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We present a novel approach for teaching logic and the metatheory of logic to students who have
some experience with functional programming. We define concepts in logic as a series of functional
programs in the language of the proof assistant Isabelle/HOL. This allows us to make notions which
are often unclear in textbooks precise, to experiment with definitions by executing them, and to
prove metatheoretical theorems in full detail. We have surveyed student perceptions of our teaching
approach to determine its usefulness and found that students felt that our formalizations helped them
understand concepts in logic, and that they experimented with them as a learning tool. However, the
approach was not enough to make students feel confident in their abilities to design and implement
their own formal systems. Further studies are needed to confirm and generalize the results of our
survey, but our initial results seem promising.

1 Introduction

Logic is the foundation on which all of mathematics and computer science rests, and many undergraduate
computer science programs therefore include an introductory course on logic. The logical systems in-
troduced in such a course can be applied to databases, domain-specific languages, artificial intelligence,
computer security, formal verification, and many other topics. At the Technical University of Denmark
(DTU) we teach logic alongside logic programming in Prolog in a late-stage undergraduate course in ad-
dition to discrete mathematics taught in the first semester of the study program. Undergraduate courses
like ours give students a basic understanding of logic and just enough knowledge to start applying basic
logical systems in their work. But for students who really need to work with logic and design their own
systems, this is not enough: they also need a good understanding of the metatheory of logic, i.e. why
the systems work and how to prove that they do. Proofs about logical systems are fraught with possibil-
ities for subtle mistakes of understanding, and it is our experience that many students never really “get”
how the logical systems, and the proofs about them, work. Additionally, many textbooks define logical
systems in terms of informal set theory and omit parts of their proofs (sometimes sweeping major com-
plexities such as binders and substitution under the rug), which leads to difficulties in actually applying
the theory when implementing real systems. For many students, implementing logical systems in their
projects (and making sure that they are correct) can thus seem like an insurmountable challenge.

We have recently begun giving a graduate course (course number 02256) on automated reasoning
with course material implemented in the proof assistant Isabelle/HOL. This year the course started with
80 students. The official course listing is available at https://kurser.dtu.dk/course/02256.

Isabelle/HOL is the higher-order logic version of the generic proof assistant Isabelle. Briefly, we
can consider higher-order logic as the sum of functional programming and logic. Isabelle/HOL allows
us to write definitions as functional programs and to formally prove properties of these programs. The
proof assistant continuously checks that our proofs are correct, thus making it impossible to neglect
any complexities. Additionally, Isabelle/HOL allows us to automatically export appropriate definitions
into “real” functional languages such as Haskell, OCaml, Scala and Standard ML, whereby they can be
integrated into larger systems.

http://dx.doi.org/10.4204/EPTCS.363.5
https://kurser.dtu.dk/course/02256
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By defining the logical systems we teach within Isabelle/HOL, we are thus able to give precise and
executable definitions of every aspect of the systems, and our proofs of metatheoretical properties such as
soundness and completeness of systems relate directly to these precise definitions and are verified by the
proof assistant. Our experience is that students appreciate this: if they are in doubt about what something
means, they can look up a precise definition and even execute it on examples of their own choosing to
gain further understanding, and this should also make it clear how to implement the concepts in practice.
To determine whether students actually find our approach useful, we survey student perceptions of the
components of our course and of their own abilities and behaviour. Our hypotheses are that:

1. Concrete implementations in a programming language aid understanding of concepts in logic.

2. Students experiment with definitions to gain understanding.

3. Our formalizations make it clear to students how to implement the concepts in practice.

4. Our course makes students able to design and implement their own logical systems.

5. Prior experience with functional programming is useful for our course.

6. Our course helps students gain proficiency in functional programming.

In summary, we contribute:

• functional implementations of several logical systems which can be used to teach topics such
as sequent calculus, natural deduction, de Bruijn indices, and algorithms for automatic theorem
proving.

• formally verified proofs of common properties such as soundness and completeness for the systems
mentioned above.

• an evaluation of the usefulness of our approach based on surveying student perceptions.

