
P. Achten & E. Machkasova (Eds.): Trends in
Functional Programming in Education (TFPIE) 2021/22
EPTCS 363, 2022, pp. 114–131, doi:10.4204/EPTCS.363.7

Introduction to Functional Classes in CS1

Marco T. Morazán
Seton Hall University

morazanm@shu.edu

Students introduced to programming using a design-based approach and a functional programming
language become familiar with first-class functions. They rarely, however, connect first-class func-
tions to objects and object-oriented program design. This is a missed opportunity because students in-
evitably go on to courses using an object-oriented programming language. This article describes how
students are introduced to objects within the setting of a design-based introduction to programming
that uses a functional language. The methodology exposes students to interfaces, classes, objects,
and polymorphic dispatch. Initial student feedback suggests that students benefit from the approach.

1 Introduction

Design-based introduction to programming courses using a functional programming language, as put
forth in the textbook How to Design Programs (HtDP), are well-established and have become popular.
In such courses students learn type-based design through the use of design recipes–a series of steps,
each with a concrete result, that take the student from a problem statement to a well-designed and tested
solution. Among other things, students are exposed to first-class functions. That is, students learn that
functions may be data (i.e., functions may be passed to and returned by a function). For instance, the
following Racket function returns a function for the composition of, f and g, two given functions:

;; (X → Y) (Y → Z) → (X → Z)

;; Purpose: Return a function for (f ◦ g)(x)

(define (compose-f-g f g)

;; X → Z

;; Purpose: Return (f ◦ g)(x) for the given X-value

(λ (an-x) (f (g an-x))))

;; number → number

;; Purpose: Add 2 to the given number

(define add2 (compose-f-g add1 add1))

;; number → number

;; Purpose: Return the given number

(define id (compose-f-g add1 sub1))

(check-expect (add2 3) 5)

(check-expect (id 10) 10)

The signature states that the first input is a function that maps an element of type X to an element of type
Y, that the second input is a function that maps an element of type Y to an element of type Z, and that
the returned value is a function that maps an element of type X to an element of type Z. The function

http://dx.doi.org/10.4204/EPTCS.363.7


M. T. Morazán 115

header has two parameters f and g in accordance with the signature. The body is a λ -expression that
defines a function that takes as input a value of type X and returns a value of type Z. This λ -expression
implements (f ◦ g)(x) as stated in its purpose statement. It has a parameter, an-x1, and applies f to
the result of applying g to x. Observe that the returned function satisfies compose-f-g’s signature. Tests
are written for functions created using compose-f-g. In the example above, two functions are defined:
one to add 2 to its input and the identity function for numbers. Test are written for these functions using
check-expect2.

The other side of the coin is rarely explored to any depth. That is, thinking of data as a function
is not emphasized. This is a missed opportunity to introduce beginners to object-oriented concepts that
they will invariably see in future courses. Such an introduction is important because it facilitates the
transition to object-oriented programming (OOP) and design. Furthermore, it helps address the concerns
of OOP instructors that worry about beginners not being exposed to object-oriented programming in their
introduction courses. At the heart of the idea is having a returned function implement an interface and
use message-passing to provide services. Students are started with the implementation of compound data
of finite size that does not have variety (i.e., no subtypes) and then are moved onto implementing union
types (i.e., with subtypes) including compound data of arbitrary size.

The article is organized as follows. Section 2 briefly discusses related work. Section 3 discusses
the students’ background. Section 4 discusses how students are introduced to interfaces, classes, and
objects by implementing structures using functions. Section 5 presents a design recipe for interfaces.
Section 6 discusses the implementation of union types and polymorphic dispatch using the design recipe
for interfaces. Section 7 presents initial student feedback. Finally, Section 8 presents conclusions and
directions for future work.

2 Related Work

The most common source students have to introduce them to objects are OOP textbooks. Such textbooks
traditionally emphasize that classes and objects combine code and data to be manipulated as illustrated
by the following examples:

• An object is a structure for incorporating data and the procedures for working with that data [1].

• A class is a group of objects that share common state and behavior. A class is an abstraction or
description of an object. An object, on the other hand, is a concrete entity that exists in space and
time [13].

• Every object is an instance of a class, which serves as the type of the object and as a blueprint,
defining the data which the object stores and the methods for accessing and modifying that data
[5].

• Objects are used to combine data with procedures that operate on that data [11].

As the reader can appreciate OOP textbooks emphasize the encapsulation of data and methods to define
classes and objects. These textbooks then proceed with examples illustrating how to use classes and
how to create objects. The unstated assumption is that beginning students absorb design principles by
studying code samples. Like the approach taken by many OOP textbooks the work presented in this

1Students are encouraged to use variable names that help readers of the code understand what is being represented. In this
case, an-x suggests a value of type X.

2The forms check-expect and check-within, among others, are used by students to write unit tests in the Racket student
languages.



116 Introduction to Functional Classes in CS1

article emphasizes the definition of behavior. Students are taught to combine data and functions using
encapsulation to create a package called a class. In contrast, however, program design and the proper use
of OOP abstractions are emphasized from the beginning. That is, behavior is defined in an interface, an
implementation of an interface is called a class, and an instance of a class is an object. Observe that such
an approach truly separates specification from implementation in the mind of beginners.

