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Electronic exams (e-exams) have the potential to substantially reduce the effort required for conduct-
ing an exam through automation. Yet, care must be taken to sacrifice neither task complexity nor
constructive alignment nor grading fairness in favor of automation. To advance automation in the
design and fair grading of (functional programming) e-exams, we introduce the following: A novel
algorithm to check Proof Puzzles based on finding correct sequences of proof lines that improves
fairness compared to an existing, edit distance-based algorithm; an open-source static analysis tool
to check source code for task relevant features by traversing the abstract syntax tree; a higher-level
language and open-source tool to specify regular expressions that makes creating complex regular
expressions less error-prone. Our findings are embedded in a complete experience report on trans-
forming a paper exam to an e-exam. We evaluated the resulting e-exam by analyzing the degree
of automation in the grading process, asking students for their opinion, and critically reviewing our
own experiences. Almost all tasks can be graded automatically at least in part (correct solutions can
almost always be detected as such), the students agree that an e-exam is a fitting examination format
for the course but are split on how well they can express their thoughts compared to a paper exam,
and examiners enjoy a more time-efficient grading process while the point distribution in the exam
results was almost exactly the same compared to a paper exam.
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1 Introduction

A strong argument for electronic exams (e-exams) is their high potential for automation, which can
decrease the effort of conducting an exam, especially during grading. Yet, care must be taken to sacrifice
neither task complexity [13] nor constructive alignment (CA) [3] in favor of automation. For example, an
exam consisting only of multiple choice tasks would be easy to grade automatically, but it would also be
impossible to assess the ability of students to create a solution rather than select a given one. On the other
hand, it is possible to integrate arbitrary program logic into an e-exam, which does not only help with
automating grading (checking the correct answer through means ranging from simple equality checks,
over specialized, self-written algorithms, to possibly even artificial intelligence [26]), but can also be
used for task design (e.g., randomization to impede cheating, sensibly showing or hiding input fields
depending on previously-given answers, execution of student code to allow students to test their answers
in a controlled way). Following the recent introduction of large scale electronic examinations [28] and the

SF. H. Bahnsen was with the Institute of Embedded Systems, TUHH, when the presented work was created.

Elena Machkasova (Ed.): International Workshop on Trends © O. Liibke, K. Fuger, F. H. Bahnsen, K. Billerbeck, S. Schupp
in Functional Programming in Education 2023 (TFPIE 2023) This work is licensed under the Creative Commons
EPTCS 382, 2023, pp. 22-44, doi:10.4204/EPTCS.382.2 Attribution-Share Alike License.


http://dx.doi.org/10.4204/EPTCS.382.2
https://creativecommons.org
https://creativecommons.org/licenses/by-sa/4.0/
https://orcid.org/0000-0001-5962-6583
https://orcid.org/0000-0002-8472-1483
https://orcid.org/0000-0002-5204-4713

O. Liibke, K. Fuger, F. H. Bahnsen, K. Billerbeck, S. Schupp 23

development of the extensible Your Open Examination System for Activating and emPowering Students
(YAPS) [1] at Hamburg University of Technology (TUHH), we investigate in this paper how to leverage
that opportunity to improve the examination in our functional programming (FP) course. We provide
a complete tour of how we successfully designed an e-exam for the FP course at TUHH, both from a
technological and an educational perspective.

As a first step we analyzed our pre-e-exam FP courses and past exams to identify potentials for
automation and improvement. The analysis was driven by the learning objectives (LOs) of the course
and how past exam tasks aligned with them. We found that regular expressions (RegExs) are a good
candidate for automatically checking answers that consist of short source code snippets. More elaborate
programming tasks could be evaluated using software tests. One particular LO (Students are able to
interpret compiler warnings and errors) had low coverage, but in the e-exam we could alleviate that by
integrating live compiler feedback. Overall, we found that many of our existing tasks could reasonably
be transformed to an e-exam version.

We implemented our ideas in YAPS, extending the system where necessary. Because we teach FP
using the example of Haskell but YAPS only offered a C/C++ compiler, we extended it with a common
template for Haskell programming tasks. The template facilitates the quick creation of new tasks, and
features a tool to analyze student code for task-relevant features (e.g., usage of pattern matching) that we
developed specifically for the e-exam. Another extension is checking answers with RegExs. We found
that crafting RegExs that are flexible enough to accept all valid solutions, but also strict enough to reject
any wrong answers, is a challenging and time-consuming process. Therefore, we devised a small, high-
level specification language for RegExs tailored to common patterns found in Haskell code, and a tool
that compiles these specifications to actual RegExs. Furthermore, YAPS features a way for students to
enter proofs (Proof Puzzles) that are then graded by an algorithm based on edit distance between correct
solution and given answer. This algorithm produces results that differ from our own, manual evaluation.
Consequently, we developed a new algorithm based on the length of correct proof sequences that is in
line with our judgment. Finally, while a paper exam is very flexible in terms of input (i.e., anything
that can be written or drawn), an e-exam is not because it requires specific input in specific input fields
(e.g., a numeric input field only accepts numbers). Because we did not want to take that flexibility away
from students, we extended YAPS with a comment field for each task that students can freely use to their
liking, e.g., for taking notes, or noting assumptions they made in case they deem the task ambiguous.

For evaluation, we manually analyzed the degree of automation of the e-exam (focusing on auto-
mated grading), and asked the students that participated in the exam for their opinion. Additionally, we
report our own experiences and reflect on sources of errors in automated grading. Grading of almost all
tasks features at least some automated elements; some tasks are graded fully automated. For almost all
tasks correct answers can be awarded the full amount of points automatically. Yet, awarding a sensible
amount of points for partially correct solutions remains a challenge in most cases. For us, the most com-
mon mistakes in automated grading were related to tasks checked by RegExs and programming tasks.
Currently, experience and manual testing are the best defense against errors, but our RegEx creation tool
is a first step towards more (but less error-prone) automation in that regard as well. The results from the
student poll are encouraging, as most students state that an e-exam is the right format for the FP course.
Yet, they are split on how well they can express their thoughts in comparison to a paper exam.

Altogether, we contribute the following to advancing computer aided design and grading for FP
e-exams:

* An algorithm to check Proof Puzzles (cf. Section 5.3).

* A small static analysis tool to check Haskell code for exam task relevant features (cf. Section 5.5).
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* A language to specify RegExs on Haskell snippets (cf. Section 5.6).

In addition, this paper is a complete experience report which highlights challenges when moving from a
pen-and-paper to an e-exam, and provides answers to the following issues:

* How can exam quality be ensured? By analysis of the LOs of each task. The e-exam should assess
the same LOs as the paper exam (cf. Section 4).

* How can fair grading be ensured? By critically examining results from automated grading (cf.
Section 5.3), giving students room to express their ideas (cf. Section 5.4), and (for now) resorting
to manual assessment if necessary (cf. Sections 4.3 and 6.1).

* How can programming tasks with compiler support be realized in a way that feels natural to stu-
dents, does not leak secret information about the task, and facilitates automation? By employing
a reusable template where the main function cannot be edited by students (cf. Section 5.1).