In the next section, we survey related work. In Section 3 we explain our teaching approach using a small
verified automated theorem prover as an example. In Section 4 we survey student perceptions of our
teaching approach to evaluate its usefulness, before concluding in Section 5.

2 Related work

There are of course numerous textbooks on logic, and several which include implementations of many
of their definitions. Examples include books by Harrison [12], Ben-Ari [3], and Doets and van Eijck [6],
which all contain implementations in various programming languages. Unfortunately, these implemen-
tations are not connected directly with the definitions and proofs in the books, and it is thus sometimes
unclear how the programs really relate to the definitions in the text. Additionally, the proofs in these
books are not verified by a proof assistant, and are about the informal definitions, not the programs them-
selves. Language, Logic and Proof [2] is a textbook and accompanying software package containing a
number of small proof assistants designed to aid in teaching logic. While this means that students can
rest assured that their exercise proofs are formally verified, the proofs in the book itself are not, and it is
again sometimes unclear exactly how the software packages relate to the notions introduced in the text.
In our approach, every logical system and notion is formally defined, and every theorem is proven in
Isabelle/HOL, which allows students to see exactly how to implement concepts and inspect every detail
of the proofs.

Some textbooks on logic do have formally verified proofs of their theorems, but these are typically
not introductions to logic, but instead introductions to proof assistants that just happen to introduce some
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Weeks Topics

1 – 2 Basic set theory, propositional logic, sequent calculus, automatic theorem proving
3 – 4 Syntax and semantics of first-order logic, natural deduction, the LCF approach
5 – 6 Isar, intuitionistic logic, foundational systems
7 – 8 Proof by contradiction, classical logic, higher-order logic, type theory
9 – 10 Proofs in sequent calculus
11 – 13 Metatheory, prover algorithms, program verification

Table 1: Week plan and topics of our course.

particular logic they are working in. One example is Coq’Art [4], which is an introduction to the Coq
proof assistant and contains many formally verified proofs about logic and other topics. Unfortunately,
such books, being written for a much more advanced audience, are not by themselves good introductions
to logic, since they presuppose knowledge beyond the usual computer science program. In our approach,
on the other hand, we teach an introduction to logic without presupposing much beyond basic knowledge
of functional programming.

The approach of formalizing definitions as functional programs has successfully been used for a
number of other topics in computer science. The Software Foundations series [22] covers some basic
logic, programming languages, formal verification, functional algorithms and separation logic with def-
initions and proofs in the Coq proof assistant. Concrete Semantics [20] is a textbook on programming
language semantics with definitions and proofs in Isabelle/HOL. Functional Algorithms, Verified! [19] is
an introduction to functional data structures and algorithms with definitions and proofs in Isabelle/HOL.
Verified Functional Programming in Agda [25] is an introduction to functional programming itself, as
well as functional algorithms, using the Agda programming language, which supports proofs about the
programs written in it.

We have previously written about the contents of our courses [29], about teaching with Isabelle/Pure
and Isabelle/HOL [8,9,28], and about individual formalizations [10,24,26,27], but not about the specifics
and benefits of teaching logic and metatheory using functional programming to aid understanding, and
we have not previously surveyed student perceptions about our approach in a rigorous manner.

3 A glimpse of the teaching approach

As mentioned, our approach is to define the logical systems which are our objects of study as functional
programs in Isabelle/HOL. Having done this, we can then define e.g. automatic theorem provers and other
derived programs. Isabelle/HOL then allows us to prove results about the implementations directly, e.g.
that our automatic theorem provers are sound and complete.

3.1 The structure of the course

Table 1 contains a general overview of the topics we went through in our course in spring 2022. Note
that functional programming is integrated in more or less all topics. For a more detailed explanation of
the contents of the 2020 and 2021 versions of our course and its place in the overall curriculum, see [29].
For a discussion of our approach to teaching formal methods with Isabelle/HOL, see [14].
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The course consists of lectures, exercise sessions, and assignments. This year, the lectures were in-
person, but some parts were recorded for later use by the students. The exercise sessions were supervised
by teaching assistants who were only available in-person. The lectures primarily covered theoretical
topics, but also included tutorials on Isabelle/HOL and related software. The exercise sessions consisted
primarily of programming and proving exercises in Isabelle/HOL, with occasional use of other software.
There were 6 assignments during the course, and students worked on them individually. The assignments
consisted of larger exercises as well as exercises similar to those in the exam.

