
P. Quaresma and R.-J. Back (Eds.); THedu’11
EPTCS 79, 2012, pp. 124–142, doi:10.4204/EPTCS.79.8

c© Wolfgang Schreiner
This work is licensed under the
Creative Commons Attribution License.

Computer-Assisted Program Reasoning Based on a
Relational Semantics of Programs∗

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)

Johannes Kepler University
Linz, Austria

Wolfgang.Schreiner@risc.jku.at

We present an approach to program reasoning which inserts between a program and its verification
conditions an additional layer, the denotation of the program expressed in a declarative form. The
program is first translated into its denotation from which subsequently the verification conditions are
generated. However, even before (and independently of) any verification attempt, one may inves-
tigate the denotation itself to get insight into the “semantic essence” of the program, in particular
to see whether the denotation indeed gives reason to believe that the program has the expected be-
havior. Errors in the program and in the meta-information may thus be detected and fixed prior to
actually performing the formal verification. More concretely, following the relational approach to
program semantics, we model the effect of a program as a binary relation on program states. A for-
mal calculus is devised to derive from a program a logic formula that describes this relation and is
subject for inspection and manipulation. We have implemented this idea in a comprehensive form in
the RISC ProgramExplorer, a new program reasoning environment for educational purposes which
encompasses the previously developed RISC ProofNavigator as an interactive proving assistant.

1 Introduction

Most systems for program reasoning are based on calculi such as the Hoare Calculus or Dynamic
Logic [4] where we generate from a program specification and a program implementation (which is
annotated with additional meta-information such as loop invariants and termination terms) those condi-
tions whose verification implies that the implementation indeed meets the specification. The problem
is that by such an approach we gain little insight into the program before respectively independently of
the verification process. In particular, if the verification attempt is a priori doomed to fail because of er-
rors, inconsistencies, or weaknesses in the program’s specification, implementation, or meta-information
(which is initially the case in virtually all verification attempts), we will learn so only by unsuccessfully
struggling with the verification until some mental “click” occurs. This click occurs frequently very late,
because, in the heat of the struggle, it is usually hard to see whether the inability to perform a correctness
proof is due to an inadequate proving strategy or due to errors or inconsistencies in the program. Actu-
ally, it is usually the second factor that contributes most to the time spent and frustration experienced;
once we get the specification/implementation/meta-information correct, the verification is a compara-
tively small problem. We have frequently observed this fact in our own verification attempts as well as
in those performed by students of computer science and mathematics in courses on formal methods.

We therefore advocate an alternative approach where we insert between a program and its verification
conditions an additional layer, the denotation of the program [21] expressed in a declarative form. The
program (annotated with its meta-information) is translated into its denotation from which subsequently

∗This research was funded by the Austrian Science Fund (FWF): W1214-N15, project DK10.

http://dx.doi.org/10.4204/EPTCS.79.8
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

Wolfgang Schreiner 125

the verification conditions are generated. However, even before (and independently of) any verifica-
tion attempt, one may investigate the denotation itself to get insight into the “semantic essence” of the
program (independently of its “syntactic surface”), in particular to see whether the denotation indeed
gives reason to believe that the program has the expected behavior. Errors in the program and in the
meta-information may thus be detected and fixed prior to actually performing the formal verification.

More concretely, following the relational approach to program semantics [16], we model the effect of
a program (command) c as a binary relation [c] on program states which describes the possible pairs of
pre- and post-states of c. Such a relation can be also described in a declarative form by a logic formula fr

with denotation [fr]. Thus a formal calculus is devised to derive from a program c a judgment c : fr

such that [c]⊆ [fr]. For instance, we can derive x=x+1 : var x = old x+1 where the logic variable old x
refers to the value of the program variable x in the prestate of the command and the logic variable var x
refers to its value in the poststate. In this way, we can constrain the allowed state transitions, i.e. handle
the partial correctness of programs. To capture also total correctness, we introduce the set of states 〈〈c〉〉
on which the execution of c must terminate (〈〈c〉〉 is a subset of the domain of [c]). Such a set can be
also described in a declarative form by a logic formula (a state condition) fc. Thus we derive a judgment
c ↓ fc such that [fc]⊆ 〈〈c〉〉. In this fashion, the pair of formulas fr and fc captures the semantic essence
of c in a declarative form that is open for inspection and manipulation.

We have implemented this idea in a comprehensive form in the RISC ProgramExplorer1, a new
program reasoning environment for educational purposes which encompasses the previously developed
RISC ProofNavigator as an interactive proving assistant [24]. The RISC ProgramExplorer supports
reasoning about programs written in a restricted form of Java (including support for control flow in-
terruptions such as continue, break, return, and throw, static and dynamic methods, classes and a
restricted form of objects) and specified in the formula language of the RISC ProofNavigator (whose
syntax is derived from PVS [20]). A first version of the system has been released under the GNU Public
License in October 2011; it will be subsequently used in a regular course on formal methods.

The remainder of this paper is structured as follows: Section 2 discusses related work. Section 3
sketches the theoretical foundations of our approach, i.e. how programs are translated into their semantic
essence. Section 4 presents the implementation of this approach in the RISC ProgramExplorer. Section 5
illustrates the use of the software by a detailed example. Section 6 describes how from the semantic
essence the verification conditions are derived that show the correctness of a program with respect to its
specification. In Section 7, we describe the typical workflow supported by the system; in Section 8, we
conclude and discuss further work.

