟

{n

{m

{l

···

···

(LN M)

where the braid in the right hand side of the equation is not an identity unless m or n is zero, and the

corresponding BC±I-term contains mn C+s. This suggests that finding a finite axiomatization is not an

obvious task.

4 Semantics

4.1 Categorical Models

A model of the braided lambda calculus (without η) can be given by an object X in a braided monoidal

closed category [8] such that the internal hom [X ,X] is a retract of X . The situation is largely the same

as that of the models of the untyped lambda calculus given by reflexive objects in cartesian closed cat-

egories. Let us sketch how it works. Let ev : [X ,X]⊗ X → X be the evaluation map given by the

monoidal closure, and write Λ(f) : Γ → [X ,X] for the currying of an arrow f : Γ⊗X → X . Assume an

arrow ϕ : [X ,X]→ X with a right inverse ψ : X → [X ,X]. Then we can interpret a braided lambda term

104 A Braided Lambda Calculus

x1, . . . ,xn ⊢ M as an arrow [[x1, . . . ,xn ⊢ M]] from X⊗n =

n
︷ ︸︸ ︷

X ⊗·· ·⊗X to X as follows.

[[x ⊢ x]] = idX

[[Γ ⊢ λx.M]] = Λ([[Γ,x ⊢ M]]);ϕ

[[Γ,∆ ⊢ M N]] = ([[Γ ⊢ M]];ψ ⊗ [[∆ ⊢ N]]);ev

[[xs(1), . . . ,xs(n) ⊢ [s]M]] = [[s]]; [[x1, . . . ,xn ⊢ M]]

where ; denotes the relational composition, and the interpretation [[s]] is the interpretation of the braid s

on X⊗n. The β -equality is validated because ϕ ;ψ = id[X ,X] hold. An extensional model (i.e., validating

η) is given by an X such that [X ,X] is isomorphic to X , i.e., ψ = ϕ−1.

There are plenty of braided monoidal closed categories in the literature — many of them are found

in the context of representation theory of quantum groups [15]. However, finding a braided monoidal

closed category with a non-trivial reflexive object is not easy — impossible if we stick to finite dimen-

sional linear representations, as the dimension of [X ,X] is strictly higher than that of X unless X is

one-dimensional. Below we present models using braided relational semantics [7] where the problem of

dimensions disappears.

4.2 A Crossed G-Set Model of Finite Binary Trees

Fix a group G = (G,e, ·,(−)−1). Recall that a crossed G-set [17] is a set X equipped with a G-action

• : G×X → X and a valuation map | | : X → G satisfying |g•x|= g|x|g−1 for g ∈ G and x ∈ X . There is

a ribbon category [13, 15] XRel(G) whose objects are crossed G-sets and a morphism from (X ,•, | |) to

(Y,•, | |) is a binary relation r ⊆ X ×Y between X and Y such that (x,y) ∈ r implies |x| = |y| as well as

(g• x,g• y) ∈ r for any g ∈ G [7]. The dual of a crossed G-set X = (X ,•, | |) is X∗ = (X ,•, | |−1). The

tensor of X = (X ,•, | |) and Y = (Y,•, | |) is X ⊗Y = (X ×Y,(g,(x,y)) 7→ (g• x,g• y),(x,y) 7→ |x||y|).

For this monoidal structure we have a braiding σX ,Y : X ⊗Y
∼=
→Y ⊗X as

σX ,Y = {((x,y),(|x| • y,x)) | x ∈ X ,y ∈ Y}.

See [7] for further details of XRel(G).
Below we will give a crossed G-set T such that the internal hom [T ,T] = T ⊗T ∗ is a retract of

T , which forms a model of the braided lambda calculus.

Let T be the set of binary trees whose leaves are labelled by elements of G (or the implicational

formulas generated from G):

t ::= g | t

⊸

t (g ∈ G)

T is a crossed G-set with the valuation | | : T → G given by |g| = g and |x

⊸

y| = |x||y|−1 and the

G-action • : G×T → T given by

g•h = ghg−1 (h ∈ G), g• (x

⊸

y) = (g• x)

⊸

(g• y)

Moreover the map ϕ : T ×T → T sending (x,y) to x

⊸

y gives a morphism

ϕ = {((x,y),x

⊸

y) | x,y ∈ T } : T ⊗T
∗ → T

in XRel(G), with a right inverse ψ = {(x

⊸

y,(x,y)) | x,y ∈ T } : T → T ⊗T ∗. It follows that we can

model the untyped braided lambda calculus (without η) using T as follows. A term x1, . . . ,xn ⊢ M is

interpreted as a relation r from T n to T such that ((u1, . . . ,un),a) ∈ r implies |u1| · · · |un| = |a| as well

M. Hasegawa 105

as ((g•u1, . . . ,g•un),g•a) ∈ r for any g ∈ G. In particular, a closed term is interpreted as a subset of

{x ∈ T | |x|= e} closed under the G-action.