This year, our graduate course on automated reasoning started with 80 students, but only 43 were
left at the time of the survey. This is not unexpected, since our university allows students to deregister
for courses within the first month with no consequences. This means that many students spend the first
few weeks auditing many courses, and then choose which courses to stay registered to. Almost all of
the students registered at the time of the survey stayed on for the rest of the course and registered for the
exam. If a student registers for the exam then the course becomes binding for the student and the student
must pass the course in order to graduate. Three exam attempts are allowed.

The exam consisted of five problems each comprising two questions, and the students were given two
hours to complete it. One of the problems consisted of writing simple functions and proving properties
about them in Isabelle/HOL. The two questions were as follows:

• Using only the constructors 0 and Suc and no arithmetical operators, define a recursive function
triple :: nat⇒ nat and prove triple n = 3∗n.

• Using the usual operators + and −, define two recursive functions add42 :: int list⇒ int list and
sub42 :: int list⇒ int list that adds 42 to each integer and subtracts 42 from each integer, respec-
tively, and prove sub42 (add42 xs) = xs∧ add42 (sub42 xs) = xs.

Both questions can be solved by defining the functions and instructing Isabelle to perform induction.
While these questions are not very difficult to solve, being able to prove properties of basic functional
programs provides the basis for formalizing concepts in logic. From these simple beginnings, we can
build an understanding of more complicated functions and proofs such as the example we introduce in the
next section. Along the way we of course need to introduce both the logical concepts and the language
and proof methods of the Isabelle proof assistant itself.

For a concrete example of the types of exam problems used, in particular on logic and the use of
Isabelle, see the extended abstract [15].

The course evaluations and the grade history can be found on the Information tab on the official
course listing available at https://kurser.dtu.dk/course/02256.

3.2 Logical systems and provers as functional programs

As a simple example, Figure 1 contains a definition of classical propositional logic. We define a datatype
of formulas (this is the so-called deep embedding approach), then introduce semantics as a function from
truth value assignments (interpretations) and formulas to truth values (we also define a semantics function
for sequents, sc). We can then define an automatic theorem prover (function mp for micro prover) for the
system which works by breaking formulas up using a system similar to a sequent calculus. All of these
definitions are simple functional programs, and students should thus be able to understand them quite
quickly when the ideas behind them are explained.

The programs can be executed directly inside of Isabelle/HOL, but can also be exported to standard
functional programming languages, which allows us to use the concepts in practice. The Haskell program
in Figure 2 has been automatically generated by Isabelle/HOL from the definitions in Figure 1.

https://kurser.dtu.dk/course/02256
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datatype ′a form
= Pro ′a (〈 · 〉) | Falsity (〈⊥ 〉) | Imp 〈 ′a form 〉 〈 ′a form 〉 (infixr 〈→ 〉 0)

primrec semantics where
〈 semantics i (·n) = i n 〉 |
〈 semantics - ⊥ = False 〉 |
〈 semantics i (p→ q) = (semantics i p −→ semantics i q) 〉

abbreviation 〈 sc X Y i ≡ (∀p ∈ set X. semantics i p) −→ (∃q ∈ set Y. semantics i q) 〉

primrec member where
〈member - [] = False 〉 |
〈member m (n # A) = (m = n ∨ member m A) 〉

lemma member-iff [iff ]: 〈member m A←→ m ∈ set A 〉
by (induct A) simp-all

primrec common where
〈 common - [] = False 〉 |
〈 common A (m # B) = (member m A ∨ common A B) 〉

lemma common-iff [iff ]: 〈 common A B←→ set A ∩ set B 6= {} 〉
by (induct B) simp-all

function mp where
〈mp A B (·n # C) [] = mp (n # A) B C [] 〉 |
〈mp A B C (·n # D) = mp A (n # B) C D 〉 |
〈mp - - (⊥ # -) [] = True 〉 |
〈mp A B C (⊥ # D) = mp A B C D 〉 |
〈mp A B ((p→ q) # C) [] = (mp A B C [p] ∧ mp A B (q # C) []) 〉 |
〈mp A B C ((p→ q) # D) = mp A B (p # C) (q # D) 〉 |
〈mp A B [] [] = common A B 〉
by pat-completeness simp-all