2 Related Work

There exist numerous frameworks and tools for reasoning about programs written in various languages.
In the context of the programming language Java, the Java Modeling Language (JML) has become the
de facto standard specification language [7]; it extends the syntax and semantics of the Java expression
language to a mathematical formula language that is rich enough to formulate method contracts. Vari-
ous tools aim at reasoning about JML-annotated programs in a fully automatic way, mainly in order to
falsify programs (find runtime errors or violations of method preconditions) rather than to verify them.
An environment for true verification is the system Why/Krakatoa [11] which translates JML-annotated
programs into the input language of the verification condition generator Why that produces verification
conditions for a variety of external provers such as the interactive proving assistant Coq. Likewise, the

1http://www.risc.jku.at/research/formal/software/ProgramExplorer

http://www.risc.jku.at/research/formal/software/ProgramExplorer

126 Computer-Assisted Program Reasoning Based on a Relational Semantics of Programs

formal software development tool KeY [4] allows to verify JML-specified programs written in JavaCard
(a subset of Java) based on the framework of dynamic logic (a modal logic whose modalities integrate
program statements) using a built-in interactive prover. In contrast to these approaches, the approach
presented in this paper is based on a semantic model that is visible for human inspection, reasoning is
essentially based on classical predicate logic and on a formula/specification language that is independent
of any programming language; the supported programming language has also Java-like syntax but is not
fully object-oriented (currently no inheritance is supported).

The idea to translate computer programs to mathematical objects that describe the meaning of the
programs originates from the work of Scott and Strachey in the 1960s and is now known under the name
“denotational semantics”. In [21], this approach is presented as a methodology for language design
which also helps to understand concrete programs by investigating the mathematical objects to which
they are translated. In the classical Scott/Strachey approach, programs are translated to functions; loops
are translated to recursive function equations over semantic domains with special properties (pointed
complete partial orders) that ensure the existence and uniqueness of the function (as the least fixed point
of the defining equation). In contrast to the classical approach, in our model programs are translated to
relations described by formulas that do not necessarily imply existence and uniqueness of the result (as
the formula is in general derived from user-provided method contracts and loop invariants).

The idea of modeling programs as state relations is not new; it has emerged in various approaches
to the formalization of programs: it is for example the core idea of the Lamport’s “Temporal Logical of
Actions” (TLA) [16] where the individual actions of a process are described by formulas relating pre-
to post-states; the language PlusCal for the formulation of algorithms is translated to TLA specifica-
tions. Boute’s “Calculational Semantics” [6] defines the behavior of a program by equations relating the
pre-state to the post-state. Hoare and Jifeng’s “Unifying Theories of Programming” [15] provides an
integrated theory of programming based on a view of programs as relations. Apart from TLA (which
provides a model checker for a final state subset of the specification language), we are not aware of any
software tools or verification environments that are directly based on relational frameworks.

Also the principle of “correct by construction”, which emphasizes the gradual refinement of a spec-
ification into an executable program such that at any stage of the refinement the program is provably
correct, is usually based on a relational view of programs. This approach was originally pioneered by
Dijkstra [9] and further elaborated by Back’s “refinement calculus” [1] and other formalisms of a similar
flavor [1, 18, 17, 14, 13]. In some way or another, these calculi allow declarative specifications to reside
on the same language level as operational commands; the endorsed approach to program development is
to gradually transform specifications to commands.

A recent variant of this principle is Back’s “invariant-based programming” [2] where program in-
variants are constructed before the actual code is considered. This approach is implemented in the Socos
environment which provides a graphical editor for the construction of invariant diagrams from which
verification conditions are generated for the PVS prover. Although not directly based on these princi-
ples, also the approach presented in this paper can be applied in a top-down refinement fashion: since the
transition relation of a program that executes a loop or calls a method is only constructed from the invari-
ant of the loop respectively specification of the method, we may verify the correctness of the program
before the body of the loop respectively method is implemented.

The appropriate way (didactic approach, formal calculus, tool support) of teaching formal methods is
an ongoing point of debate, see e.g. the TFM conference series [8, 5, 12]. A comparative survey of formal
methods courses in Europe is given in [19]; a comparison of tools for teaching program verification
is presented in [10]. In general, most knowledge on formal methods education is based on personal
experience reports; there is hardly any scientific evidence for the superiority of any particular approach.

Wolfgang Schreiner 127

3 Commands as State Relations

We base the presentation of our formalism on a simple command language without control flow inter-
ruptions and method calls. In this language, a command c can be formed according to the grammar

c ::= x = e | {var x; c} | {c1;c2} | if (e) then c | if (e) then c1 else c2 | while (e) f ,t c

where x denotes a program variable, e denotes a program expression, and a while loop is annotated by
an invariant formula f and termination term t. The semantics of a command c is defined, for a given
set Store of possible states (store contents), by a binary relation [c] ⊆ Store× Store that defines the
possible state transitions of the command and by a set 〈〈c〉〉 ⊆ Store that defines those pre-states where the
command must perform a transition to some post-state; for a definition of the semantics, see [22].

In Figures 1, 2, and 3, we give rules (where the terms old xs and var xs refer to the sets of values of
the program variables xs in the pre-/post-state) to derive the following three kinds of judgments:

• c : [fr]
xs
g,h denotes the derivation of a state relation fr from command c together with the set of

program variables xs that may be modified by c. The remaining arguments g and h express ad-
ditional side-conditions (which may be ignored on first reading): the derived relation is correct if
the derived state-independent condition g holds, and if the derived state condition h holds on the
pre-state of c. The rationale for g is to capture state-independent conditions such as the correctness
of loop invariants; the purpose of h is to capture statement preconditions that prevent e.g. arith-
metic overflows. These side conditions have to be proved; they are separated from the transition
relation fr to make the core of the relation better understandable.

• c ↓gc fc denotes the derivation of a state condition (termination condition) fc from c; the derived
condition is correct, if the state-independent condition gc holds. The purpose of this side condi-
tion is to capture that the execution of every loop body terminates and decreases the value of the
termination term but does not make the value negative.

• PRE(c, fq) = fp and POST(c, fp) = fq denote derivations that compute from a command c and
a condition fq on the post-state of c a corresponding condition fp on the pre-state, respectively
from c and pre-condition fp the post-condition fq. The corresponding rules in Figure 3 show that
these conditions can be computed directly from the transition relation of c.

The derivations use additional judgments e ' fe f and e ' fe t which translate a Boolean-valued pro-
gram expression e into a logic formula f and an expression e of any other type into a term t, provided
that the state in which e is evaluated satisfies the condition fe (the rules for these judgments are omitted).

One should note that the rules presented in Figures 1 and 2 can be applied recursively over the
structure of a command; first we determine the transition/termination formula of the subcommands,
then we combine the formulas to the transition/termination formula of the whole command. Along this
process, the side condition h is constructed which has to be shown separately to hold in the pre-state of
the command in order to verify the correctness of the translation.