[[x ⊢ x]] = {(a,a) | a ∈ T }
[[Γ ⊢ λx.M]] = {(~u,b

⊸

a) | ((~u,a),b) ∈ [[Γ,x ⊢ M]]}
[[Γ,∆ ⊢ M N]] = {((~u,~v),b) | ∃a (~u,b

⊸

a) ∈ [[Γ ⊢ M]] & (~v,a) ∈ [[∆ ⊢ N]]}
[[xs(1), . . . ,xs(n) ⊢ [s]M]] = [[s]]; [[x1, . . . ,xn ⊢ M]]

where the interpretation [[s]] of a braid s is built from

[[]] = {((a,b),(|a| •b,a)) | a,b ∈ T }

[[]] = {((a,b),(b, |b|−1 •a)) | a,b ∈ T }

For instance, the braided C combinators are interpreted as

[[C+]] = {((z

⊸

|x| • y)

⊸

x)

⊸

((z

⊸

x)

⊸

y) | x,y,z ∈ T }
[[C−]] = {((z

⊸

y)

⊸

|y|−1 • x)

⊸

((z

⊸

x)

⊸

y) | x,y,z ∈ T }

This model does not validate the η-equality:

[[x ⊢ λy.xy]] = {(b

⊸

a,b

⊸

a) | a,b ∈ T } 6= [[x ⊢ x]].

This is because ϕ is not an isomorphism; the right inverse ψ cannot map leaves of T to elements of

T ⊗T ∗. (It might be tempting to remedy this by taking a quotient of T by identifying x

⊸

e with x,

as suggested by an anonymous reviewer. This certainly makes ψ ;ϕ = idX and the η-equality becomes

valid. Unfortunately, on this quotient, ϕ ;ψ is no longer the identity, and the β -equality becomes invalid.)

4.3 An Extensional Crossed G-Set Model of Infinite Binary Trees

Now we expand T to a crossed G-set of infinite binary trees. Let

D = { f : {0,1}∗ → G | f (w) = f (w0) · f (w1)−1}

D is a crossed G-set with | f |= f (ε) and (g• f)(w) = g · f (w) ·g−1. Its dual D∗ is identical to D except

the valuation | f | = f (ε)−1. There is an isomorphism ϕ : D ⊗D∗ ≃
→ D induced by the bijective map

ϕ : D2 → D given by (see Figure 8)

ϕ(f0, f1)(ε) = f0(ε) f1(ε)
−1

ϕ(f0, f1)(0w) = f0(w)
ϕ(f0, f1)(1w) = f1(w)

Note that ϕ−1(f)= (λw. f (0w),λw. f (1w)) holds. Also D ∼=D∗ with f 7→ f ∗ =ϕ(λw. f (1w),λw. f (0w))
(thus f ∗(ε) = f (ε)−1, f ∗(0w) = f (1w) and f ∗(1w) = f (0w)). D is a model of the braided lambda cal-

culus validating the η equality. The interpretation of terms is essentially the same as the case of T , with

x

⊸

y replaced by ϕ(x,y).

Remark 2 (a two-objects ribbon category, and the tangled lambda calculus) Since D ∼= D∗ ∼= D ⊗
D , the full subcategory of XRel(G) with just D and the tensor unit I is a ribbon category. This also

means that, with D , we can interpret not just braids but also framed tangles (ribbons). Thus D is a

106 A Braided Lambda Calculus

fi(ε)

fi(0)

fi(00)

...
...

fi(01)

...
...

fi(1)

fi(10)

...
...

fi(11)

...
...

f0(ε) f1(ε)
−1

f0(ε)

f0(0)

f0(00)

...
...

f0(01)

...
...

f0(1)

f0(10)

...
...

f0(11)

...
...

f1(ε)

f1(0)

f1(00)

...
...

f1(01)

...
...

f1(1)

f1(00)

...
...

f1(01)

...
...

fi ϕ(f0, f1)

Figure 8: ϕ(f0, f1)

model of a “tangled lambda calculus” in which we should be able to express a term involving tangles

like

λ f xy.

✓
✒

✏
✑

f
y
x

f
x
y

(f yx)

Such a tangled lambda calculus is yet to be studied; defining substitution already seems to be much

harder than the braided case. Also it might be more appropriate to use traced monoidal closed categories

[6] as semantic models rather than ribbon categories.