* How can certain restrictions in programming tasks be checked? By syntactic analysis of the
submitted code (cf. Section 5.5).

* How can an empty answer be distinguished from the absence of an answer? By combining am-
biguous input fields with a suitable yes/no question (cf. Section 5.2).

* How can the absence of errors be ensured in complex RegExs that are used to check answers? By
employing a higher-level, domain-specific language that compiles to RegExs (cf. Section 5.6).

The paper is organized as follows: Section 2 discusses related work, and Section 3 introduces
constructive alignment (CA) and the YAPS examination software. Sections 4 to 6 contain the above-
mentioned analysis, realization, and evaluation respectively. Section 7 summarizes and provides an
outlook on future work.

2 Related Work

While electronic assessment and automated grading have been an active research area for decades [8, 21],
the design of entire electronic exams (e-exams) seems to get less attention. The report on introducing
e-exams in two (Java-based) programming courses by Rajala et al. [25] appears closest to our work.
They also establish a categorization of tasks, focus on complete exam designs, and use questions similar
to ours to collect student feedback. The most notable difference is the method to ensure exam quality:
the authors asked two (otherwise uninvolved) other researchers for their opinion. Instead, we suggest to
make sure all learning objectives (LOs) of the course are assessed in the exam through analysing each
task. For additional quality assurance, both methods could be combined. Other differences include that
Rajala et al. require source code submitted in the exam to compile (which we decided against), check
correctness by comparing the program output (instead, we use property tests), and they neither restrict
which code can be executed, nor the input language. These differences can likely be attributed to different
LOs in the respective courses and the different programming languages and paradigms.

Bloom’s Taxonomy [13] is a tool widely used to assess task complexity, and can therefore also
be used to assess an entire exam. Still, Sheard et al. developed a scheme for classifying exam tasks
using seven different features, targeted specifically at introductory computer science courses [27]. Our
analysis is different in that its aim is not to characterize a single exam, but to make sure exam quality did
not degrade from one to the next exam. It uses the LOs covered by each task as the only feature to make
sure all tasks are still constructively aligned [3].
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An older study focussing on the transition from paper to e-exam has been conducted by Stergiopoulos
et al. for a course in Electronic Physics [29]. However, the set of investigated task types is limited to
yes/no questions, multiple choice, and calculations (with numeric input that must lie in a specific range).

Regarding challenges when introducing e-exams, Kuikka et al. surveyed educators at Turku Univer-
sity of Applied Sciences for which requirements for introducing e-exams they see [15]. In contrast, we
focus on challenges when those requirements are met and an actual e-exam is created.

During the COVID-19 pandemic, educators worldwide had to move their classes online and shared
their experiences. Often, e-exams are also part of these reports, but with varying level of detail regarding
task design and automated grading. Loftsson and Matthiasdoéttir report on how they combined different
online teaching tools to transform a first semester (Python-based) programming course [16]. They evalu-
ate the changes in depth based on student surveys and exam results, but, except for the employed tools, no
details on task design and automated grading were given. Kappelmann et al. focus on how students can
be engaged in online teaching in an introductory (Haskell-based) functional programming (FP) course,
and also provide details on task designs and automated grading [12]. For checking programming tasks,
they also use property testing, and add unit tests as well as a novel 10 mocking library. The latter can be
seen as another way of controlling the execution of student code (we prevent main from being changed),
yet there is no mention of restricting the input language for certain tasks. For checking proof tasks, they
include an actual proof checker instead of Proof Puzzles.

The Proof Puzzles in Your Open Examination System for Activating and emPowering Students (YAPS)
are a similar to Proof Blocks [23, 24]: students are presented with building blocks containing lines of
the proof as well as distractors, and are supposed to construct the proof via drag-and-drop. In Proof
Blocks, the proof structure is encoded as a directed acyclic graph (DAG), and the points to award for
a given solution are calculated using an edit distance measure. Proof Puzzles also rely on edit distance
for awarding partial points. We found that this algorithm may produce unfair results and consequently
developed a new one. One the one hand, our algorithm is based on pre-defined correct block sequences
which can be seen as non-branching DAGs. On the other hand, we use a different mechanism for award-
ing partial points. Generally, points are awarded for each correct block in a sequence. Apart from the
sequences, entry points are specified to allow for reentering the correct proof, which allows for a fair dis-
tribution of points even when some mistakes were made. An alternative to such block-based automatic
proof grading is using a theorem prover [12, 10]. For instance, Kappelmann et al. employed Check Your
Proof (CYP) ! in an FP exam [12]. The input language of CYP is intentionally close to Haskell, and
it supports checking equational reasoning, proofs by structural induction, proofs by extensionality, case
analysis, and computation induction. For the exam, they did not require the students to strictly adhere to
the syntax of CYP. Still, similar to many tasks in our e-exam, correct solutions, if given in the correct
syntax, can automatically be verified as such. Additionally, establishing a common syntax for proofs
in the course also facilitated the manual grading of partially correct submissions. Another example of
a theorem prover used in an exam is given by Jacobsen et al., who integrated Isabelle/HOL [20] in a
course on automated reasoning and report similar experiences with respect to grading. In comparison
to theorem provers, Proof Puzzles or Blocks allow for fully automated proof grading, but they cannot
reason about the proof itself. Instead, they rely on pre-defined structural information, such as the DAG
representation. Yet, the two options do not necessarily exclude each other, as shown by McCartin-Lim et
al. [17]. They developed a graphical, graph-based user interface where proof assumptions and assertions
need to be selected by students and dragged to the graph pane, where they can be connected with directed
edges. In the background, a theorem prover checks for each each assertion whether its proof is complete,
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and the outcome is indicated visually.

Automatically grading programming tasks is a vast field that has recently been reviewed by Paiva et
al. [21]. While it is often easy to determine whether a given program is correct through traditional testing,
it is much harder to assign a reduced amount of points to partially correct solutions. Our approach is to
execute multiple tests and use a set of rules that map test results to points. However, manual inspection is
still required for incorrect programs for two reasons: Programs that do not compile cannot be evaluated
this way (but we also want to grade those), and there are cases where the assigned amount of points
is too low because the tests did not cover a detail that we do want to award points for. Static analysis
is a more formal way to measure the difference between a given and correct solution based on a graph
representation derived from the abstract syntax tree (AST) and its usefulness has been shown in numerous
studies [21]. We also use static analysis in the automated grading process, but not for assigning reduced
points. Instead, it is employed to check whether a given solution can be a viable solution at all. Some
of our programming tasks restrict the input language by forbidding/requiring the use of certain language
features or functions. Since, to our knowledge, no tool exists that reports on the functions and language
features used in a Haskell program, we devised our own.