A special case is the rule for while loops. Here the result is only determined from the invariant
formula respectively termination term by which the loop is annotated; additionally, a proof obligation g
is generated to verify the correctness of the loop body with respect to invariant and termination term.
In a similar way, in the full programming language calls of program methods are handled: the transi-
tion relation of the method call is derived from the specification of the method; the correctness of the
implementation of the method is to be established separately. We thus yield a modular approach to the
derivation of transition relations and termination conditions; the size of the derived formula is indepen-
dent of the sizes of the bodies of the loops executed respectively of the methods called. Furthermore, as

128 Computer-Assisted Program Reasoning Based on a Relational Semantics of Programs

c : [f]xs
g,h x 6∈ xs

c : [f ∧ var x = old x]xs ∪ {x}
g,h

e'h t

x = e : [var x = t]{x}true,h

c : [f]xs
g,h

{var x; c} : [∃x0,x1 : f [x0/old x,x1/var x]]xs\x
g,∀x : h[x/old x]

c1 : [f1]
xs
g1,h1

c2 : [f2]
xs
g2,h2

PRE(c1,h2) = h3

{c1;c2} : [∃ys : f1[ys/var xs]∧ f2[ys/old xs]]xs
g1∧g2,h1∧h3

e'h fe c1 : [f1]
xs
g1,h1

if (e) then c : [if fe then f1 else var xs = old xs]xs
g1,h∧ (fe⇒ h1)

e'h fe c1 : [f1]
xs
g1,h1

c2 : [f2]
xs
g2,h2

if (e) then c1 else c2 : [if fe then f1 else f2]
xs
g1∧g2,h∧ if fe then h1 else h2

e'h fe c : [fc]
xs
gc,hc

g≡ ∀xs,ys,zs : f [xs/old xs,ys/var xs]∧ fe[ys/old xs]∧ fc[ys/old xs,zs/var xs]⇒
h[ys/old xs]∧ f [xs/old xs,zs/var xs]

while (e) f ,t c : [f ∧¬ fe[var xs/old xs]]xs
gc∧g,h∧ f [old xs/var xs]

Figure 1: The Transition Rules

x = e ↓true true
c ↓g f

{var x; c} ↓g ∀x : f [x/old x]
c1 ↓g1 f1 c2 ↓g2 f2 PRE(c1, f2) = f3

{c1;c2} ↓g1∧g2 f1∧ f3

e'h fe c ↓g f
if (e) then c ↓g fe ⇒ f

e'h fe c1 ↓g1 f1 c2 ↓g2 f2

if (e) then c1 else c2 ↓g1∧g2 if fe then f1 else f2

e'h fe c : [fc]
xs
gc,hc

c ↓gt ft
g≡ ∀xs,ys,zs : f [xs/old xs,ys/var xs]∧ fe[ys/old xs]∧ fc[ys/old xs,zs/var xs]⇒

ft [ys/old xs]∧0≤ t[zs/old xs]< t[ys/old xs]
while (e) f ,t c ↓g∧gt t >= 0

Figure 2: The Termination Rules

c : [f]xs
g,h

PRE(c, fq) = ∀xs : f [xs/var xs]⇒ fq[xs/old xs]

c : [f]xs
g,h

POST(c, fp) = ∃xs : fp[xs/old xs]∧ f [xs/old xs,old xs/var xs]

Figure 3: The Pre-/Postcondition Rules

Wolfgang Schreiner 129

already stated in Section 2, the approach gives rise to some sort of “correct by construction” approach:
we may first develop loop invariants and method preconditions (and verify the correctness of programs
executing the loops and calling the methods) before we implement the bodies of the loops and methods
(and consequently verify the correctness of implementations).

Formally, the derivations satisfy the following soundness constraints.

Theorem 1 (Soundness) For all c ∈ Command, fr, fc, fp, fq,g,h ∈ Formula,xs ∈ P(Variable), the fol-
lowing statements hold:

1. If we can derive the judgment c : [fr]
xs
g,h, then we have for all s,s′ ∈ Store

[g]∧ [h](s)⇒ ([c](s,s′)⇒ [fr](s,s′)∧∀x ∈ Variable\xs : [x](s) = [x](s′)).

2. If we can (in addition to c : [fr]
xs
g,h) derive the judgment c ↓gc fc, then we have for all s ∈ Store

[g]∧ [gc]∧ [h](s)⇒ ([fc](s)⇒ 〈〈c〉〉(s)).

3. If we can (in addition to c : [fr]
xs
g,h) also derive the judgment PRE(c, fq) = fp or the judgment

POST(c, fp) = fq, then we have for all s,s′ ∈ Store

[g]∧ [h](s)⇒ ([fp](s)∧ [fr](s,s′)⇒ [fq](s′)).

The semantics [f](s,s′) of a transition relation f is determined over a pair of states s,s′ (and a logic
environment, which is omitted for clarity); the semantics of state condition g is defined as [g](s)⇔∀s′ :
[g](s,s′) and the semantics of a state independent-condition h is defined as [h]⇔∀s,s′ : [h](s,s′).

In [23], the formal semantics of commands and formulas has been defined and the soundness of
(a preliminary form of) the calculus has been proved. In [22], a concise definition of the semantics,
judgments, and rules of (a preliminary form of) the calculus is given.

4 The RISC ProgramExplorer

We have implemented the calculus presented in the previous section in the RISC ProgramExplorer; a
screenshot of the software is given in Figure 4.

The RISC ProgramExplorer supports reasoning about programs written in a subset of Java which we
call “MiniJava”. This subset includes classes with class and object variables as well as class and object
methods and constructors. Method bodies may execute most kinds of Java commands including those
that cause interruptions of the control flow (continue, break, return, throw). The major restriction
compared with full Java is that the type checker prevents sharing of objects/arrays by different variables
(such that data structures can be modeled as plain values rather than as pointer structures) and that
inheritance is not supported; furthermore expressions are not allowed to cause side effects (thus method
calls with result values have to be written as separate commands).