termination
by (relation 〈measure (λ (-, -, C, D). ∑p← C @ D. size p) 〉) simp-all

theorem main: 〈 (∀ i. sc (map · A @ C) (map · B @ D) i)←→ mp A B C D 〉

by (induct rule: mp.induct) (simp-all, blast, meson, fast)

definition 〈 prover p ≡ mp [] [] [] [p] 〉

corollary 〈 prover p←→ (∀ i. semantics i p) 〉
unfolding prover-def by (simp flip: main)

Figure 1: An example Isabelle/HOL development defining a propositional logic and an automatic theo-
rem prover for it. We begin by defining formulas with propositions, falsity, and implication as a datatype,
then define semantics of formulas as a function. We then define an automatic theorem prover (function
mp) for the system and prove that it terminates and is sound and complete. Note how every definition
is a simple functional program and that Isabelle/HOL allows us to prove properties of these programs
directly. Our students study this example very early on in our graduate course.
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{-# LANGUAGE EmptyDataDecls, RankNTypes, ScopedTypeVariables #-}

module Scratch(Form, prover) where {

import Prelude ((==), (/=), (<), (<=), (>=), (>), (+), (-), (*), (/), (**),

(>>=), (>>), (=<<), (&&), (||), (^), (^^), (.), ($), ($!), (++), (!!), Eq,

error, id, return, not, fst, snd, map, filter, concat, concatMap, reverse,

zip, null, takeWhile, dropWhile, all, any, Integer, negate, abs, divMod,

String, Bool(True, False), Maybe(Nothing, Just));

import qualified Prelude;

data Form a = Pro a | Falsity | Imp (Form a) (Form a);

member :: forall a. (Eq a) => a -> [a] -> Bool;

member uu [] = False;

member m (n : a) = m == n || member m a;

common :: forall a. (Eq a) => [a] -> [a] -> Bool;

common uu [] = False;

common a (m : b) = member m a || common a b;

mp :: forall a. (Eq a) => [a] -> [a] -> [Form a] -> [Form a] -> Bool;

mp a b (Pro n : c) [] = mp (n : a) b c [];

mp a b c (Pro n : d) = mp a (n : b) c d;

mp uu uv (Falsity : uw) [] = True;

mp a b c (Falsity : d) = mp a b c d;

mp a b (Imp p q : c) [] = mp a b c [p] && mp a b (q : c) [];

mp a b c (Imp p q : d) = mp a b (p : c) (q : d);

mp a b [] [] = common a b;

prover :: forall a. (Eq a) => Form a -> Bool;

prover p = mp [] [] [] [p];

}

Figure 2: Haskell code generated by Isabelle/HOL from the example in Figure 1. Note that it is essen-
tially a direct translation of the relevant Isabelle/HOL definitions, and that the proofs are not included.
While the code is not pretty, a module such as this one can easily be integrated with other (handwritten)
code to create a full application. This provides an example of how to implement and use the logical
systems we cover in our course in practice.
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Note that only the functions themselves, and not the proofs about them, are present in the Haskell
code. The idea behind this approach is that the difficult parts of a program can be formally verified using
Isabelle/HOL, then exported to a “normal” programming language as modules ready for integration into
the overall program. This is similar to the LCF approach [13,21] to theorem proving and the “hexagonal
architecture” pattern common in object-oriented and functional programming [5], both of which advocate
for programs consisting of a core application which interacts with users and other programs through an
outer layer. In this case, the core can be implemented and verified in Isabelle/HOL, then exported, while
the communication layer can be implemented in the target programming language.

3.3 Metatheory as properties of programs

Once we have defined a logical system in Isabelle/HOL, we can begin proving results about it. In
Figure 1, we first prove that the functions member and common are correct by simple structural induction.
Note that the proofs very much resemble the classic “The proof is by induction” often found in textbooks,
but that the proof has been verified by Isabelle/HOL. This allows the reader to rest easy knowing that
there is no hidden complexity in the proof.