For grading smaller tasks that do not require writing a full program or function, we use regular expres-
sions (RegExs). RegExs are a known tool for automated assessment, with applications such as parsing
output of student programs [19, 22], extracting information from student code [19, 30], or even grading
free-form text answers [11]. In this work, we are mostly concerned with generating correct RegExs that
represent valid solutions to a given task because writing complex RegExs that accept different answers
is tedious and error-prone. Existing work on ensuring the correctness of RegExs has recently been re-
viewed by Zheng et al. [31]. While there are numerous approaches to testing or even verifying existing
RegExs, methods for creating RegExs are mostly concerned with learning them either from examples or
from a natural language description. Another line of research is concerned with making RegExs easier
to understand for humans, e.g., by abstraction [6]. Our approach to generate RegExs can be seen as
a reverse abstraction process. We use a more abstract language that is compiled to RegExs instead of
abstracting RegExs.

3 Constructive Alignment & YAPS

The concept of Constructive Alignment by Biggs [3] is related to constructivist learning theories, i.e.,
knowledge is seen to be constructed by each learner, as opposed to being transferred from teacher to
learner. Thus, in order to facilitate successful learning a learning environment must be designed that
allows the desired learning objectives (LOs) to be achieved through appropriate learning activities. The
key to this is the definition of LOs at an appropriate level as well as the design of matching examination
tasks. This is because, according to the principle of testing drives learning, the cognitive level of the
examination tasks also determines the learning activities of the students. Thus, if what is to be learned is
not reflected in the examination tasks, well-intentioned motivational teaching often fails due to a lack of
student engagement.

To achieve higher cognitive learning objectives in an e-exam in engineering science, a technical envi-
ronment is needed that offers much more than the construction of multiple choice tasks. Students should
be able to analyze presented issues, to develop and justify independent solutions, and not just select pre-
determined answers. For such demanding examination scenarios that assess deeper understanding [13],
the examination system Your Open Examination System for Activating and emPowering Students (YAPS)
was developed at Hamburg University of Technology (TUHH), which allows for a more creative and
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technically appropriate construction of examination tasks [1].

Several key design decisions were made in the development of YAPS: It is licensed open source and
is cost-efficient for the university with regard to the required hardware resources. In Germany, there is
no real alternative to self-hosting of the examination system used for reasons of data protection. This
criterion alone excludes many candidates for other examination software. YAPS is characterized by a
contactless and state-based operating concept that maps the testing procedure of TUHH, i.e., steps like
having each student confirm they are fit to take the exam, checking student ID cards and whether they are
actually registered, are supported by YAPS and can be performed while keeping a distance between each
other (which was especially important during the COVID-19 pandemic, when exams at TUHH were still
conducted in person). Finally, YAPS is designed to be extensible and built with well-known technologies
(e.g., Typescript, Docker).

Other, similar softwares such as Autolab? [18], INGInious® [5] or ArTEMiS* [14] can also be self-
hosted, are extensible, and the latter even supports Haskell out of the box. However, YAPS is already
available at TUHH and well-integrated with the processes attached to conducting an exam. Its lack of
support for Haskell can easily be remedied through its extensibility.

4 Analysis of our Pre-E-Exam FP Course

Changes to the examination of a course should be reflected in the teaching activities, and vice versa. This
ensures that the teaching activities prepare the students to take the exam, and that the exam assesses the
knowledge and skills taught in the course. To be able to review this mutual dependency, in this section
we analyze our functional programming (FP) course and exams before the electronic exam (e-exam).

First, through describing and listing the teaching activities of the course, we capture its current state
to identify any exam-related parts that may need to be updated. Then, we examine previous exams
with regard to constructive alignment (CA) and task categories to identify potentials for automation
and improvement of task design. Finally, having established candidates for change in both the teaching
activities and in the exam, we devise a plan to reach our goal: an updated FP course with an e-exam that
reduces effort through automation without reducing exam quality.

4.1 Course Description

The course is based on the textbook ‘“Programming in Haskell” by Graham Hutton [9] and mainly tar-
geted at first semester computer science students. The teaching activities of the course are aligned with
the learning objectives (LOs) summarized in Table 1. Overall, there are three weekly activities: First, the
lecture lays the foundation for the other activities. To a limited extent, it also features practical elements
like executing code examples and short in-class exercises. Second, so-called programming labs provide
an opportunity to get hands-on experience with FP. During the labs, students solve small programming
tasks with the support of student tutors, as it is common in other courses as well [2]. They can also
help out each other and exchange different approaches towards solving the tasks. At the end of each
lab session, the tutors discuss the solutions with each student, making sure that misunderstandings are
detected and cleared up as early as possible. Third, there are homework exercise sheets that, in contrast
to the labs, are supposed to be solved alone. They feature more complicated tasks that require and foster
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Table 1: Learning objectives of our FP course as specified in the module handbook [7]

Knowledge-based
K, | Students apply principles, constructs, and simple design techniques of FP.
K> | Students demonstrate ability to read Haskell programs, and explain Haskell syntax.
K3 | Students interpret warnings and find errors in programs.
K4 | Students apply fundamental data structures, data types, and type constructors
K5 | Students employ strategies for unit tests of functions and simple proof techniques for partial and
total correctness.
Ks | Students distinguish laziness from other evaluation strategies.
Skill-based
S1 | Students break a natural language description down in parts amenable to a formal specification
and develop a functional program in a structured way.
S> | Students assess different language constructs, make conscious selections both at specification
and implementation level, and justify their choice.
S3 | Students analyze given programs and rewrite them in a controlled way.
S4 | Students design and implement unit tests and can assess the quality of their tests.
S5 | Students argue for correctness of their program.

a deeper understanding. To check their solutions for correctness, students upload their code files to an
autograding system, so they can get feedback anytime. Usually the students need to provide a number of
examples and tests for each function, and the given feedback reports on the correctness of functions, ex-
amples, and tests alike. For failing tests also the test input, expected and actual output are given. Finally,
the solutions are discussed in a dedicated lecture hall exercise session.

During the last month of the lecture period, we introduce a few changes to what is described above,
to help the students prepare for the exam. The last two tasks of each programming lab are designed to
revisit topics covered earlier in the lecture period. During the last lab session, students are presented with
the opportunity to solve an old exam, so they get an idea of what to expect during the real one.

4.2 Existing Exams

The exam is usually divided into eight main tasks with subtasks, where each of the main tasks is dedicated
to a certain topic from the lecture: 1. Types and Type Classes 2. List Comprehension 3. Pattern Matching
4. Recursion 5. Higher-order Functions 6. User-defined Types 7. Evaluation 8. Reasoning and Testing.
To ensure we preserve CA while transforming the exam, and to get an overview of what types of task we
have, we analyzed the tasks of an exemplary old exam. The results are summarized in Table 2. During
the analysis we noticed that there are no warning messages in the exam, so the first part of K3 is not
checked at all.

Regarding the types of tasks, we found that all tasks can be presented in one of the following five
categories: 1. Single choice: Select one option from two or more. 2. Multiple choice: Select zero or more
options from two or more. 3. Snippet: Write a short piece of source code, e.g., a type, an expression, or
even just a number. 4. Code: Write a larger piece of source code, e.g., a complete function or user-defined
type. 5. Text: Write a text, e.g., some explanation or justification.