The software supports a theory definition language that is derived from the language of the previously
developed RISC ProofNavigator [24]; the syntax of the language is inherited from PVS [20] respectively
CVC Lite [3]. The language allows to introduce new theories consisting of types, objects, functions,
and predicates as well as axioms and theorems (which can be proved with the RISC ProofNavigator).
Theories may be specified in separate files for reuse in different programs or may be attached to the
program classes where they are used.

130 Computer-Assisted Program Reasoning Based on a Relational Semantics of Programs

Figure 4: The RISC ProgramExplorer (Analysis View)

Based on these theories, programs may be formally specified by class invariants, method contracts,
loop invariants, termination terms, and assertions in the style of the Java Modeling Language [7]. The
syntax and semantics of the formula language is, however, deliberately neutral of the programming
language (because we believe that mathematics precedes programming and the same mathematical def-
initions and specifications should be reusable for different programming languages). The specifications
operate therefore directly on the semantic model of a program (e.g. every program class C is translated to
a theory C that contains among other definitions a record type C; if x is a program variable that denotes
an object of class C, then in a specification var x denotes a record of type C).

The RISC ProgramExplorer provides an elaborated graphical user interface that links theories, pro-
grams, semantic models, and verification tasks by three main views:

Analysis This is the central view in which mathematical theories and program classes may be devel-
oped (see Figure 4); upon saving the corresponding file, the theory respectively program is type-
checked, the semantic model is constructed, and verification tasks are generated. If an error occurs
during this semantic processing, the error is linked to the corresponding location in the source
code; likewise the generated tasks are linked to the corresponding source locations. In detail, the
following verification tasks are generated:

Effects The proof that the method does not modify any variable outside the specified set of vari-
ables and does not throw any unspecified exception.

Postcondition The proof that the transition relation derived from the body of a method implies
the method’s postcondition.

Termination The proof that a method’s termination condition implies the termination condition

Wolfgang Schreiner 131

Figure 5: Semantics View

derived from the body of the method.
Preconditions The proofs that every statement is only executed in a state that satisfies the precon-

dition of the statement.
Loops The proofs that a loop body preserves the invariant, that the execution of the body termi-

nates and decreases the value of the specified termination term, and that the decreased value
does not become negative.

Type checking conditions The proofs that all formulas are well-typed (not all type checking
questions of the formula language can be statically answered).

Specification validation The (optional) proofs that a specification is satisfiable (for every argu-
ment that satisfies the precondition there is a result that satisfies the postcondition) but not
trivially satisfiable (there is also a result that does not satisfy the postcondition).

Splitting the overall task of proving the correctness of a method into individual subtasks supports
the gradual verification of different aspects of correctness and gives more concrete hints in the
case of failed proof attempts. Some of the tasks can be fully automatically solved by the validity
checker; if the checker fails, the user can start a semi-automatic interactive proof.

Semantics In this view displayed in Figure 5, the semantic model of a selected program method may be
investigated. By moving the mouse pointer, the user may display for each command of the method
body (respectively for the whole body)

• the transition relation of the command,

132 Computer-Assisted Program Reasoning Based on a Relational Semantics of Programs

Figure 6: Verification View

• the termination condition of the command,
• the effect of the command (i.e. the set of variables potentially changed, the set of exceptions

potentially thrown, the information whether the command may interrupt the control flow by
executing a continue, break, return statement),
• the precondition of the command,
• the condition which is known to hold on the pre-state of the command.

Furthermore, the user may enter a desired condition on the pre-/post-state of a selected command;
the system then determines the consequences for the pre-states of all other commands.

Verification In this view, the user may perform a semi-interactive proof of a selected verification task
with the help of the RISC ProofNavigator which is embedded in the RISC ProgramExplorer. This
proving assistant provides a small set of commands that implement typical proving strategies on
the level of formulas (term reasoning is delegated to the validity checker CVCL [3]); the most
frequently used commands are bound to buttons respectively menus attached to corresponding
formulas. By the use of these commands, proof situations are gradually reduced to sub-situations
with all proof situations displayed in a tree structure; the goal is to achieve such situations that
can be automatically determined as valid by the validity checker. The interface has been carefully
designed to make the handling of proofs as convenient as possible.
Proofs respectively proof attempts are persistently stored on disk and can be later replayed; the
status of a proof and the dependencies of proofs to theory definitions or separately proved formulas
are automatically managed (it is e.g. indicated whether a previously performed proof is still valid,
i.e. whether no prerequisite of the proof has changed).
Figure 6 displays the verification view; for details of the RISC ProofNavigator, see [24].

Wolfgang Schreiner 133

5 An Example

We illustrate the use of the RISC ProgramExplorer by the following method sum which returns, for
non-negative argument n, the sum of all integers from 1 to n, and for negative n, the value −1:

static int sum(int n) /*@
requires VAR n < Base.MAX_INT;
ensures

LET result=VALUE@NEXT IN
IF VAR n < 0

THEN result = -1
ELSE result = sum(1, VAR n)

ENDIF;
@*/
{

int s;
if (n < 0)

s = -1;
else {

s = 0;
int i = 1;
while (i <= n) /*@

invariant VAR n < Base.MAX_INT
AND 1 <= VAR i AND VAR i <= VAR n+1
AND VAR s=sum(1, VAR i-1);

decreases VAR n - VAR i + 1;
@*/
{

s = s+i;
i = i+1;

}
}
return s;

}

The method is specified by a pair of pre- and postcondition; the term value@next in the postcondition
refers to the return value of the function; the program type int is mapped to the specification type
Base.int which denotes the set of all integers from Base.MIN_INT to Base.MAX_INT. One should note
that the method is actually not completely correct with respect to the specification, since the computation
of result s might yield an overflow (see the end of this section for more information on this aspect).

The specification uses a binary function sum : Z×Z→ Z such that sum(m,n) denotes the sum of all
integers from m to n; this function is specified in a theory which can be attached to the class in which the
method is located:

theory {
sum: (INT, INT) -> INT;
sumaxiom: AXIOM

FORALL(m: INT, n: INT):
IF n<m

THEN sum(m, n) = 0
ELSE sum(m, n) = n+sum(m, n-1)

ENDIF;
}

Here INT denotes the set of all integers; sum is axiomatized rather than defined, because the theory
language does currently not support recursive definitions.