The unpublished textbook How to Design Classes (HtDC) [4] is closely coupled with a domain
specific language (DSL) known as ProfessorJ [6]. It first introduces students to classes as a mechanism
to define a compound datatype that may have many fields (similar to a structure). Students are explained
that every class has a constructor that initializes the fields and produces an object–an instance of the
type defined by the class. The design of a class starts by understanding how data is to be represented.
Union types are introduced to motivate the need for interfaces. In essence, an interface is used to define
a type and glue together its subtypes. The design of methods is not tackled until students develop some
expertise defining classes that only have a single constructor. Similar to HtDC, the approach described in
this article starts with parallels between structures and classes with no subtypes and then moves to union
types. In contrast, however, we use Racket syntax (specifically, the intermediate student language with
lambda) and rely quite heavily on the familiarity students have developed with this syntax to introduce
them to OOP concepts. That is, a new specialized DSL is not required.

Another design-based approach developed at Northeastern University teaches students (that have
used HtDP in their first course) using a hybrid approach [12]. The beginning of the second course
proposes the use of several DSLs embedded in Racket before making the full transition into Java. The
motivation for such an approach is that students first develop a command of basic OOP principles before
tackling Java’s syntax, types, and compiler (as opposed to an interpreter). This approach also relies
heavily of the design recipe to provide students (and instructors) with a framework for program design
and discussion. From the start objects are described as consisting of data and functions that define
behavior. A class is first thought of as a structure and its fields are accessed using a dot notation. For
example, (point . x) denotes that the message, x, on the right hand of the dot is used to request a
value from the object, point, on the left hand side of the dot. Union types and design based on structural
recursion are introduced as requiring a distinct class for each subtype. The transition to Java occurs
in the middle of the semester. This transition is made to functional Java first to make programs as
similar as possible to those developed using the OOP DSLs embedded in Racket. Later mutation and
looping constructs are presented. In a similar spirit, the work presented in this article introduces objects
as encapsulated data and functions. In addition, it also starts with parallelism between structures and
classes and then moves to union types. In contrast, the work presented here is not part of an OOP course.
Instead, the work presented is intended to introduce students to object-oriented abstractions within the
context of a first programming course using the program by design methodology put forth in HtDP.

3 Student Background

At Seton Hall University, the introductory Computer Science 2-course sequence focuses on problem
solving using a computer [7, 9]. The languages of instruction are the successively richer subsets of
Racket known as the student languages which are tightly-coupled with HtDP [2, 3]. No prior experience
with programming is assumed. The first course starts by familiarizing students with primitive data,
primitive functions, and library functions to manipulate images (i.e., the image teachpack). During this
introduction, students are taught about variables, defining their own functions, and the importance of
writing signatures, purpose statements, and tests. The next step of the course introduces students to data



M. T. Morazán 117

analysis and programming with compound data of finite size (i.e., structures). At this point, students
are introduced to the first design recipe. Building on this experience, students develop expertise in
processing compound data of arbitrary size such as lists, natural numbers, and trees. In this part of the
course, students learn to design functions using structural recursion. After structural recursion, students
are introduced to functional abstraction and the use of higher-order functions such as map and filter. The
first semester ends with a module on distributed programming [8, 10].

As part of the module on functional abstraction students are introduced to λ -expressions and curried
functions. Both of these topics are pivotal to introducing students to interfaces and objects. Students
understand that a λ -expression evaluates to a function that consumes input and returns a value. With this
understanding students are introduced to curried functions and how they provide the convenience of not
consuming all of their input at once. For example, consider a set of functions as the following to scale a
list of numbers:

(define (scale-by-2 L)

(map (λ (x) (* 2 x)) L))

(define (scale-by-5 L)

(map (λ (x) (* 5 x)) L))

(define (scale-by-3 L)

(map (λ (x) (* 3 x)) L))
...

Observe that there is a great deal of repetition among the functions. Students learn to eliminate such
repetitions using functional abstraction. For the set of functions above, the result of functional abstraction
is a curried function that takes as input the scaling factor and returns a function to scale a list by that factor
as follows:

;; number → ((listof number) → (listof number))

(define (make-list-scaler sc)

(λ (L) (map (λ (x) (* sc x)) L)))

The original definitions may be refactored and tested as follows:

(define scale-by-2 (make-list-scaler 2))

(define scale-by-5 (make-list-scaler 5))

(define scale-by-3 (make-list-scaler 3))
...

(check-expect (scale-by-2 '()) '())
(check-expect (scale-by-2 '(1 2 3)) '(2 4 6))

(check-expect (scale-by-5 '()) '())
(check-expect (scale-by-5 '(4 0)) '(20 0))

(check-expect (scale-by-3 '()) '())
(check-expect (scale-by-3 '(-2 8)) '(-6 24))

...