To make sure the e-exam assesses the same LOs as we did previously, we took the arguably most
simple approach to design it: “translating” each task directly. With the first two categories we already
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use task types that can directly be integrated into an e-exam. Integrating snippet and code tasks is more
difficult, but the answers must follow the rules of Haskell by design, so at least partially automated
assessment is possible for them. Text answers are comparatively unstructured, and students may answer
in either English or German, which makes those tasks ineligible for automated assessment.

4.3 Consequences

The analysis of the teaching activities
showed that the later lab sessions with re-

Table 2: Learning objectives and types of existing exam

capitulation tasks are suited best for famil- tasks

iarizing the students with the e-exam format.

Therefore, we decided to move those tasks Task | LOs Type

to Your Open Examination System for Ac- la Ki, K>, K4 snippet
tivating and emPowering Students (YAPS) 1b K, K>, K4 multiple choice
instead of using text editor and terminal as 2a K1, K>, K3 single choice, snippet
usual. In addition, the exemplary exam that 2b Ki, K>, S», 83 code

students can solve during the last lab ap- 3a K, K>, K3, K4 single choice, snippet
pointment is also in electronic form. This 3b Ki, K>, K4, S5 code

way, all students have the opportunity to  4a K, K> text

learn and try out how to use YAPS, and 4b K1, K>, S1, S2, 83 code

we can also test new ideas in a compara- 5a Ki, K> snippet

tively risk-free environment. Furthermore, 5b K, K> text

our tutors are not only there to help out 5¢c Ki, K4, S1, S» code

with any issues that may arise, but also to 6ai | Ky, K», Ku, S, snippet

collect valuable feedback directly from the 6aii | Ky, K», K3, Ka single choice
students, which we could not get any other 6b Ky, K4, S) code

way (especially observations on how the sys- 74 Ky, K, Ks text

tem is used and insights from student-to- 7b K, K>, K snippet
student/tutor conversations). Through this e Ki, K», K text

feedback we can detect problems (e.g., task gy K, K2, Ks, S1, S2, Sa | code

designs that are difficult to navigate) early  gp K, Ko, Ks, Ss text

and prevent them from occurring in the real
exam.

Regarding the exam itself, we found ways to transform each of the task categories we identified
to an e-exam. Single and multiple choice tasks can naturally remain. For snippet tasks we found that
regular expressions (RegExs) can in all cases be used to detect correct solutions, yet a RegEx match
is a Boolean decision (i.e., either the given answer matches the RegEx or not), so awarding a reduced
amount of points for partially correct solutions is not possible. This is why we also allow for a manual
assignment of points in case there was no match. Alternatively, snippet tasks could be checked using a
compiler. While this does not solve the problem of grading partially correct solutions, it would reduce the
workload because no RegExs need to be created. On the other hand, RegExs are arguably more flexible
because they could also be used to detect common errors (by additionally specifying multiple erroneous
RegExs), hence enabling awarding reduced amounts of points. Tasks that require writing a larger amount
of source code can also remain, but additional work is required for the automated assessment here as well.
In YAPS, programming tasks are worked on in an integrated code editor with syntax highlighting and
the possibility to compile and execute the code, where the output of both compilation and execution
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is shown to the students. For automated assessment we mainly employ randomized property tests via
QuickCheck [4] and a new static analysis tool that provides information on used language features and
functions. Welcome side effects of integrating a code editor are that programming tasks can now be
executed in a more familiar way, and through error and warning messages from the compiler, LO K3 is
now fully included, while in the paper exam it was not. One important decision to make with automated
programming tasks is whether only compiling code is accepted as an answer, or whether (partial) points
are awarded also for non-compiling programs. We decided for the latter because we believe that a
solution that is correct except for, e.g., a single wrongly-indented line, should still be worth points. Still,
non-compiling code cannot be tested, so this reduces the degree of automation. Plain text tasks are the
hardest to automate and there is no general way to do this. Therefore, we examined each task individually
and found that there actually is a way to transform many of the text tasks in our exam in a similar way.
We often ask students to make a decision and then justify it, so at least the decision part can be modeled
as a single or multiple choice task, and only the reasoning is left for manual evaluation. Tasks in which
we ask students to prove, e.g., a certain property of a function are a special case though. Here we make
use of the proof puzzle task type available in YAPS, with a new evaluation algorithm tailored to our
needs.

5 Realization

In the following we explain in detail how we realized the plan derived from the course analysis. First,
we focus on the extensions to Your Open Examination System for Activating and emPowering Students
(YAPS): Haskell compiler integration, regular expression (RegEx) tasks, proof puzzle evaluation, and
the addition of a comment field for all tasks. Then, we introduce the code analysis tool for Haskell
programming tasks and the RegEx generator program, together with its higher-level RegEx specification
language.

5.1 Haskell Compiler Integration

To facilitate creating new programming tasks, we devised a template that provides a common layout and
structure, so only task-specific text and code needs to be added using the following workflow: 1. Write
the task description into exercise.html. This is the page that students see when selecting the task. 2. Write
a short main function that executes the student code into main.hs. Students cannot modify this file, hence
students cannot execute arbitrary code. They are limited to the functions evaluated in main, but we also
control the types of these functions. Most importantly, these functions are never I0 actions in our tasks,
so we can leverage the type system of Haskell to prevent students from doing anything dangerous (the
code is additionally isolated using containerization). 3. Write any task-related code or comments into
functions.hs. This is the file in which students implement their solutions. It is a good idea to summarize
the task in a comment here, so students do not have to switch back and forth between the task description
and their solution. 4. Write tests for the student code into main_test.hs. Students cannot see this file.
5. Write the code to execute the tests, parse and interpret their output, and report the results back to
YAPS into evaluate.py. Students cannot see this file.

This structure works for almost all tasks without modification, but is still flexible enough to allow
for deviations. One example of that are tasks where students need to write tests themselves. Testing tests
is more difficult than testing “normal” functions because we cannot write randomized property tests for
them. Instead, we omit main_test.hs and provide two (or more) implementations of the function under
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1. True 1. True

Answer: ‘ ‘ Answer: [555T e

2. ("False”, not False) 2. ("False”, not False)

Answer. ‘ ‘ Answer: [(Bool, Bool) uzp

(a) Exam view (b) Evaluation view

Figure 1: Regular expression task

test: one that is correct, and one (or more) that is faulty. The code from main.hs is executed with the
correct version during the exam. During evaluation, we link the student test with each of the versions of
the function under test. Then we check whether the test passes for the correct version and fails for the
faulty ones.

5.2 Checking Answers with Regular Expressions

Figure 1a shows for two instances of the RegEx task type how they appear in the exam. During the
evaluation, the given text input is matched against the specified RegEx and the results are displayed to
the examiner as in Fig. 1b. The first answer is found to be correct. The second answer is only partially
correct, so partial points are awarded through the numeric input field to the right. This input field is
hidden when the RegEx matched to prevent any accidental modifications of the awarded points.