134 Computer-Assisted Program Reasoning Based on a Relational Semantics of Programs

Based on the calculus presented in Section 3, the RISC Program Explorer translates the while loop
to the following semantic model (the loop’s precondition and pre-state knowledge are not shown):

Here the core of the transition relation is the formula var i = old n+1∧var s = sum(1,var i−1) (which
implies var s = sum(1,old n)) while the core of termination condition is old n− old i ≥ −1 (the initial
value of the termination term must not be negative). The formulas derived by the plain calculus are
actually (in general) much more complex; the human-friendly form shown above is derived only after
performing extensive processing by a built-in simplifier (the user may freely switch between the display
of the simplified formula and its original version).

From this translation, the conditional statement is translated as follows (the termination condition is
automatically simplified to true and therefore not displayed any more):

The whole body of the method is translated to

Wolfgang Schreiner 135

Here the “effects” clause indicates that the body of the method results in the execution of a return
statement, which is also indicated by the formula returns@next in the transition relation. The core of
the transition relation in the second branch is ∃in : in = old n+ 1∧ value@next = sum(1, in− 1) which
implies value@next = sum(1,old n). The transition relation denotes the semantic essence of the method
which concisely describes the behavior of the method in a declarative form; from this, the correctness of
the method according to its specification is quite self-evident even before the formal proof is started.

As a side effect of the translation, the RISC ProgramExplorer generates a couple of verification
tasks, which will be explained in more detail in Section 6. One of them is the obligation to prove that
the postcondition q is implied by the precondition p and the derived transition relation r (i.e. to prove
p∧ r⇒ q as described in Section 6):

The proof of this formula proceeds by executing three commands, two triggered by pressing a button, one
by selecting a command from a formula menu (see [24] for a more detailed description of the interaction
with the prover). The correspondingly generated proof tree (whose nodes are labeled by the respective
proof commands) is

This proof would be irrelevant, if the post-condition q specified by the user were “trivial”, i.e., satisfied
by every output value (generally indicating an error in the specification). To rule this out, an (optional)
verification condition is generated that validates the specification by showing that, for every prestate that
satisfies precondition p, there exists a poststate that does not satisfy q (i.e., ∀x : p(x)⇒ ∃y : ¬q(x,y) as
described in Section 6):

136 Computer-Assisted Program Reasoning Based on a Relational Semantics of Programs

The corresponding proof proceeds (as determined by the branch condition n<0 in the program) by manual
case distinction and, in each case, by an instantiation with a state that holds an incorrect return value
(there also arises a third case, because we have declared the theory function sum over the integers, such
that in principle a negative result might arise):

Another core verification task is the proof that the loop body with transition relation r preserves
the invariant i (i.e. the proof of i′ ∧ e∧ r ⇒ i′′ as described in Section 6). After the built-in logical
simplification, the proof goal becomes

The corresponding proof is performed by two commands, one of which is the manual instantiation of the
axiom defining the function sum; the corresponding proof tree is

The proofs of the other verification conditions proceed mostly automatically; the only exception is
the proof that the increment s = s+i does not yield an overflow. As already stated in the beginning
of this section, this is actually not true for our method. To make it true, the specification has to be
extended by an additional precondition that puts an upper limit on the value of the sum (sum(1,VAR n)
<= Base.MAX_INT); to perform the corresponding verification, then some additional lemmas about the
monotonicity of sum have to be introduced and proved.

Wolfgang Schreiner 137

The example presented in this section only involves simple control structures and uses integer num-
bers as the only datatype. However, the full calculus also supports programs with commands interrupt-
ing the control flow; these are translated to formulas that involve special atomic predicates to express
the behavior of a program with respect to control flow (e.g. the predicate returns@state shown above
indicates that state results from the execution of a return statement). Furthermore, the implementation
supports the usual datatypes like arrays and objects. The transition relations derived from programs in-
volving these features are apparently more complex than the examples shown above; nevertheless they
still become manageable after appropriate simplification. For this purpose, it is recommended to express
method specifications and loop invariants with the help of high-level functions and predicates introduced
in theory declarations. The derived transition relations then also refer to these formulas and become
(again, after appropriate simplification) essentially as readable as the specifications and invariants. The
distribution of the RISC ProgramExplorer comes with a couple of examples (e.g. operations on arrays
like sorting, linear search, binary search, a class implementing the datatype “stack”, and others) that may
serve as a starting point for further applications.

6 State Relations and Verification Conditions

One of the advantages of the translation of a program into its “semantic essence”, i.e., into a formula
denoting its state relation, is that by this translation the derivation and interpretation of the individual
verification tasks becomes very transparent. In the following we explain the logical interpretation of the
various verification tasks generated by the RISC ProgramExplorer from every method and their relation-
ship to the method’s semantic essence.

Postcondition For a method with precondition p, postcondition q and state relation r of the method
body, the goal of this task is to prove

p∧ r⇒ q
which is logically equivalent to r⇒ (p⇒ q). Here p and q are taken from the method contract (requires
p ensures q) while r is shown in the “Semantics” view of the method body (section “Transition Rela-
tion”).

This task shows the partial correctness of the method, provided that all preconditions and loop-
related verification conditions (such as the preservation of the loop invariant) are indeed correct (which
is shown by other tasks explained below). We therefore can detect in this stage that the invariant of a
loop in the body of the method is too weak to show the partial correctness of the method, even before the
proof of the correctness of the invariant is actually attempted.

Termination The goal of the proof that the “method body terminates” is of form
p∧¬d⇒ t

where p represents the method’s precondition, d represents the diverges condition in the method’s con-
tract (an optional condition under which the method is allowed to run forever) and t is the method body’s
termination condition as depicted in the method’s “Semantics” view (Section “Termination Condition”).