118 Introduction to Functional Classes in CS1

;; A 3Dposn is a structure: (make-3Dposn number number number)

(define-struct 3Dposn (x y z))

;; Sample instances of 3Dposn

(define ORIGIN (make-3Dposn 0 0 0))

(define A3DPOSN (make-3Dposn 2 3 5))

;; 3Dposn → number

;; Purpose: Return the distance to the origin of the given 3Dposn

(define (dist-origin a-3dposn)

(sqrt (+ (sqr (3Dposn-x a-3dposn))

(sqr (3Dposn-y a-3dposn))

(sqr (3Dposn-z a-3dposn)))))

;; Sample expressions for dist-origin

(define ORIGIND (sqrt (+ (sqr (3Dposn-x ORIGIN))

(sqr (3Dposn-y ORIGIN))

(sqr (3Dposn-z ORIGIN)))))

(define A3DPOSND (sqrt (+ (sqr (3Dposn-x A3DPOSN))

(sqr (3Dposn-y A3DPOSN))

(sqr (3Dposn-z A3DPOSN)))))

;; Tests for dist-origin

(check-within (dist-origin ORIGIN) ORIGIND 0.01)

(check-within (dist-origin A3DPOSN) A3DPOSND 0.01)

(check-within (dist-origin (make-3Dposn 10 20 30)) 37.42 0.01)

Figure 1: Distance to the Origin Program for a 3Dposn.

Most functional programmers are likely to consider make-list-scaler a function that returns a func-
tion. This is technically correct but it can also be described using OOP lingo. We may also say that
make-list-scaler is a class that returns objects that scale a list of numbers by a given scalar. This
connection is not automatically made by students in the course. It is, therefore, necessary to make this
connection explicitly in class. The result is twofold: students gain more interest in the techniques being
taught given that they see how they apply beyond their first course and students arrive at their first OOP
course with an understanding of some of the abstractions object-oriented languages emphasize.

4 Structures as Interfaces

Students are reminded that a data definition defines a type and in the case of compound data, like a
structure, it also defines the types of the components. It states nothing about the valid type operations.
The valid operations on an instance of the type may be defined in an interface. An interface defines the
behavior of a defined type. In other words, an interface specifies the operations that are valid on a type.
Students are asked to consider, for example, the problem of computing the distance to the origin for a
given point on a three-dimensional plane. Following the steps of the design recipe yields the program



M. T. Morazán 119

displayed in Figure 1. There are a few unstated assumptions in the program. First, it is assumed that
there is a function to construct a 3Dposn. Second, it is assumed that there are selector functions for
the components of a 3Dposn. Third, the values of x, y, z, and the constructor/selector functions are
stored separately from the function dist-origin. The fact that students know that constructor and
selector functions exists is only because they have been told they are created for them when they define
a structure.

In addition to defining a type, an interface is developed to explicitly define the expected behavior. An
interface outlines the valid operations and the returned type. For a 3Dposn the interface is:

Request x: number

Request y: number

Request z: number

Request distance: number

The interface makes it clear to any reader or user which are the valid operations on a 3Dposn. Observe
that an interface says nothing about how a data type and its valid operations are implemented.

Students are asked to take a moment to ponder what has just been done. The data definition and
the interface together explicitly relate x, y, z, 3Dposn-x, 3Dposn-y, 3Dposn-z, and dist-origin.
If they are related then we ought to be able to encapsulate them into a single package. Whenever a
3Dposn is constructed the package returned ought to be able to perform all the operations in the interface.
Encapsulation is a practice that students are familiar with given that they have previously been exposed
to local-expressions.

Students are explained that to provide functionality a technique called message-passing is used. An
interface is implemented by a constructor function called a class that returns a message-processing func-
tion. This is a curried function that receives as input a message requesting a service. For example, this
function may get the message 'getx requesting the x value of the 3Dposn. An interface, therefore, must
specify the messages used to request a service. We can now refine the 3Dposn interface to be:

'getx: number

'gety: number

'getz: number

'd2o: number

Observe that there is a unique message (in this case a symbol) associated with each service. The idea
is that the message-processing function determines what value to compute by examining the message
it gets as input. Note that embedded in the interface definition is a data definition for a message. A
message is an enumeration type: either 'getx, 'gety, 'getz, or 'd2o.

Students are explained that a constructor function (i.e., class) that implements an interface encap-
sulates the values of and the operations on a type. It defines a constructor for instances of a type. The
value returned by a class is called an object. An object is an instance of an interface and knows how
to perform all the services in the interface using message-passing. The 3Dposn class is displayed in
Figure 2. The class takes as input 3 numbers and returns a 3Dposn. It is named make-3Dposn to easily
identify its role as a constructor for 3Dposns. Its body is a local-expression that defines an auxiliary
function for any value that needs to be computed (in this case only distance to origin) and the message-
processing function called manager. The manager takes as input a message and returns (the value of) a
service defined in the interface. The body of manager is a match-expression to distinguish the message
varieties. If a service requires no computation a value is directly returned. If computation is required



120 Introduction to Functional Classes in CS1

(require 2htdp/abstraction)

;; number number number → 3Dposn

;; Purpose: Return a 3Dposn object

(define (make-3Dposn x y z)

(local [;; 3Dposn → number Purpose: Return distance to origin

(define (dist-origin x y z) (sqrt (+ (sqr x) (sqr y) (sqr z))))