Still, there is one problem with that implementation: what if the correct answer is no answer? En-
vision a task “Given a certain list comprehension, does it compile, and if so, what is the resulting list?”.
We usually design such tasks as a combination of a single choice (for the decision) and a RegEx task (for
the list). If the list comprehension is not valid, the correct answer would be to leave the list input field
empty, so we cannot distinguish between “no list” and “no answer.” As a remedy, we allow RegEx tasks
to optionally depend on a single choice task. The answer to the RegEx part is only evaluated if an answer
to the single choice task was given. Additionally, the input field is hidden as soon as the student selects
the negative option of the single choice part. This resolves the ambiguity, because now we clearly know
whether a task is answered.

5.3 New Algorithm to Evaluate Proof Puzzles

An example of the proof puzzle task type is given in Fig. 2. Students can drag the elements from right
to left (and vice versa) to construct their proof. Such a task is defined as follows: First, we list all
the available items, and optionally assign a weight to them. Then, we specify possible solutions as
sequences of selected items, and assign each solution a number of points. If a student produces one of
these solutions exactly, they get the full amount of points.

For clarity, we introduce the following notation: Let X* be the set of all (Unicode character) strings.
An item (t,w) € £* x Q consists of the displayed text 7 and the associated weight w. Let S; be the set
of all sequences of items in I C X* x Q. A solution (s, p) € Sy x Q of length n consists of a sequence of
items s = 1y,...,1,, and the associated number of points p. We denote the " item of s as 1; = (ti,wi).

In the original version of this task type, the automatic evaluation is based on the edit distance between
the given solution attempt and the specified solution. The edit distance is defined as the weighted number
of insert and remove operations required to transform one sequence of items into another. For an item
(_,w), the cost of inserting/removing it is equal to w. Algorithm 2 (Appendix) shows the complete
procedure for calculating the number of points to award for a solution attempt. It can be summarized
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In the following, you are given a definition of natural numbers, and the modulo functions mod and modHelper.
Your task is to prove for all values y of type Nat that y modulo one is zero. In other words, you must prove the following: V' y: mod y (Succ Zero) == Zero
Note: The justifications (e.g., "by def. mod") are part of the solution. Consequently, if you select a correct formula with a wrong justification, the line is wrong.

You can drag elements from the right to the left (and vice-versa) and sort them to construct your proof. Not all elements need to be used, use only those that are required!

1 data Nat = Zero | Succ Nat
2

3 mod :: Nat -> Nat -> Nat
4 mod m n = modHelper n Zero m n
5

6 modHelper :: Nat -> Nat -> Nat -> Nat -> Nat
7 modHelper Zero  _ a b =mod a b

8 modHelper _ 1 Zero b

9 modHelper (Succ c) r (Succ a) b

H
modHelper ¢ (Succ 1) a b

Proof Unused elements

- zero by def. nodHelper
= modHelper (Succ Zero) Zero y (Succ Zero) by def. mod
= mod Zero (Succ Zzero) by def. modHelper
= modHelper (Succ Zero) Zero (Succ Zero) (Succ Zero) by def. mod
= modHelper (Succ Zero) Zero Zero (Succ Zero) by def. mod
- zero by hypothesis
Inductive case: mod (Succ y) (Suce Zero)

Base case:mod y (Succ Zero)

Inductive case: mod y (Succ Zero)

Figure 2: Proof puzzle task

as follows: For each possible solution, calculate the edit distance to the given solution attempt. Then,
subtract the edit distance from the maximum amount of points that can be awarded for that solution. The
resulting number of points is the maximum of these differences.

During testing, this algorithm produced reasonable results. Yet, after conducting the exam, we found
that sometimes the resulting points were not in line with how we manually evaluated these tasks in the
past, and that sometimes the results were even unfair, e.g., in the following case (cf. Figure 4, Appendix):
Student A has correctly identified the inductive step of the proof and the next step, and gets 0.5 points.
Student B has only correctly identified the base case and gets 2.0 points. We could not find a different
assignment of weights to the items that produces better results, so we decided to devise a new algorithm
tailored to our needs.

The new algorithm is based on finding correct sequences of items and awards points according to
the item weights. There is no subtraction of points, but sequences have clearly-defined entry points
(otherwise just using all items in a random order could yield the full amount of points). As the entry
points, we use the first items of the predefined solutions. The new algorithm is given in Algorithm 1 and
replaces lines 3 and 4 in Algorithm 2 (Appendix). It proceeds as follows: First, initialize the result with
0 (line 11), and look for the first entry point of a sequence in the given solution. The subroutine to search
for the next sequence start (line 1) takes the current indices in the lists of solution and given answer items
as input (both initially 0). It iterates over the solution sequence, and checks whether the current item is
an entry point, and if it is also part of the given answer, a new synchronization point between solution
and given answer is found. The subroutine returns the indices of the common item in the solution and
in the given answer. If such a synchronization point cannot be found, the subroutine returns infinity for
both indices, which terminates the main loop (line 13). The main loop iterates over the solution items as
well, checking for each item whether it is still in the sequence or breaks it. If it is part of the sequence,
its weight is added to the result, and the indices in the lists of solution and answer items are incremented.
Otherwise, search for the next entry point and skip all items in between.

Algorithm 1 resolves the unfair grading explained above. Student A now gets 1.5 points, while
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student B gets 1.0 (cf. Figure 5, Appendix). In case of proof by induction tasks, we usually specify the
first line of the base case and the first line of the inductive step as entry points for sequences.

Algorithm 1 New proof puzzle evaluation

Input: 7 C £* x Q (items), s € S; x Q (solution), a € S; (solution attempt)
Output: Amount of points to award for a

1: function FINDNEXTSEQUENCESTART(solldx,ansldx)

2 for solldx < |s| do

3 if ISSEQUENCESTART (Sy0/74x) and Sgoy74¢ € a then
4: return (solldx, index of syy4y in a)

5: end if

6 solldx < solldx+ 1

7 end for

8 return (oo, o)

9: end function
10:

11: r<0
12: (solldx,ansldx) <— FINDNEXTSEQUENCESTART(0,0)

13: for solldx < |s| and ansldx < |s,| do

14: if So11ax = Aansiax then

15: ¥ 4= ¥+ Wgolldx

16: (solldx,ansldx) < (solldx+ 1,ansldx+ 1)

17: else

18: (solldx,ansldx) <— FINDNEXTSEQUENCESTART(solldx,ansldx)
19: end if

20: end for

21: return r

5.4 Comment Field for Students

Another extension we added to the YAPS framework is a comment field for all exercises. We frequently
found in paper exams that students add additional thoughts about exercises beyond their answers. Often
these are explanations of how the exercise was understood or assumptions on which the answer of the
student was based. While we aim to phrase all exercises in a way that neither an interpretation nor
additional assumptions are necessary, we still wanted to give students the option to express these so that
their answers can be evaluated in the right context. Therefore, we added an all-purpose text field at the
bottom of each exercise with an explanatory text describing its purpose. Whatever is written into this
field persists in addition to all actual answers so that we can read it during the correction of the exam.
Another use case we found for this text field is that students wrote notes for themselves during the exam
that they would ordinarily scribble in the margins of a paper exam.