5 Conclusion

We introduced the syntax and semantics of an untyped braided lambda calculus. Future work will include

the typed variants, complete axiomatization of the braided combinatory logic, extension to the tangled

lambda calculus, and applications to novel computational models making use of braids, most notably

topological quantum computation.

Acknowledgements I thank Haruka Tomita for stimulating discussions related to this work, and the

anonymous reviewers for their helpful comments. This work was supported by JSPS KAKENHI Grant

Numbers JP18K11165, JP21K11753 and JST ERATO Grant Number JPMJER1603, Japan.

References

[1] M. Abadi, L. Cardelli, P.-L. Curien & J.-J. Lévy (1991): Explicit substitutions. J. Funct. Programming 1(4),

pp. 375–416, doi:10.1017/S0956796800000186.

[2] S. Abramsky (2007): Temperley-Lieb algebra: from knot theory to logic and computation via quantum me-

chanics. In L. Kauffman & S.J. Lomonaco, editors: Mathematics of Quantum Computing and Technology,

Taylor&Francis, pp. 415–458, doi:10.1201/9781584889007.

http://dx.doi.org/10.1017/S0956796800000186
http://dx.doi.org/10.1201/9781584889007

M. Hasegawa 107

[3] E. Artin (1925): Theorie der Zöpfe. Abh. Math. Sem. Univ. Hamburg 4, pp. 47–72, doi:10.1007/

BF02950718.

[4] E. Artin (1947): Theory of braids. Ann. of Math. 48, pp. 101–126, doi:10.2307/1969218.

[5] A. Fleury (2003): Ribbon braided multiplicative linear logic. Mat. Contemp. 24, pp. 39–70.

[6] M. Hasegawa (2009): On traced monoidal closed categories. Mathematical Structures in Computer Science

19(2), pp. 217–244, doi:10.1017/S0960129508007184.

[7] M. Hasegawa (2012): A quantum double construction in Rel. Mathematical Structures in Computer Science

22(4), pp. 618–650, doi:10.1017/S0960129511000703.

[8] A. Joyal & R.H. Street (1993): Braided tensor categories. Adv. Math. 102(1), pp. 20–78, doi:10.1006/

aima.1993.1055.

[9] C. Kassel & V.G. Turaev (2008): Braid Groups. Graduate Texts in Mathemtics 247, Springer-Verlag, doi:10.

1007/978-0-387-68548-9.

[10] A. Kitaev (2003): Fault-tolerant quantum computation by anyons. Annals of Physics 303, pp. 3–20, doi:10.

1016/S0003-4916(02)00018-0.

[11] P.-A. Melliès (2018): Ribbon tensorial logic. In: Proceedings of the 33rd Annual ACM/IEEE Symposium

on Logic in Computer Science (LICS2018), ACM, pp. 689–698, doi:10.1145/3209108.3209129.

[12] PRO in nLab. https://ncatlab.org/nlab/show/PRO.

[13] M.C. Shum (1994): Tortile tensor categories. J. Pure Appl. Algebra 93(1), pp. 57–110, doi:10.1016/

0022-4049(92)00039-T.

[14] H. Tomita (2021): Realizability without symmetry. In: Proceedings of the 29th EACSL Annual Conference

on Computer Science Logic (CSL2021), LIPIcs 183, pp. 38:1–38:16, doi:10.4230/LIPIcs.CSL.2021.38.

[15] V.G. Turaev (1994): Quantum Invariants of Knots and 3-Manifolds. Studies in Mathematics 18, De Gruyter,

doi:10.1515/9783110435221.

[16] D. Verdon (2017): Coherence for braided and symmetric pseudomonoids. Available at https://arxiv.

org/abs/1705.09354.

[17] J.H.C. Whitehead (1949): Combinatorial homotopy, II. Bulletin of the American Mathematical Society 55,

pp. 453–496, doi:10.1090/S0002-9904-1949-09213-3.

[18] N. Zeilberger & A. Giorgetti (2015): A correspondence between rooted planar maps and normal planar

lambda terms. Logical Methods in Computer Science 11(3), pp. 1–39, doi:10.2168/LMCS-11(3:22)2015.