;; message → 3Dposn service throws error

;; Purpose: To manage messages for a 3Dposn

(define (manager m)

(match m

['getx x]

['gety y]

['getz z]

['d2o (dist-origin x y z)]

[else (error (string-append "Unknown message to 3Dposn: "

(symbol->string m)))]))]

manager))

;; Sample 3Dposn objects

(define ORIGIN (make-3Dposn 0 0 0))

(define A3DPOSN (make-3Dposn 2 3 5))

;; Tests for 3Dposn

(check-within (ORIGIN 'getx) 0 0.01)

(check-within (A3DPOSN 'gety) 3 0.01)

(check-within (ORIGIN 'getz) 0 0.01)

(check-within (A3DPOSN 'd2o) 6.16 0.01)

(check-error (A3DPOSN 'move-r)
"Unknown message to 3Dposn: move-r")

Figure 2: Interface Implementation for 3Dposn.

(like computing the distance to the origin) a local function is called. In this case, manager is a guarded
function that throws an error when the received input is not a message. We can observe that manager
is also an object given that it knows how to compute all the services in the interface and, therefore, the
local-expression returns it.

Testing interfaces requires defining one or more objects and writing tests to check that services are
correctly provided. In Figure 2 two 3Dposn objects are defined. The tests check the result obtained
from passing each message to an object. For example, the x-coordinate of ORIGIN is obtained using
(ORIGIN 'getx)–passing the message 'getx to ORIGIN (akin to the Java syntax: ORIGIN.getx()).
The expected value is 0.

Students suddenly realize that a 3Dposn, which they have always thought of as data, is a function.
Specifically, it is an instance of the curried function manager (i.e., an object) that is specialized for the
values of x, y, z given to make-3Dposn. ORIGIN is a 3Dposn object in which x = y = z = 0. A3DPOSN



M. T. Morazán 121

;; 3Dposn → number

;; Purpose: Return the x of the given 3Dposn

(define (3Dposn-x a-3dposn) (a-3dposn 'getx))

;; Tests for 3Dposn-x

(check-within (3Dposn-x ORIGIN) 0 0.01)

(check-within (3Dposn-x A3DPOSN) 2 0.01)

(check-within (3Dposn-x (make-3Dposn 10 20 30)) 10 0.01)

;; 3Dposn → number

;; Purpose: Return the y of the given 3Dposn

(define (3Dposn-y a-3dposn) (a-3dposn 'gety))

;; Tests for 3Dposn-y

(check-within (3Dposn-y ORIGIN) 0 0.01)

(check-within (3Dposn-y A3DPOSN) 3 0.01)

(check-within (3Dposn-y (make-3Dposn 10 20 30)) 20 0.01)

;; 3Dposn → number

;; Purpose: Return the z of the given 3Dposn

(define (3Dposn-z a-3dposn) (a-3dposn 'getz))

;; Tests for 3Dposn-z

(check-within (3Dposn-z ORIGIN) 0 0.01)

(check-within (3Dposn-z A3DPOSN) 5 0.01)

(check-within (3Dposn-z (make-3Dposn 10 20 30)) 30 0.01)

;; 3Dposn → number

;; Purpose: Return distance to origin of given 3Dposn

(define (dist-origin a-3dposn) (a-3dposn 'd2o))

;; Tests for dist-origin

(check-within (dist-origin ORIGIN) 0 0.01)

(check-within (dist-origin A3DPOSN) 6.16 0.01)

(check-within (dist-origin (make-3Dposn 10 20 30)) 37.42 0.01)

Figure 3: Wrapper Functions for 3Dposn.

is a 3Dposn object in which x = 2, y = 3, and z = 5. Students clearly see that, just like functions can be
data, data can be a function and an object is a function.

4.1 Improving the Human Interface

Message-passing may reduce the readability of the code. For example, does (A3DPOSN 'd20) com-
municate to others that this expression represents A3DPOSN’s distance to the origin? Unless you are



122 Introduction to Functional Classes in CS1

intimately familiar with the message-passing protocol it is likely that this expression is meaningless.
Furthermore, it is unlikely that any programmer (including the student that wrote it) will permanently
remember the message-passing protocol in the near and far future. This will make it unnecessarily more
difficult to refine the program.

To mitigate this problem, wrapper functions for the services provided by an interface may be written.
A wrapper function hides the details of the implementation. In this case, it hides the details of message-
passing. The idea is to allow programmers to use 3Dposns without forcing them to know how they are
implemented. A wrapper function is needed for each service in the interface. It takes as input an object
(and any additional inputs if any) and its body applies the object to the appropriate message. Wrapper
functions are designed following the steps of the design recipe.

Figure 3 displays the wrapper functions for 3Dposn. Adding this code to the one displayed in Fig-
ure 2 allows programmers to use a nicer version of the defined interface. Instead of explicitly using
message-passing, they can use the wrapper functions. Observe that now programmers have the same
interface as the one used in Figure 1. Writing wrapper functions does not provide a programmer with
new computational powers, but it is an abstraction that liberates a programmer from the details of a
message-passing protocol.