5.5 Analyzing Student Code for Task-Relevant Features

Many of our programming tasks have certain restrictions, e.g., students must (not) use a certain language
feature, or are only allowed to use certain functions. To be able to check these constraints automatically
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Listing 1: Example of quicksort in Haskell’

quicksort :: Ord a => [a] —> [a]
quicksort [] = []
quicksort (p:xs) = (quicksort lesser) ++ [p] ++ (quicksort greater)
where lesser = filter (< p) xs
greater = filter (>= p) xs

Listing 2: Code analyzer output for Listing 1

{ "functions": [{
"name": "quicksort",
"patMatch": true ,
"guards ": false ,
"listComprehension": false ,
"hasIf": false ,
"hasCase ": false ,
“args": [ "p", "xs" ],
"calledFns": [ "quicksort", "++", "filter", "<", ">=" ],

"declaredFns": [ ]
11}

we devised a new tool® that itself is written in Haskell. It takes a source code file as input, and outputs
certain information on each function, that is defined in the input file, in JavaScript Object Notation
(JSON). For example, with the well-known implementation of quicksort, given in Listing 1, the program
outputs the JSON shown in Listing 2. For each function, the program provides the following information:
the name of the function, its arguments, called and locally declared functions, and whether it uses pattern
matching/guarded equations/list comprehensions/case expressions. To extract that information, we use
the haskell-src® package to build and traverse the abstract syntax tree (AST) of the given source file.
The program itself is split into a library that provides the described functionality, and an application that
uses this library. Altogether, the entire program consists of less than 500 lines of code of which most are
used for pattern matching on the constructors of the sum types that represent the AST and advancing the
search in depth-first manner.

The haskell-src library parses the given file to the HsModule type which features a list of dec-
larations. We filter those declarations for functions (HsFunBind) and constants (HsPatBind), and then
check for the features and functions used. The HsFunBind constructor holds the clauses of the function
([HsMatchl]), and the clauses provide access to guards (HsGuardedRhss), as well as access to the pat-
terns used in the left hand side. Any pattern that is not a name (HsPVar) is considered a use of pattern
matching. Names, however, are added to the list of arguments (subpatterns are also considered, e.g.,
(x:xs) is considered a use of pattern matching and adds the arguments x and xs). To collect the remain-
ing information, the right hand sides (HsRhs) and local declarations (HsDecl) are traversed similarly.

Shttps://collaborating.tuhh.de/cda7728/check-hs-task-restrictions
®https://hackage.haskell.org/package/haskell-src
"https://wiki.haskell.org/Introduction#Quicksort_in_Haskell



https://collaborating.tuhh.de/cda7728/check-hs-task-restrictions
https://hackage.haskell.org/package/haskell-src
https://wiki.haskell.org/Introduction#Quicksort_in_Haskell

O. Liibke, K. Fuger, F. H. Bahnsen, K. Billerbeck, S. Schupp 35

Listing 3: Example RegEx generator output

M (2:N(2=(?2: 2NV T=)V))) 2\ s«Num\ s x\s(?<a>[_a-z ][ _a-zA-Z0-9]*)\s
— x(2:(?2<=\(2:[M\(\V) Tx))\V)) 2\sx=>\s x\ [\ sx\k<a>\s #\]\sx—>\s=x(?:
< String\s = [\[\sxChar\s «\]\s=*)$

5.6 Generating Flexible Regular Expressions

To increase automation during exam creation we developed a second tool® in Haskell that facilitates
writing the RegExs we need to automatically check many of the tasks. It reads a custom, specialized
specification language that we call Haskell Task RegEx Specification Language (HTRSL), and out-
puts JavaScript compatible RegExs. For an example, consider the input ("Num" \\ a) "=>" "[" a
"Jn o> ["String" | "[" "Char" "]" ]. It represents the function type (Num a) => [a] ->
String that can be written in different ways, e.g., omitting the parentheses, writing [Char] instead of
String, or using a different name for the type variable a. All of these variations need to be accepted by
the generated RegEx. The result is shown in Listing 3 and illustrates how large these expressions can
become. RegExs of that size are difficult to understand for humans, so writing them by hand is rather
error-prone.

Therefore, the HTRSL provides an additional layer of abstraction tailored to common patterns in
Haskell expressions. Its grammar is given in Listing 4 (Appendix) in labelled Backus-Naur form: A
HTRSL file is a semicolon-separated list of specifications. Each specification is a description. A descrip-
tion is a list of description items. Allowed items are:

* Literals: Match the string given in double-quotes literally.

* Identifiers: Match any identifier ([_a-z] [_a-zA-Z0-9°]*). If reused in the same description,
only matches the same identifier that was found at the first occurrence.

* Mandatory whitespace: Match any whitespace (\s+), represented as \\ in the description.
* Alternatives: Match any of the alternatives that are given in square brackets and separated by |.

* Optional parentheses: Match what is specified inside the parentheses, either surrounded by paren-
theses or not. Cannot be nested.

We use the BNF Converter” to generate a parser for the language. This way, we obtain an abstract syntax
tree that we can traverse to generate the desired RegExs.

In the future, we plan to add support for automatically testing the generated RegExs. Currently, this
is done manually by testing each RegEx for some positive and negative examples. This can be automated
as well by adding the test strings to the specification, so the tool can directly check whether the generated
RegEx matches all positive examples, and rejects all negative ones.

6 Evaluation

For evaluating the electronic exam (e-exam) we aim to answer the following three questions: What is
the degree of automation? Are students satisfied? Are examiners (we) satisfied? The first question is

8https://collaborating.tuhh.de/cda7728/gen-hs-task-regexs
‘https://hackage.haskell.org/package/BNFC
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targeted at evaluating how far we have come with respect to our initial motivation: reducing the effort
of conducting an exam through automation. We believe that, by design, we did not sacrifice constructive
alignment (CA), yet CA compliance comes at the cost of less automation, and we wanted to know how
high that cost actually is. While reducing the effort of conducting the exam mostly benefits us, the
examiners, we also wanted to provide the students with a more comfortable and familiar way of taking
an exam, especially when it comes to programming tasks. Finally, we reflect on our own experiences,
from creating the exam to grading it, to answer the last question.