We then prove termination of our prover by noting that the sum of the sizes of the two last arguments
decrease. Isabelle/HOL requires that all functions are total, and in this case the proof is complicated
enough that we have to prove it manually, but simple enough that we can do so easily. Next, we prove
that our automatic theorem prover returns true if and only if the provided sequent is valid (theorem main).
This proof is by induction, and the automation in Isabelle/HOL is enough to handle all cases. Finally, we
conclude that our prover returns true for a formula exactly when it is valid (true in all interpretations),
which means that the prover is sound and complete.

In this fashion, we can prove metatheoretical results about several logical systems used in our course,
and thus showcase the proof techniques needed. We are also able to explore and prove equivalences
between different logical systems by proving that the programs implementing them return the same
results.

4 Student perceptions of the teaching approach

To attempt to shed some light on whether our approach is actually useful, we have conducted a survey
study to analyze student perceptions about our course. The survey consisted of a single self-administered
questionnaire, which all students following the course were invited to fill in during the tenth week of the
course.

4.1 Methods

The study was designed to address the following six hypotheses:

1. Concrete implementations in a programming language aid understanding of concepts in logic.

2. Students experiment with definitions to gain understanding.

3. Our formalizations make it clear to students how to implement the concepts in practice.

4. Our course makes students able to design and implement their own logical systems.

5. Prior experience with functional programming is useful for our course.

6. Our course helps students gain proficiency in functional programming.
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To address these hypotheses, we developed 12 questions to measure student perception of the course
and their own behaviour and abilities. The questions can be seen on the left in Figure 3 or in the appendix.
The questions were developed following evidence-based best practices for questionnaire item question
design as described in [16], but the consistency and reproducibility of answers to the questionnaire items
have not been tested.

Questions were close-ended and answers were given in terms of perception on one of three Likert-
type [17] scales (multiple answers not possible) based on established best practice response options [16]:
An importance scale consisting of the levels: ”Not important”, ”Slightly important”, ”Moderately im-

portant”, ”Quite important”, and ”Essential”.

A frequency scale consisting of the levels: ”Almost never”, ”Once in a while”, ”Sometimes”, ”Often”,
and ”Almost always”.

A confidence scale consisting of the levels: ”Not at all confident”, ”Slightly confident”, ”Moderately
confident”, ”Quite confident”, and ”Completely confident”.

Since the questionnaire consisted almost exclusively of attitudinal questions, we did not include a ”Don’t
know” option for any question since this incentivizes partial responses [11]. “Don’t know” responses
were thus not possible, and students were required to fill in the entire questionnaire to submit it, which
means that partial responses were not possible.

Since the survey consisted of a single questionnaire which was administered only once, we have only
one sample (but note that question 10 asks about previous perception, which we analyze as a separate
sample). The survey population was all 43 students following the course during course week 10. To
preserve student anonymity, the sampling frame does not include auxiliary information such as gender,
age, grades, etc. Specifically, this means that we cannot connect student answers to the questionnaire
with measures of learning outcomes. We expect that there is some self-selection bias, since some students
officially follow the course but do not actually show up to class, and are thus unlikely to answer the
questionnaire. Additionally, we expect that students who either really like or really dislike the course
will be more likely to answer the questionnaire, which could also result in some self-selection bias.

The questionnaire was administered using an online surveying solution provided by our university.
This let us ensure that each student was only able to fill in the questionnaire once, and that participating
students were anonymous. Participation in the survey was optional and not compensated financially or
otherwise. The students were asked to participate in several lectures and through email.

4.2 Data analysis

The questionnaire has been designed to answer the hypotheses listed above. In this section, we will
describe how we intend to confirm or reject each of the hypotheses based on the answers to the questions.
Since we did not allow partial responses, we do not need to handle missing data for individual questions.

All of our data analysis was performed using the R environment for statistical computing [23]. The
data from the questionnaire was pre-processed using the readr package [30]. The analysis script is
available at https://github.com/fkj/tfpie-2022-statistics.