4.2 Services that Require More Input

After an interface is implemented it may be necessary to add more services. This means expanding the
message-processing function and, if necessary, designing (local) auxiliary functions. If a value may be
computed using only the information stored in an object then adding a service is the same as what is done
for dist-origin for 3Dposn. For example, adding a service to determine if a given 3Dposn object is
on the x-axis may de done by comparing the x-value to 0.

If a service requires further input the answer cannot be computed using only the values stored in an
object. That is, the object providing the service (usually referred to as this) needs information beyond
that which it stores. For instance, consider adding a service that computes the distance to a given 3Dposn

object. In addition to this object another 3Dposn object is needed. This other object is unknown when
this is constructed and, therefore, cannot be provided as input. In this regard, it is similar to receiving
a message given that there is no way to know which messages will actually be received as input. The
solution for messages is to make a curried function that consumes the extra input (i.e., a message). The
same design tactic may be employed to add services that require extra input. The interface must return a
function that consumes the extra input.

To illustrate the technique let us add a service to compute the distance of this 3Dposn to a given
3Dposn. The first step is to update the interface as follows:

'getx: number

'gety: number

'getz: number

'd2o: number

'd2p: 3Dposn → number

The data definition of a message is expanded to include 'd2p for the new distance-computing service.
Given that extra input is needed the interface returns a function that consumes the extra input, a 3Dposn,
and that returns a number for the distance between this and the given 3Dposn.

The next step is to refine the manager function to include the new service. This means adding a
stanza for the new service to the match-expression as follows:



M. T. Morazán 123

;; message → 3Dposn service throws error

;; Purpose: To manage messages for a 3Dposn

(define (manager m)

(match m

['getx x]

['gety y]

['getz z]

['d2o (dist-origin x y z)]

['d2p distance]

[else

(error

(string-append "Unknown message to 3Dposn: " (symbol->string m)))]))

The new stanza matches the new message and returns the distance function (yet to be written). The
distance function must satisfy the return type specified in the interface definition.

The distance function may now be designed and implemented. Keep in mind that this is a local
function inside the 3Dposn class. Therefore, this function has in scope all the variables declared in the
class. This is where the power of currying is exploited. The previous inputs (x, y, and z) are used to
compute the distance to the 3Dposn received as input. After following the steps of the design recipe the
following local function is added to the 3Dposn class:

;; 3Dpson → number

;; Purpose: Compute distance from this to given 3Dposn

(define (distance a-3dposn)

(sqrt (+ (sqr (- x (3Dposn-x a-3dposn)))

(sqr (- y (3Dposn-y a-3dposn)))

(sqr (- z (3Dposn-z a-3dposn))))))

Observe that this function uses the coordinates of this and of the given 3Dposn to compute the distance.
The final step is to develop a wrapper function for the new distance service. As before, this is done

following the steps of the design recipe. The resulting function is:

(define B3DPOSN (make-3Dposn 1 1 1))

;; 3Dposn 3Dposn → number

;; Purpose: Return distance between given 3Dposns

(define (3Dposn-distance p1 p2) ((p1 'd2p) p2))

;; Sample expressions for 3Dposn-distance

(define ORIGINDP ((ORIGIN 'd2p) ORIGIN))

(define A3DPOSNDP ((A3DPOSN 'd2p) B3DPOSN))

;; Tests for 3Dposn-distance

(check-within (3Dposn-distance ORIGIN ORIGIN) ORIGINDP 0.01)

(check-within (3Dposn-distance A3DPOSN B3DPOSN) A3DPOSNDP 0.01)

(check-within (3Dposn-distance (make-3Dposn 10 20 30)

(make-3Dposn 2 3 4))

32.07

0.01)



124 Introduction to Functional Classes in CS1

Students are encouraged to first write sample expressions that use the interface because they are new to
message passing. They can then perform abstraction over the sample expressions to write the function
much like they have done to discover, for example, map and filter.

The reader can appreciate that students are exposed to many prevalent concepts in OOP: interfaces,
classes, objects, constructors, observers, and message-passing. The only difference here is that a different
syntax is used. Students walk away with an understanding of elements emphasized in OOP.

5 A Design Recipe for Interfaces

Building on the work above, the systematic steps to design the implementation of an interface may now
be enumerated. The design recipe for an interface is:

1. Identify the values that must be stored and the services that must be provided.

2. Develop an interface data definition and a data definition for messages.

3. Develop a function template for the class that consumes the values that must be stored and whose
body is a local-expression returning the message-processing function.

4. Specialize the signature, purpose, class header, and message-processing function.

5. Design and implement local auxiliary functions needed by the message-passing function.

6. Write and test a wrapper function for each service.

The first step is problem analysis. It asks to identify the information that specializes each object and the
services that an object must provide. For every piece of information identified there must be a parameter.
The services must at least include a selector for each piece of information that specializes an object. The
second step asks you to develop an interface data definition and a message data definition. There must
be a message for each service identified in Step 1.