A Axiomatizing BCI

Let λlin be the set of linear lambda terms and BCI be the set of terms generated by variables (each

occurring just once), B, C, I and application. Let =BCI be the smallest congruence on BCI satisfying the

axioms in Figure 7. Define translations (−)♯ : BCI → λlin and (−)♭ : λlin → BCI by

B♯ ≡ λxyz.x(yz) C♯ ≡ λxyz.xzy I♯ ≡ λx.x
(PQ)♯ ≡ P♯Q♯ x♯ ≡ x

(λx.M)♭ ≡ λ ∗x.M♭ (M N)♭ ≡ M♭N♭ x♭ ≡ x

λ ∗x.x ≡ I λ ∗x.M N ≡

{
C(λ ∗x.M)N (x ∈ fv(M))
BM (λ ∗x.N) (x ∈ fv(N))

We show that these translations give isomorphisms between the equational theories. It is routine to see:

Lemma 2 P =BCI Q implies P♯ =βη Q♯.

http://dx.doi.org/10.1007/BF02950718
http://dx.doi.org/10.1007/BF02950718
http://dx.doi.org/10.2307/1969218
http://dx.doi.org/10.1017/S0960129508007184
http://dx.doi.org/10.1017/S0960129511000703
http://dx.doi.org/10.1006/aima.1993.1055
http://dx.doi.org/10.1006/aima.1993.1055
http://dx.doi.org/10.1007/978-0-387-68548-9
http://dx.doi.org/10.1007/978-0-387-68548-9
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1145/3209108.3209129
https://ncatlab.org/nlab/show/PRO
http://dx.doi.org/10.1016/0022-4049(92)00039-T
http://dx.doi.org/10.1016/0022-4049(92)00039-T
http://dx.doi.org/10.4230/LIPIcs.CSL.2021.38
http://dx.doi.org/10.1515/9783110435221
https://arxiv.org/abs/1705.09354
https://arxiv.org/abs/1705.09354
http://dx.doi.org/10.1090/S0002-9904-1949-09213-3
http://dx.doi.org/10.2168/LMCS-11(3:22)2015

108 A Braided Lambda Calculus

The following lemma is crucial and the most difficult:

Lemma 3 P =BCI Q implies λ ∗x.P =BCI λ ∗x.Q.

Proof For each axiom P = Q with free x we show λ ∗x.P = λ ∗x.Q. The relevant cases are (B), (C) and

(I). For the case of (I), we are to show λ ∗x.IM = λ ∗x.M with free x in M, which follows from

λ ∗x.IM ≡ BI(λ ∗x.M) = I(λ ∗x.M) = λ ∗x.M

The case of (B) contains three sub-cases depending on where the free x occurs. For instance, showing

λ ∗x.BLM N = λ ∗x.L(M N) with free x in N amounts to showing BL(BM (λ ∗x.N)) =B(BLM)(λ ∗x.N)
for which it suffices to show the associativity BL(BM N) = B(BLM)N.

BL(BM N) = B(BL)(BM)N (B)
= BBBL(BM)N (B)
= B(BBBL)BM N (B)
= CBB(BBBL)M N (C)
= B(CBB)(BBB)LM N (B)
= B(BB)BLM N (B(BB)B = B(CBB)(BBB))
= BB(BL)M N (B)
= B(BLM)N (B)

Other two sub-cases of (B) and three sub-cases of (C) are similar (and more lengthy).

Lemma 4 M =βη N implies M♭ =BCI N♭.

Proof The most nontrivial part is to show that M =βη N implies (λx.M)♭ =BCI (λx.N)♭, which follows

from Lemma 3.

The following two lemmas are fairly straightforward.

Lemma 5 (P♯)♭ =BCI P.

Lemma 6 (λ ∗x.P)♯ =β λx.P♯.

Lemma 7 (M♭)♯ =βη M.

Proof Induction on M. Only the case of lambda abstraction is nontrivial, in which we use Lemma 6.

Proposition 2 P =BCI Q iff P♯ =βη Q♯.

Proof P♯ =βη Q♯ implies P =BCI (P
♯)♭ =BCI (Q

♯)♭ =BCI Q by Lemma 5 and 4.

Proposition 3 M =βη N iff M♭ =BCI N♭.

Proof M♭ =BCI N♭ implies M =βη (M♭)♯ =βη (N♭)♯ =βη N by Lemma 7 and 2.

	1 Introduction
	2 A Braided Lambda Calculus
	2.1 Syntax of the Calculus
	2.2 Equational Theory
	2.3 Formal Treatment of Braids and Substitution
	2.4 Rewriting and Decidability

	3 Combinatory Logic
	3.1 Representing Braids by C
	3.2 Combinatory Completeness of BCI

	4 Semantics
	4.1 Categorical Models
	4.2 A Crossed G-Set Model of Finite Binary Trees
	4.3 An Extensional Crossed G-Set Model of Infinite Binary Trees

	5 Conclusion
	A Axiomatizing BCI