6.1 Automated Grading

To evaluate the degree of automation of
the grading process, we divide all tasks in
the e-exam into the following categories:

Table 3: Categorization of tasks by degree of automation

1. Fully automated: human intervention Task | Task Type Category

is not required in any case. 2. Auto- la RegEx Automated if correct
mated if correct: human intervention is 1b Multiple Choice Fully automated
only required if the given answer was in- 2a Single choice + RegEx | Automated if correct
correct (to potentially award partial points) 2b Programming Automated if correct
3. Partially automated: human intervention  3a Single Choice + RegEx | Automated if correct
may even be necessary for correct answers. 3b Programming Automated if correct
4. Not automated: human intervention is  4a Single Choice + Text Partially automated
required in any case. The results are given 4b Programming Automated if correct
in Table 3 for an example exam (we do Sa Programming Automated if correct
not rule out that other exams have, e.g., a 5b Text Not automated

task 1c). They show a direct mapping be- 5c Programming Automated if correct
tween task type and category: multiple/s- 63 Programming Automated if correct
ingle choice or proof puzzle — fully auto- 6b Multiple Choice Automated

mated, regular expression (RegEx) or Pro- 6¢ Programming Automated if correct
gramming — automated if correct, text — 75 | Single Choice + Text Partially automated
not automated. When two task types are 7b RegEx Automated if correct
combined, the resulting degree of automa-  7¢ Multiple Choice + Text | Partially automated
tion is the one that is worse. Combinations 8a Programming Automated if correct
of text tasks with one that is at least “auto- 8b Proof Puzzle Fully automated

mated if correct” result in a “partially au-
tomated task”. We see that most tasks are

“automated if correct”, which is our second-best category. Yet, just from the categorization we cannot
determine how much this reduces the effort required for grading the exam in practice. Still, all tasks
except for one feature at least some degree of automation, and overall that makes it likely to reduce the
required efforts. In other words, the results can be summarized as follows: Correct solutions can in most
cases be awarded the full amount of points automatically, but awarding partial points is difficult.

6.2 Student View

To capture the view of the students, we conducted a short poll immediately after the exam. When time for
the exam was up, the exam browser automatically redirected the students to the poll website. On the one
hand this allowed us to capture the opinion of the students without delay and reduced external influence.
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Figure 3: Poll results
Rate the following statements from I to 5 (1 = fully disagree, 5 = fully agree) 1. An e-exam is a right
format for the lecture “Functional Programming”. 2. The programming tasks with compiler support
feel like a natural way to answer programming tasks. 3. In an e-exam, I can express my thoughts as
good as I could in a paper exam.

On the other hand, we thought that students may be unwilling to fill in an elaborate questionnaire just
after finishing an exam. Therefore, we decided to only ask three questions and provide a text input field
for additional feedback.

Of the 77 exam participants, 73 answered the poll. The results are shown in Fig. 3. Figure 3a shows
that the majority of the participants (36 + 10 = 46 = 63%) generally agrees that an e-exam is the right
examination format for the course. Most (24 4 14 = 38 = 52%) also found working with the integrated
compiler natural, yet comparatively many students are neutral on this question (15 = 21%), as shown
in Fig. 3b. For the third question, Fig. 3c shows that less than half of the participants (21 + 13 =34 =
45%) agreed that they can express their thoughts as they could in a paper exam. Almost a third of the
students (8 + 15 = 23 = 32%) disagrees. 29 students even provided additional feedback that ranges from
constructive criticism to outright ecstasy (“It was SHIICKKK!!! Also perfect amount of time for the
tasks. I finished in the last 5 seconds’). Other critical remarks were:

* “It’s sometimes a little bit complicated for color-blind people to see whether I marked a task
already as green or it’s still orange.” In Your Open Examination System for Activating and em-
Powering Students (YAPS), students can mark tasks green when they finished them, unseen tasks
are gray, and tasks where some input was given appear orange. This choice of colors apparently is
problematic for some and should be changed.

* “Maybe it would be better to make more friendly function names” Sometimes the function names
are a very short abbreviation that at first sight may appear as a random sequence of letters. Naming
functions this way is a habit that stems from creating paper exams where horizontal space for code
is much more limited than in the YAPS code editor, so we should consider using the additional
space and use more descriptive function names.

* “In my opinion it’s nicer to write the proof (last task) as text instead of drag and drop, as the drag
and drop fields all look very similar, and it’s more like a task to find the correct field, than to
actually think about the proof” This is a hint that the proof puzzle may not be the optimal way to
assess the ability of the students to construct a proof, and we should investigate other ways.

* “Please get new computer mice. That is really necessary” (translated from German). When de-
signing the e-exam we did not think about hardware, apart from how the screen size impacts the
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visual presentation of the exam, as it was provided by our university anyway. This statement shows
that hardware does play a role and should be taken into account.

* “C and G are difficult to differentiate on the small laptop screen” (translated from German). This
goes into a similar direction as the previous statement. While we checked how all tasks look on
the laptop screens that are used during the exam, we did not see this problem. Possibly using a
different font can help here.

Overall we think the results from the poll are encouraging, but there are some details that need improve-
ment. Especially the free text student feedback shows how we can improve the exam, and that it is
important to incorporate student feedback when designing and improving an e-exam.

6.3 Examiner View

In this section we report our own experiences with the complete e-exam workflow from creation to
grading, and highlight successes as well as difficulties.

When creating a new e-exam, we begin with writing the tasks and solutions outside YAPS. Where
possible, we also write tests for the solutions to ensure they are indeed correct. During that phase we
employ literate Haskell with Markdown through markdown-unlit! to combine text, code, and tests in
the same file. This workflow has two main advantages: we can render the exam in PDF format and split
between a PDF that contains all tasks, and one that contains the solutions, and we can directly execute
the exam code and tests. For a paper exam we would instead write the exam in I&IEX(with tests in a
separate file), which can be more time-intensive because we need to pay more attention to the resulting
layout.

When the exam tasks themselves are finalized, we implement them in YAPS. The task texts can
mostly be simply pasted into Hypertext Markup Language (HTML) templates, answers for single or
multiple choice tasks are easily configured in JavaScript Object Notation (JSON) files, and RegExs are
generated automatically by our tool. This part of implementing the exam is a rather tedious process,
but the templates and tool support help to minimize redundancies. Yet, we manually perform the same
steps multiple times, which likely could be automated. More creative work is required for proof and
programming tasks. Here, we need to find sensible distractors (proof tasks) and write suitable property
tests (programming tasks). This is the most time-consuming part of the entire exam creation process.
Finally, we perform a few (< 5) rounds of testing the finished exam to make absolutely sure everything
works as intended. For testing, we mostly enter correct answers and check whether they are detected
as such. Usually there are few mistakes, e.g., typos, but sometimes also problems with the tests for
programming tasks occur.

On the day of the exam, the required technical infrastructure is already set up by a team from our
university [28]. On the other hand, conducting an e-exam may require more organizational overhead
because we only have 100 laptops available, so for large exams we need to do multiple rounds. This
introduces a new set of difficulties because we need to make sure no information about the exam is
given from, e.g., the first round to the second. One way to do this is to provide different exams, which
increases the required effort substantially. Here, the randomization features of YAPS are very useful to
create task variations with little effort. When time for the exam is up, YAPS prevents any further input
from students, and collects all given answers (or rather collects them continuously during the exam to
make sure no data is lost). We can then trigger the automated evaluation, which may take some minutes,
so we come back later.