The third step asks for the development of a function template for the class. Its parameters correspond
to the values identified in Step 1 to specialize an object. The name of the class is also the name of the
constructor. The function’s body is a local-expression that encapsulates all needed functions and that
returns the message-processing function. The fourth step has you specialize the definition template for
local message-passing function. This function must contain an expression that distinguishes the messages
defined in Step 2. The fifth step asks you to develop all the auxiliary functions needed by the message-
processing function and make them local. Each auxiliary function is developed using the design recipe.

The sixth step asks for a wrapper function for each service in the interface developed in Step 2. These
functions take as input the object that is providing the service and the extra input, if any, required. The
body of each wrapper function applies the object providing the service to the appropriate message. If
extra input is needed the function returned by the object is applied to the extra input.

6 Implementing Union Types

The implementation of a union type is used to illustrate the steps of the design recipe in practice. We
shall use the following data definitions:

;; A square, sq, is a an object

;; (make-sq number symbol symbol)

;; with a length, a mode, and a color.



M. T. Morazán 125

;; A rectangle, rect, is an object

;; (make-rect number number symbol symbol)

;; with a width, length, a mode, and a color.

;; A circle, circ, is an object

;; (make-circ number symbol symbol)

;; with a radius, a mode, and a color.

Based on these definitions a union type for geometric shapes may be defined as follows:

;; A geometric shape, gs, is either:

;; 1. sq

;; 2. rect

;; 3. circ

Following the steps of the design recipe from Section 5 students are shown how to implement this union
type using an interface. A point that is emphasized is that designing interfaces for a union type requires
individually reasoning about each subtype. This is not a huge intellectual leap for students given that
individually reasoning about each subtype is how functions to process a union type are designed.

6.1 Step 1: Values and Services

To implement gs three classes are needed: one for each subtype. The sq class needs to store a number
and two symbols. The rect class needs to stores two numbers and two symbols. The circ class needs
to store a number and two symbols. This type of analysis is the same as designing an implementation
using structures.

The new component is defining the behavior for a union type. The following services are offered by
a gs:

• Determine if the gs ia a sq, a rect, or a circ

• Compute the gs’s area

• Determine if the area of this gs is larger than a given gs

6.2 Step 2: Interface and Message Definitions

Based on the services outlined in Step 1, 5 return types and 5 message varieties need to be defined. The
interface for a gs, including the messages, is:

;; A gs is an interface offering:

;; 'is-sq?: Boolean

;; 'is-rect?: Boolean

;; 'is-circ?: Boolean

;; 'area: number

;; 'bigger?: gs → Boolean

Students easily observe that to compare areas more input is needed and, therefore, a function must be
returned.



126 Introduction to Functional Classes in CS1

;; ... → gs

;; Purpose: Return a gs object

(define (make-gs ...)

(local

[
...

;; gs → Boolean

;; Purpose: Determine if this’ area is larger than given gs’ area

(define (is-this-bigger? a-gs) ...)

;; message → service throws error

;; Purpose: Provide service for the given message

(define (manager m)

(match m

['is-sq? ...]

['is-rect? ...]

['is-circ? ...]

['area ...]

['bigger? ...]

[else

(error

(format "Unknown gs service requested: ~s" m))]))]

manager))

Figure 4: The Class Function Template for a gs.

6.3 Step 3: Class Function Template

The class template captures all the similarities that any gs must have. These include the 5 services offered
by the interface developed in Step 2. The class function template for a gs is displayed in Figure 4. The
signature and purpose statement clearly establish that this class returns a gs object. The body of the class
is a local-expression that at the very least must encapsulate a function to determine if the area of this
object is bigger than the area of a given gs and a manager function to process messages. A function is
needed for the 'bigger? service because more input is required. Experienced students are free to inline
a λ -expression in the body of manager to implement this function if they so desire. The body of the
local-expression returns the manager function which is the object that is capable of providing all the
services in the interface.

In essence, the template in Figure 4 is the roadmap students follow to implement the needed classes.
In this example, students are explained that it is used to write three classes: one for each gs subtype.

6.4 Steps 4 and 5: Class Function Template Specialization

Step 4 of the design recipe asks students to specialize the signature, purpose, class header, and message-
processing function of the class function template. Step 5 asks students to write the auxiliary functions
needed by the manager function. The results of these steps for sq are displayed in Figure 5. The class’
signature reflects the three types of arguments needed to build a sq. The purpose statement is specialized
to explicitly state that a sq is returned. Observe that this is consistent with the overall design because sq



M. T. Morazán 127

(require 2htdp/abstraction)

;; number symbol symbol → sq

;; Purpose: Return a sq object

(define (make-sq length mode color)

(local

[;; gs → Boolean

;; Purpose: Determine if this’ area is larger than given gs’ area

(define (is-this-bigger? a-gs) (> (sqr length) (gs-area a-gs)))

;; message → service throws error

;; Purpose: Provide service for the given message

(define (manager m)

(match m

['get-length length]

['get-mode mode]

['get-color color]

['is-sq? #true]

['is-rect? #false]

['is-circ? #false]

['area (sqr length)]

['bigger? is-this-bigger?]