This task shows (together with task “postcondition”) the total correctness of the method, provided
that the body of every loop in the method terminates and that the associated termination term is well-
formed and decreased (which is shown by other tasks explained below). We can detect in this task that a
termination term has initially a wrong (negative integer) value or that some method is called in a state in
which the negation of its diverges condition does not hold.

138 Computer-Assisted Program Reasoning Based on a Relational Semantics of Programs

Preconditions For every command with pre-state knowledge k and precondition c, a task is generated
to show that the pre-condition is met, i.e. to prove a goal of form

k⇒ c

where both k and c are displayed in the Semantics view of the method (sections “Pre-State Knowledge”
and “Precondition”). We have chosen this “top-down” generation of preconditions over the “bottom-
up” calculation of the calculus presented in Section 3 in order to foster a closer and more illustrative
relationship between a precondition and its statement respectively the associated pre-state knowledge.

We can thus detect in this task that a command is executed in a state in which the consequence of the
execution may not be properly described by the command’s state relation.

Loops For a while loop with an invariant i and a body with state relation r, there are four tasks generated
(compare with the corresponding rules in Section 3).

The first task is to verify the correctness of the invariant amounts to proving a formula of form

i′∧ e∧ r⇒ i′′

Here i′ represents a variant of i that expresses the relationship between the initial state x of the loop and
the state y before the current loop iteration, e expresses the fact that the loop condition holds at state y,
r expresses the relation between the states y and z before and after the current loop iteration, and i′′

represents a variant of i that expresses the relationship between states x and z:

x y z

e

i′′

i′ r

The other three tasks are related to showing the termination of the loop. The task to show that the
loop “body terminates” is essentially to prove a goal

i′∧ e⇒ b

where i′ and e are as indicated above and b is the termination condition derived from the loop body. The
task to show that the loop “measure is well-formed” is essentially to prove a goal

i′∧ e∧ r⇒ 0≤ t ′

where i′, e, and r are as indicated above and t ′ represents the value of the termination term after the
iteration of the loop. The task to show that the loop “measure is decreased” is essentially to prove a goal

i′∧ e∧ r⇒ t ′ < t

where i′, e, r, and t ′ are indicated as above and t represents the value of the termination term before the
iteration of the loop.

Specification Validation An open question in every formal verification is whether the specification
indeed expresses the informal requirements that the programmer wants to impose on the program. A
typical beginner’s error is that a specification (due to some error in the logical formulation, e.g., some
wrong logical connective) admits every possible output from an implementation. Given a specification
with input variable x and output variable y, precondition p and postcondition q, the verification condition

∀x : p(x)⇒∃y : ¬q(x,y)

Wolfgang Schreiner 139

rules such a “trivial” specification out. Likewise, the verification condition

∀x : p(x)⇒∃y : q(x,y)

ensures that the specification allows some output, i.e. that it is actually “satisfiable” (implementable by a
method). Furthermore, we may show that for some concrete input i some desired output o is indeed legal
by proving

p(i)∧q(i,o)

respectively we may show that some undesired output o′ is illegal

p(i)∧¬q(i,o′)

An extensive validation of every specification is recommended before any of the previously described
verification tasks is attempted.

The first two kinds of conditions are are generated by the RISC ProgramExplorer for every method
specification; p and q are derived from the method contract and the roles of x and y are taken by vari-
ables that represent a method body’s pre- and post-state. The other two kinds of conditions will also be
generated in a future version of the software.

7 General Workflow

The RISC ProgramExplorer has been designed to support the following workflow that leads in a system-
atic way from an informal problem statement to a formal problem specification and subsequently to a
problem solution that is verified to be correct with respect to the specification:

1. Theory Development: Considering the particular domain of the problem at hand, we formalize
in the RISC ProgramExplorer a corresponding mathematical theory by defining or axiomatizing
constants, functions, and predicates that are suitable to express the concepts that are of interest in
that domain. We also formulate prospective theorems that may become useful as knowledge about
these concepts in the subsequent verification tasks. We may prove these theorems immediately or
delegate the proofs to a later stage.

2. Method Specifications: Considering the particular computational problem in the domain, we de-
scribe the solution to the problem by a method signature (method declaration with empty body)
and a specification of the method with the help of the concepts introduced in the previously devel-
oped theory. We validate the specification by showing that it is non-trivial, satisfiable, and holds
for certain legal input/output pairs (respectively does not hold for certain illegal pairs).

3. Method Design: We sketch a method solution by providing a skeleton of the method body; the
body may contain loop skeletons and calls of new auxiliary methods that are specified by loop
invariants, termination terms, respectively method contracts. The loop respectively method bodies
can be implemented at a later stage (a loop body must however indicate by dummy assignments
which variables are to be changed by an iteration).

4. Semantic Analysis: Based on the sketch of the method body (and the specification of the method,
the loops executed, and other methods called), we investigate the semantic essence of the method.
Do the derived state relations represent the envisioned behavior? Are the command’s preconditions
and termination conditions implied by the respective pre-state knowledge of the method? If some
problem is detected, we revise the method specifications, loop invariants, etc.

140 Computer-Assisted Program Reasoning Based on a Relational Semantics of Programs

5. Verification: We attempt to verify the method’s postcondition (partial correctness). If the proof
fails, it may be necessary to revise the implementation, specifications, loop invariants. It may be
also necessary to extend the theories by introducing additional theorems that provide knowledge
that is required in the verification.
Once the proof succeeds, we attempt to verify the method’s termination in the same manner (which
may lead to a revision of the termination terms).
Once these “major” verification tasks have been successfully completed, we may turn to the “mi-
nor” tasks such as proving the statement preconditions and the loop-related tasks (correctness of
invariants and termination terms). If failures are detected, again the implementation, specifications,
loop invariants, termination terms, or theories may need to be revised.

6. Refinement: We refine the still open bodies of loops and auxiliary methods; we analyze, and
verify them, as described above.

7. Theorems: We prove the still open theorems that were used in the verification process (respec-
tively were newly introduced in the course of this process).