4.2.1 Concrete implementations in a programming language aid understanding of concepts in
logic

Questions 1–3 ask about the perceived importance of the three elements of the course. We would like to
compare the relative importance of the three elements to determine whether the implementations play an
important part in gaining understanding.

https://github.com/fkj/tfpie-2022-statistics
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If we had a measure of student learning outcomes, it would be interesting to perform a relative
importance analysis on the three factors, but due to the anonymity of the questionnaire, we are not able
to couple it to e.g. grades. Instead, we simply qualitatively compare the results of the questionnaire.

4.2.2 Students experiment with definitions to gain understanding

Question 4 asks whether students think it is important to experiment with their own examples when
learning about a new concept. Question 5 asks whether students actually evaluate concrete examples to
gain understanding when they are using Isabelle. We can look at the frequencies and median answers to
gain an understanding of student behaviour.

4.2.3 Our formalizations make it clear to students how to implement the concepts in practice

Question 6 asks directly about how the students perceive their abilities to do this. We can look at the
frequencies and median answer to gain an understanding of student perceptions.

4.2.4 Our course makes students able to design and implement their own logical systems

The meaning of this hypothesis is a bit vague, so we divide it into multiple concrete questions. Question
7 asks about perception of ability to design a formal system to solve a practical problem. Question 8
asks about perception of ability to implement a formal system in any programming language (without
proofs). Question 9 asks about perception of ability to prove a formal system correct. We can look at the
frequencies and median answers to gain an understanding of student perceptions.

4.2.5 Prior experience with functional programming is useful for our course

Question 10 asks about perceived ability with functional programming before starting the course and we
will measure the association with perceived ability during the exercises and assignments in the course,
which we ask about in question 11. Since both categories are ranked from low to high, there is no
possibility of multiple choices, and we are interested in question 10 as a predictor for question 11, we
will use Somers’ Delta statistic [1] to measure the association [18]. We can also look at the frequencies
and median answers to gain an understanding of student perceptions.

4.2.6 Our course helps students gain proficiency in functional programming

Question 10 asks about perceived ability before starting the course, while question 12 asks about per-
ceived ability towards the end of the course. We can test whether the probability of high perceived
ability has increased during the course by comparing the two answers for each student. Since we have
two groups with paired observations (i.e. the same students twice), we can perform a two-sample paired
signed-rank test [18] (i.e. a paired Wilcoxon signed-rank test) to determine whether there is a significant
difference in perceived functional programming ability before and after the course [18]. The effect size
of the paired Wilcoxon signed-rank test can be measured by the matched-pairs rank biserial correlation
coefficient [18].
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4.3 Results

21 students completed the entire questionnaire (48.84% response rate). The margin of error is thus below
15.48% (95% CI, p set to 0.5 to obtain worst-case margin). A summary of the answers can be seen in
Figure 3, and the full data set is available in the appendix. Based on these answers, we will present the
result of the analyses mentioned for each hypothesis above.

4.3.1 Concrete implementations in a programming language aid understanding of concepts in
logic

Comparing the answers to question 1–3, we see that the median student thinks that:

1. the implementations in Isabelle are “Quite important” for their understanding of the course topics

2. the reading material is “Moderately important” for their understanding of the course topics

3. the lectures are “Slightly important” for their understanding of the course topics

This indicates that students believe that the implementations in Isabelle are the most important compo-
nent of the course when it comes to their understanding of the course topics. While we do not have
access to an association between these beliefs and actual learning outcomes, this data suggests that the
hypothesis is plausible.

4.3.2 Students experiment with definitions to gain understanding

Looking at the answers to question 4, we see that all students find experiments with their own examples
at least slightly important, while most students find them at least quite important. The median student
finds experiments with their own examples “Essential” when learning about a new concept.

Looking at the answers to question 5, we see that there seems to be two distinct groups: one group
which “Almost never” evaluates concrete examples in Isabelle, and a group which does so quite often.
The median student evaluates concrete examples in Isabelle “Quite often”, which confirms our hypothe-
sis.

4.3.3 Our formalizations make it clear to students how to implement the concepts in practice

Looking at the answers to question 6, we see that most students are not at all, or only slightly confident,
but that there are also a number of students who are quite, or completely confident. The median student,
however, is only “Slightly confident” that they could implement the concepts in practice. This suggests
to reject the hypothesis.