[else

(error (format "Unknown gs service requested: ~s" m))]))]

manager))

Figure 5: The sq Class.

is a subtype of gs. The class header defines the constructor’s name, make-sq, and has three parameters
as suggested by the signature. The specialization of the manager function is the most detailed part of
Step 4. Its match-expression processes messages for the components of a sq. Each of these only needs
to return the requested value. The rest of the stanzas implement the gs interface. The stanza for 'area
returns the area of this square by squaring its length. The stanza for 'bigger? returns a function
because more input is required. The auxiliary function is named is-this-bigger?. This completes
Step 4 of the design recipe.

For Step 5 of the design recipe only one auxiliary function (i.e., is-this-bigger?) needs to be
written. Students design this function following the steps of the design recipe for function development.
The most salient feature for the purposes of this article is that the wrapper function to compute the area
of a gs, gs-area, is used to compute the area of the given gs. This function, of course, is developed in
the next step of the design recipe for interfaces. Students are discouraged to follow their first instinct that
tells them to use a conditional to implement this service.

The development of the rect and circ classes follows in the same manner. In the interest of brevity
their development is omitted. Once all three classes for geometric shapes are implemented students are
explained about dynamic dispatch. They are able to see how a service, like area, is always correctly
provided because each class locally defines its implementation.



128 Introduction to Functional Classes in CS1

(define SQR1 (make-sq 5 'outline 'green))
(define RECT1 (make-rect 2 3 'solid 'blue))
(define CIRC1 (make-circ 7 'outline 'red))

;; gs → Boolean

;; Purpose: Determine if given gs is a sq

(define (gs-sq? a-gs) (a-gs 'is-sq?))

;; gs → Boolean

;; Purpose: Determine if given gs is a rect

(define (gs-rect? a-gs) (a-gs 'is-rect?))

;; gs → Boolean

;; Purpose: Determine if given gs is a circ

(define (gs-circ? a-gs) (a-gs 'is-circ?))

;; gs → Boolean

;; Purpose: Compute area of given gs

(define (gs-area a-gs) (a-gs 'area))

;; gs gs → Boolean

;; Purpose: Determine if first given gs is bigger than second given gs

(define (gs-bigger? this that) ((this 'bigger?) that))

;; Tests for gs interface

(check-expect (gs-sq? SQR1) #true)

(check-expect (gs-sq? RECT1) #false)

(check-expect (gs-sq? CIRC1) #false)

(check-expect (gs-rect? SQR1) #false)

(check-expect (gs-rect? RECT1) #true)

(check-expect (gs-rect? CIRC1) #false)

(check-expect (gs-circ? SQR1) #false)

(check-expect (gs-circ? RECT1) #false)

(check-expect (gs-circ? CIRC1) #true)

(check-expect (gs-area SQR1) 25)

(check-expect (gs-area RECT1) 6)

(check-within (gs-area CIRC1) 153.93 0.01)

(check-expect (gs-bigger? SQR1 RECT1) #true)

(check-expect (gs-bigger? RECT1 CIRC1) #false)

(check-expect (gs-bigger? CIRC1 SQR1) #true)

Figure 6: Wrapper Functions and Tests for gs.



M. T. Morazán 129

1 2 3 4 5

0.1

0.2

0.3

Figure 7: Distribution of Answers for Effective Transition.

6.5 Step 6: Wrapper Functions and Tests

The wrapper functions are designed following the steps of the design recipe for functions. Students must
remember that the input to each wrapper function must contain at least one object (in our case a gs

object). The result of this step is displayed in Figure 6. In the body of a wrapper function an object must
be applied to the appropriate message. If extra input is required then the function returned by the object
is applied to said input. This is the case for gs-bigger?. Students also develop wrapper functions to
access the fields of each gs-subtype. Observe that this is exactly what needs to be done when fields are
private when developing a class, for instance, in Java.

Students are encouraged to define sample instances of each gs-subtype. These are then used to
write the tests for the gs interface. This is the strategy followed for the tests in Figure 6. Testing must be
thorough and all tests must pass. If any tests fails or testing is lacking students must refine their design.

7 Student Feedback

This section presents the first data obtained from students regarding the transition from an HtDP-based
course to a Java-based OOP course. Students that took the HtDP-based course in the Fall of 2018 were
followed-up on after they took their first OOP course in the Fall of 2019 or Fall of 2020. A total of 16
students made such a transition and were asked:

How effective do you feel it is to start with How to Design Programs and then move to
learning about how to design classes?

Students answered on a scale from 1 (not at all effective) to 5 (extremely effective).
Figure 7 displays the distribution of responses. We can observe that the distribution is fairly normal

(mean = 3.5 and median = mode = 4) with a slight majority of students giving a response above the mean.
Overall, students feel that starting with HtDP and then moving to OOP is effective. 75% of respondents
expressed the approach was effective (responses 3-5). More than half, 56% of the students felt strongly
about the effectiveness of the approach (responses 4-5). We can also observe that the distribution is fairly
homogeneous with an IQR = 1.5 (Q1 = 2.75 and Q3 = 4.25). This indicates that there is little variation
among the respondents in relation to the effectiveness of the approach.



130 Introduction to Functional Classes in CS1

Qualitatively, students expressed appreciation for being exposed to classes and objects before learn-
ing Java (their nomenclature). Students that arrived with prior OOP experience from high school did
express feeling frustrated with the approach at the beginning, but now feel they understand OOP much
better and are appreciative of their experience.