In this methodology (which is iteratively performed if problems/errors are detected at a certain stage),
the actual program verification is a core step, but not the only one. Most important, the semantic anal-
ysis precedes the verification; programmers should thus get insight into the program methods and their
specification before they dive into the depths of their formal verification. The verification itself is also
organized in a layered fashion where e.g. a proof of partial correctness is performed before the correct-
ness of the loop invariants or of the contracts of auxiliary methods has been established; the suitability of
the invariants respectively contracts for the task at hand can thus be tested at an early stage. It should be
also noted that the process integrates the principle of refinement (respectively “correct by construction”)
by deferring the implementation of loop respectively method bodies to later stages of the development.

8 Conclusions

The approach to program reasoning presented in this paper and its implementation in the RISC Program-
Explorer were motivated by a personally experienced lack of transparency in existing tools which made
it hard for the author to get deeper insight into a program from the automatically generated verification
conditions and the (failed) attempts to prove them. Our goal was to make not only the derivation trans-
parent but to base this derivation on a semantic model that can be presented to the user and is open for
further investigation (prior to any actual verification attempt). For this purpose, we have constructed a
denotational semantics of a program that is based on the model of a program as a state relation; this rela-
tion can be described by a classical logical formula and can serve in a quite direct way as the basis of a
verification of the program. Since the relations are derived from the specifications of the methods called
and the loops executed (not from the bodies of the methods respectively loops), the approach is inherently
modular and gives rise to a step-wise refinement of program specifications to implementations.

In a certain sense, the presented approach can be considered as the translation of an imperative model
of programming to a declarative one. In the imperative model, the focus is on a sequence of variable
updates that gradually transforms a store from a given initial situation to a desired terminal situation;
in the declarative model, the focus is on the relationship between the given and the desired situation.
In our experience, most students think of computational problems mainly in an imperative view and
are insecure with the declarative view (which is however the basis of formal reasoning), i.e., they tend
to think in terms of “how” rather than in terms of “what”. The difference is predominant in the typical

Wolfgang Schreiner 141

programs that express repetitive computations in the form of loops (if a program is written in a functional
style where recursion is applied for this purpose, the difference between both views becomes blurred).
The presented translation is designed to help people that are trained in the imperative view to become
also proficient with the declarative one.

Consequently the RISC ProgramExplorer was developed to provide a close integration between pro-
grams, theories, specifications, and semantic models in order to emphasize the co-development of the
declarative view of a problem (its specification) and the operational view (its implementation) and to
exhibit the relationship between them. To support actual verifications, the RISC ProofNavigator was
designed as a compromise between a certain level of automation (which is necessary to perform proofs
successfully) and a comfortable user interaction (which is necessary to direct the prover into the right
direction and, in particular, to learn from failed proof attempts). A particular challenge was the appropri-
ate simplification of the automatically derived transition formulas to a form that a human would consider
as the most “natural” one. First experiments seem to indicate that by appropriate simplification of these
formulas (flattening quantifier structures, eliminating variables, etc.), also the consequent verifications
become technically simpler; we consider this as an interesting problem that needs further research.

The RISC ProofNavigator has been applied since 2005 in a regular course on “Formal Methods in
Software Development” for the proof of (manually derived) verification conditions. A detailed presenta-
tion of our experience is beyond the scope of this paper (see also [24]; in a nutshell, we found that most
students become able, after a comparatively short repetition of the basics of logic and proving (some prior
background in logic is assumed) and a corresponding introduction to the system and its user interface,
to perform verifications of correct programs with given correct specifications and program annotations
(loop invariants and termination terms). However, many tend to have big problems if programs, specifi-
cations, and/or annotations contain errors (the less bright/motivated ones then give quickly up or perform
seemingly random proving commands).

The RISC ProgramExplorer and the methodology it supports are being tested for the first time in
the current iteration of a course on “Formal Methods in Software Development” that has started at the
Johannes Kepler University Linz in October 2011; this course is mandatory for students of the master
programmes “Software Engineering” and “Computer Mathematics”. In previous iterations, we have
experienced that many students did not really get deeper insight into e.g. the expressiveness of loop
invariants and their role and suitability with respect to proving the partial correctness of a method. We
hope that by the new tool and the corresponding methodology, this insight will be substantially deepened.
A critical point will certainly be the ability to deal with the various views on a program and to relate them
to each other. Our experience will show to which extent our idea will be successful and also give feedback
for the further evolution of our software and for the development of an accompanying didactic approach.

References

[1] R.-J. Back & J. von Wright (1998): Refinement Calculus: A Systematic Introduction. Springer, New York.

[2] Ralph-Johan Back (2009): Invariant Based Programming: Basic Approach and Teaching Experiences. For-
mal Aspects of Computing 21(3), pp. 227–244, doi:10.1007/s00165-008-0070-y.

[3] Clark Barrett & Sergey Berezin (2004): CVC Lite: A New Implementation of the Cooperating Validity
Checker. In: Computer Aided Verification: 16th International Conference, CAV 2004, Boston, MA, USA,
July 13–17, 2004, LNCS 3114, Springer, pp. 515–518, doi:10.1007/978-3-540-27813-9_49.

[4] Bernhard Beckert, Reiner Hähnle & Peter H. Schmitt, editors (2007): Verification of Object-Oriented Soft-
ware: The KeY Approach. LNCS 4334, Springer, doi:10.1007/978-3-540-69061-0.

http://dx.doi.org/10.1007/s00165-008-0070-y
http://dx.doi.org/10.1007/978-3-540-27813-9_49
http://dx.doi.org/10.1007/978-3-540-69061-0

142 Computer-Assisted Program Reasoning Based on a Relational Semantics of Programs

[5] P. Boca, J. P. Bowen & D. A. Duce, editors (2006): Teaching Formal Methods: Practice and Experience.
Electronic Workshops in Computing (eWIC), British Computer Society, London, UK, December 16. http:
//www.bcs.org/category/8726.

[6] Raymond T. Boute (2006): Calculational Semantics: Deriving Programming Theories from Equations by
Functional Predicate Calculus. ACM Transactions on Programming Languages and Systems 28(4), pp.
747–793, doi:10.1145/1146809.1146814.