O%ttps://github.com/sol/markdown-unlit
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Grading is then done in YAPS as well. We almost exclusively Table 4: Comparison of paper exam
look at those tasks where mistakes were found by the automated  (fa]] 2020) and e-exam (fall 2021)
grading to manually distribute points. Additionally, we sample a tegylts
few answers detected as correct to check whether the automated
grading worked as intended, which usually is the case. If there  Task | Paper Exam E-Exam
is a mistake, however, we can correct it and execute the auto- max avg | max avg
mated evaluation again. Grading an exam with 77 participants
took a single person approximately two work days. The last pa-
per exam with 136 participants took two people approximately
three work days. Unfortunately, “grading effort” is hard to mea-
sure, and the numbers are difficult to compare because of the very
different numbers of participants. Still, it is a good sign that the
exam could be graded by a single person in a comparatively short
amount of time. Assuming that with twice as many participants
(154) the required amount of time would double as well, a single
person could grade as many e-exams as two people who grade the
same exam in paper, in the same timeframe.

Table 4 shows the results per task for our last paper exam, and
the e-exam we report on in this paper. For each task, the maximum
achievable number of points, and the average amount of points
scored by students are shown. Rows with better/worse results (in
comparison to the paper exam) are colored blue/red. Overall, the
students performed very similarly. The few, minor differences we
see cannot be clearly attributed to a specific phenomenon. For
instance, tasks 2b, 3b, 4b, 5a, 5c, 6b, and 8a are programming
tasks, but the students sometimes performed better, worse, or the
same. When deciding for the Proof Puzzle, we thought that the proof task (8b) may become noticeably
easier because in the paper exam the proof had to be created entirely from scratch. However, the results
suggest that in this exam creating the proof was similar in difficulty

In summary, creating an e-exam takes more time than creating a paper exam, but with maturing
templates and tools we can confidently expect that this overhead becomes smaller. Conducting and
grading, however, takes less time now. The exam results were almost exactly the same compared to a
previous paper exam. Altogether, we conclude that the approach to create an e-exam from a paper exam
by direct “translation” of each task was successful.

7 Summary & Future Work

We showed how a traditional paper exam with complex proof and programming tasks can be trans-
formed to an electronic exam (e-exam) with automated grading, but without sacrificing constructive
alignment (CA). Through careful analysis of the course and previous exams we can ensure that exam
quality does not degrade during the transformation. For realizing the e-exam we built upon existing
software that we extended with a Haskell compiler, tasks that can be checked with regular expres-
sions (RegExs), a new algorithm to automatically evaluate proofs, and a general purpose comment field
for students. Additionally, we introduced two new tools that substantially support automation: one that
analyzes student code for task-relevant features, and one that generates suitable RegExs from a more
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high-level description language. We achieved that almost all task can be graded automatically at least in
part, and students as well as examiners are largely satisfied with the resulting e-exam.

In the future we want to investigate how a more fine-grained automated grading can be achieved
because currently awarding reduced amounts of points for partial solutions is often not possible (at least
not as reliably as we require it for an exam). Moreover, because creating an e-exam requires more
effort than creating a paper exam, we also want to explore how this process can be automated further.
Our vision is that most of the e-exam can be generated automatically from the initial literate Haskell
Markdown file that contains the task texts, solutions, and point distribution.
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Appendix

Base case: grt (add Zero (Succ x)) Zero

= True by def. grt

Base case: grt (add n (Succ Zero)) n |

Inductive step: grt (add (Succ n) (Succ x)) (Succ n)

Inductive step: grt (add (Succ n) (Succ x)) (Succ n)

= grt (Succ (add n (Succ x))) (Succ n) by def. add

= grt (Succ (add n (Succ x))) (Succ n) by def. add |

= grt (Succ (add x n)) n by def. add

grt (add n (Sucec x)) n by def. grt

= True by hyp.

|

= grt (Succ (add Zero n)) n by def. add

= grt (Succ n) n by def. add

= True by def. grt

[

(a) Student A

Base case: grt (add Zero (Succ x)) Zero |

= grt (Succ x) Zero by def. grt

Base case: grt (add Zero (Succ x)) Zero

Inductive step: grt (add (Succ Zero) (Succ x)) (Succ Zero)

= grt (Succ (Succ x)) (Succ Zero) by def. add

= True by def. grt = True by def. grt

Inductive step: grt (add (Succ n) (Succ x)) (Succ n)

= grt (Succ (add n (Succ x))) (Succ n)

by def. add

= grt (add n (Succ x)) n

by def. grt

= True by hyp.

|IIII{

(b) Student B

Figure 4: Example of unfair grading with old algorithm
Left column: student solution, middle column: our solution, right column: points
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0.00

Base case: grt (add n (Succ Zero)) n

Inductive step: grt (add (Succ n) (Succ x)) (Succ n)

= grt (Succ (add n (Succ x))) (Succ n) by def. add
= grt (Succ (add x n)) n by def. add
= grt (Succ (add Zero n)) n by def. add
= grt (Succ n) n by def. add
= True by def. grt

Base case: grt (add Zero (Succ x)) Zero

= True by def. grt

Inductive step: grt (add (Succ n) (Succ x)) (Succ n)

= grt (Succ (add n (Succ x))) (Succ n) by def. add
= grt (add n (Succ x)) n by def. grt
= True by hyp.
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0.00
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0.50
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0.00
0.00

0.00

(a) Student A

1.00

Base case: grt (add Zero (Succ x)) Zero

= grt (Succ x) Zero by def. grt

Inductive step: grt (add (Succ Zero) (Succ x)) (Succ Zero)

= grt (Succ (Succ x)) (Succ Zero) by def. add

= True by def. grt

Base case: grt (add Zero (Succ x)) Zero

= True by def. grt

Inductive step: grt (add (Succ n) (Succ x)) (Succ n)

= grt (Succ (add n (Succ x))) (Succ n) by def. add
= grt (add n (Succ x)) n by def. grt
= True by hyp.

0.00

0.00

0.00

0.00

(b) Student B

Figure 5: No unfair grading with new algorithm
Left column: student solution, middle column: our solution, right column: points

Algorithm 2 Default proof puzzle evaluation

Input: 7 C X* x Q (items), S C S; x Q (solutions), a € S; (solution attempt)

Output: Amount of points to award for a
1: r<0
2: for all (s;, p;) € S do
3: d < EDITDISTANCE(s;,a)

4: ¥ < max{O,pi — d}
5: if 7; > r then

6: r<r;

7: end if

8: end for

9: return r
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Listing 4: Haskell Task RegEx Specification Language grammar

entrypoints [Spec] ;

n,n

separator Spec "; ;
SNoTests. Spec ::= Desc ;

D. Desc ::= [Descltem] ;
separator nonempty Descltem "" ;

DLit. NoParensDescltem = String ;

DName. NoParensDescltem = Ident ;

DSpace. NoParensDescltem ::= "\\" ;

DNAIt. NoParensDescltem ::= "[" [NoParensDescAlt] "]" ;
DND. Descltem ::= NoParensDescltem ;

DPar. Descltem ::= "(" [NoParensDescltem] ")" ;

nn

separator nonempty NoParensDescltem ;

DNAItElem. NoParensDescAlt ::= [NoParensDescltem] ;
separator nonempty NoParensDescAlt "["

>

" "

comment "-—-";
comment u{_n H_}ll;
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