8 Conclusions and Future Work

This article presents a methodology to introduce beginning students to OOP concepts in an HtDP-based
course before enrolling in their first OOP course. At the heart of the idea is to expose beginning students
to object-oriented abstractions using the design concepts and syntax that they have learned. To this end,
students are introduced to the idea that a data definition and the valid operations on the defined data are
called an interface, that the implementation of an interface is a class, and that an instance of a class is
an object. In this manner, specification is separated from implementation. A class is implemented using
a message-passing function. The use of functions is natural for students following a program by design
curriculum and is intended to foreshadow that classes are functions (as exemplified by λ -expressions in
Java). Students learn to implement union types as the process of implementing a class for each subtype.
This leads to their initial exposure to polymorphic dispatch. Initial data collected from students suggests
that they find the transition from an HtDP-course to OOP effective.

Future work includes finding how to make the material more fun for students. Specifically, the
implementation of a small video game or simulation would be ideal to spike student interest. In addition,
we are exploring how to expose students to abstract classes and inheritance.

References

[1] D. Clark (2008): An Introduction to Object-Oriented Programming with Visual Basic .NET. .NET developer
series, Apress.

[2] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt & Shriram Krishnamurthi (2001): How to Design
Programs: An Introduction to Programming and Computing, First edition. MIT Press, Cambridge, MA,
USA.

[3] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt & Shriram Krishnamurthi (2018): How to Design
Programs: An Introduction to Programming and Computing, Second edition. MIT Press, Cambridge, MA,
USA.

[4] Matthias Felleisen, Matthew Flatt, Robert Bruce Findler, Kathy Gray, Shriram Krishnamurthi & Viera K.
Proulx (2012): How to Design Classes. Accessed 2022-06-22.

[5] Michael T. Goodrich, Roberto Tamassia & Michael H. Goldwasser (2014): Data Structures and Algorithms
in Java (6. ed.). Wiley.

[6] Kathryn E. Gray & Matthew Flatt (2003): ProfessorJ: A Gradual Introduction to Java through Language
Levels. In: Companion of the 18th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA ’03, Association for Computing Machinery, New York,
NY, USA, p. 170–177, doi:10.1145/949344.949394.

[7] Marco T. Morazán (2011): Functional Video Games in the CS1 Classroom. In Rex Page, Zoltán Horváth
& Viktória Zsók, editors: Trends in Functional Programming: 11th International Symposium, TFP 2010,
Norman, OK, USA, May 17-19, 2010. Revised Selected Papers, Lecture Notes in Computer Science, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 166–183, doi:10.1007/978-3-642-22941-1 11.

[8] Marco T. Morazán (2014): Functional Video Games in CS1 III. In Jay McCarthy, editor: Trends in Func-
tional Programming: 14th International Symposium, TFP 2013, Provo, UT, USA, May 14-16, 2013, Revised

https://doi.org/10.1145/949344.949394
https://doi.org/10.1007/978-3-642-22941-1_11


M. T. Morazán 131

Selected Papers, Lecture Notes in Computer Science 8322, Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 149–167, doi:10.1007/978-3-642-45340-3 10.

[9] Marco T. Morazán (2015): Generative and Accumulative Recursion Made Fun for Beginners. Comput. Lang.
Syst. Struct. 44(PB), pp. 181–197, doi:10.1016/j.cl.2015.08.001.

[10] Marco T. Morazán (2018): Infusing an HtDP-Based CS1 with Distributed Programming Using Functional
Video Games. Journal of Functional Programming 28, p. e5, doi:10.1017/S0956796818000059.

[11] Bruno R. Preiss (1999): Data Structures and Algorithms with Object-Oriented Design Patterns in C++.
Wiley.

[12] Sam Tobin-Hochstadt & David Van Horn (2013): From Principles to Practice with Class in the First Year. In
Philip K. F. Hölzenspies, editor: Proceedings Second Workshop on Trends in Functional Programming In Ed-
ucation, TFPIE 2013, Provo, Utah, USA, 13th May 2013, EPTCS 136, pp. 1–15, doi:10.4204/EPTCS.136.1.

[13] P.T. Tymann & G.M. Schneider (2004): Modern Software Development Using Java: A Text for the Second
Course in Computer Science. Thomson-Brooks/Cole.

https://doi.org/10.1007/978-3-642-45340-3_10
https://doi.org/10.1016/j.cl.2015.08.001
https://doi.org/10.1017/S0956796818000059
https://doi.org/10.4204/EPTCS.136.1

	1 Introduction
	2 Related Work
	3 Student Background
	4 Structures as Interfaces
	4.1 Improving the Human Interface
	4.2 Services that Require More Input

	5 A Design Recipe for Interfaces
	6 Implementing Union Types
	6.1 Step 1: Values and Services
	6.2 Step 2: Interface and Message Definitions
	6.3 Step 3: Class Function Template
	6.4 Steps 4 and 5: Class Function Template Specialization
	6.5 Step 6: Wrapper Functions and Tests

	7 Student Feedback
	8 Conclusions and Future Work