[7] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph R. Kiniry, Gary T. Leavens, K. Rus-
tan M. Leino & Erik Poll (2005): An Overview of JML Tools and Applications. International Journal on
Software Tools for Technology Transfer 7, pp. 212–232, doi:10.1007/s10009-004-0167-4.

[8] C. Neville Dean & Raymond T. Boute, editors (2004): Teaching Formal Methods, CoLogNET/FME Sympo-
sium, TFM 2004, Ghent, Belgium, November 18–19, 2004. LNCS 3294, Springer, doi:10.1007/b102075.

[9] Edsger W. Dijkstra (1968): A Constructive Approach to the Problem of Program Correctness. BIT Numerical
Mathematics 8(3), pp. 174–186, doi:10.1007/BF01933419.

[10] Ingo Feinerer & Gernot Salzer (2009): A Comparison of Tools for Teaching Formal Software Verification.
Formal Aspects of Computing 21(3), pp. 293–301, doi:10.1007/s00165-008-0084-5.

[11] Jean-Christophe Filliâtre & Claude Marché (2007): The Why/Krakatoa/Caduceus Platform for Deductive
Program Verification. In: Computer Aided Verification, 19th International Conference, CAV 2007, Berlin,
Germany, July 3-7, 2007, LNCS 4590, Springer, pp. 173–177, doi:10.1007/978-3-540-73368-3_21.

[12] Jeremy Gibbons & José Nuno Oliveira, editors (2009): Teaching Formal Methods, Second International
Conference, TFM 2009, Eindhoven, The Netherlands, November 2–6, 2009. Lecture Notes in Computer
Science 5846, Springer, doi:10.1007/978-3-642-04912-5.

[13] Mike Gordon (2010): Specification and Verification I. University of Cambridge, UK, Lecture Notes, http:
//www.cl.cam.ac.uk/~mjcg/Lectures/SpecVer1/SpecVer1.html.

[14] Eric C.R. Hehner (2006): A Practical Theory of Programming. Springer, New York. http://www.cs.
utoronto.ca/~hehner/aPToP.

[15] C.A.R. Hoare & He Jifeng (1998): Unifying Theories of Programming. Prentice Hall, London, UK. http:
//www.unifyingtheories.org.

[16] Leslie Lamport (2002): Specifying Systems: The TLA+ Language and Tools for Hardware and Software
Engineers. Addison-Wesley. http://research.microsoft.com/users/lamport/tla/book.html.

[17] Carroll Morgan (1998): Programming from Specifications, 2nd edition. Prentice Hall, London, UK. http:
//www.cs.ox.ac.uk/publications/books/PfS.

[18] J. M. Morris (1987): A Theoretical Basis for Stepwise Refinement and the Programming Calculus. Science
of Computer Programming 9(3), pp. 287–306, doi:10.1016/0167-6423(87)90011-6.

[19] José Nuno Oliveira (2004): A Survey of Formal Methods Courses in European Higher Education. In: [8], pp.
235–248, doi:10.1007/978-3-540-30472-2_16.

[20] S. Owre, J. M. Rushby & N. Shankar (1992): PVS: A Prototype Verification System. In Deepak Kapur, editor:
11th International Conference on Automated Deduction (CADE), Lecture Notes in Artificial Intelligence 607,
Springer, Saratoga, NY, June 14–18, pp. 748–752, doi:10.1007/3-540-55602-8_217.

[21] David A. Schmidt (1986): Denotational Semantics – A Methodology for Language Development. Allyn and
Bacon, Boston, MA. http://people.cis.ksu.edu/~schmidt/text/densem.html.

[22] Wolfgang Schreiner (2008): A Program Calculus. Technical Report, RISC, Johannes Kepler University,
Linz, Austria. http://www.risc.jku.at/people/schreine/papers/ProgramCalculus2008.pdf.

[23] Wolfgang Schreiner (2008): Understanding Programs. Technical Report, Research Institute for Symbolic
Computation (RISC), Johannes Kepler University, Linz, Austria. http://www.risc.uni-linz.ac.at/
people/schreine/papers/Understanding2008.pdf.

[24] Wolfgang Schreiner (2009): The RISC ProofNavigator: A Proving Assistant for Program Verification in the
Classroom. Formal Aspects of Computing 21(3), pp. 277–291, doi:10.1007/s00165-008-0069-4.

http://www.bcs.org/category/8726
http://www.bcs.org/category/8726
http://dx.doi.org/10.1145/1146809.1146814
http://dx.doi.org/10.1007/s10009-004-0167-4
http://dx.doi.org/10.1007/b102075
http://dx.doi.org/10.1007/BF01933419
http://dx.doi.org/10.1007/s00165-008-0084-5
http://dx.doi.org/10.1007/978-3-540-73368-3_21
http://dx.doi.org/10.1007/978-3-642-04912-5
http://www.cl.cam.ac.uk/~mjcg/Lectures/SpecVer1/SpecVer1.html
http://www.cl.cam.ac.uk/~mjcg/Lectures/SpecVer1/SpecVer1.html
http://www.cs.utoronto.ca/~hehner/aPToP
http://www.cs.utoronto.ca/~hehner/aPToP
http://www.unifyingtheories.org
http://www.unifyingtheories.org
http://research.microsoft.com/users/lamport/tla/book.html
http://www.cs.ox.ac.uk/publications/books/PfS
http://www.cs.ox.ac.uk/publications/books/PfS
http://dx.doi.org/10.1016/0167-6423(87)90011-6
http://dx.doi.org/10.1007/978-3-540-30472-2_16
http://dx.doi.org/10.1007/3-540-55602-8_217
http://people.cis.ksu.edu/~schmidt/text/densem.html
http://www.risc.jku.at/people/schreine/papers/ProgramCalculus2008.pdf
http://www.risc.uni-linz.ac.at/people/schreine/papers/Understanding2008.pdf
http://www.risc.uni-linz.ac.at/people/schreine/papers/Understanding2008.pdf
http://dx.doi.org/10.1007/s00165-008-0069-4

	1 Introduction
	2 Related Work
	3 Commands as State Relations
	4 The RISC ProgramExplorer
	5 An Example
	6 State Relations and Verification Conditions
	7 General Workflow
	8 Conclusions