4.3.4 Our course makes students able to design and implement their own logical systems

Looking at the answers to question 7, we see that the general trend is that student do not feel that they have
the ability to design formal systems to prove practical problems. The median student is only “Slightly
confident” in their ability to do this. This suggests to reject the hypothesis.

Looking at the answers to question 8, we see that the general trend is that students do not feel that
they have the ability to implement their own logical systems (in any programming language). The median
student is only “Slightly confident” in their ability to do this. This suggests to reject the hypothesis.
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Figure 3: Summary of answers to the student self-evaluation questionnaire (n = 21). See the appendix
for the full data set.
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Looking at the answers to question 9, we see that the general trend is that students are only slightly
to moderately confident that they have the ability to prove a formal system correct. The median student
is only “Slightly confident” in their ability to do this. This suggests to reject the hypothesis.

Overall, the data suggests to reject the hypothesis.

4.3.5 Prior experience with functional programming is useful for our course

Looking at the answers to question 10, we see that there is an approximately normal distribution of
students who felt moderately to completely confident as well as a second mode of students who were not
at all confident with functional programming before starting the course. We know that this second mode
consists of students who did not have any experience with functional programming prior to the course
(although it was an explicit prerequisite). The median student felt “Quite confident” with functional
programming before starting the course.

Looking at the answers to question 11, we see that nobody felt completely confident, while most
students felt slightly to quite confident when doing the exercises and assignments in the course. The
median student felt “Moderately confident” when doing the exercises and assignments.

Somers’ Delta statistic for the association of question 10 as a predictor for question 11 is 0.3642
(95% CI [0.0038,0.7247]), which suggests a small to moderate association between students who felt
confident with functional programming before starting the course and students who felt confident during
the exercises and assignments [7]. This suggests to confirm the hypothesis.

4.3.6 Our course helps students gain proficiency in functional programming

Looking at the answers to question 10, we see that a number of students had no confidence with functional
programming before starting the course (presumably due to them missing the functional programming
prerequisite). Looking at the answers to question 12, we see that after the course, we obtain what
looks more like a normal distribution centered around the ”Quite confident” answer (although it is quite
skewed).

The two-sample paired signed-rank test gives V = 2 (95% CI [−3.5,0.00]), with p = 0.0498. Since
p≤ 0.05, we conclude that there is a statistically significant difference in perceived functional program-
ming ability before and after the course [18]. The effect size as measured by the matched-pairs rank
biserial correlation is -0.857 (95% CI [−1.00,−0.333]), which suggests that the course has a large posi-
tive effect on perceived functional programming ability [18]. This suggests to confirm the hypothesis.

4.4 Discussion

We begin with a summary of our results:

Plausible: Concrete implementations in a programming language aid understanding of concepts in
logic.

Confirmed: Students experiment with definitions to gain understanding.

Rejected: Our formalizations make it clear to students how to implement the concepts in practice.

Rejected: Our course makes students able to design and implement their own logical systems.

Confirmed: Prior experience with functional programming is useful for our course.

Confirmed: Our course helps students gain proficiency in functional programming.
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Our first result suggests that our students feel that our teaching approach does help them understand
concepts in logic. Unfortunately, our study does not have the data to confirm that they actually do, since
we do not have access to assessments of learning outcomes linked to student responses. We also confirm
that students do in fact use the formal definitions as learning tools by experimenting with examples and
definitions within Isabelle.

On the other hand, students did not feel that our formalizations were enough to make it clear how
to design and implement their own logical systems, or the concepts in the course in general. While we
did not expect that students would feel very confident doing this (since formal verification is generally
very difficult), we had still hoped for more confident answers. This suggests that we should attempt to
find ways to improve our course in this respect. We also note that students do not seem to think that our
lectures are very useful, which suggests that we should consider whether they are necessary or if even
more time should be spent on exercises. By reducing the time spent on lectures, it may also be possible
to obtain time for some project work, which may help students become more confident in designing and
implementing their own logical systems.

We also found that students with more functional programming experience before starting the course
felt more confident during the course, which is as expected. Our data also suggests that our course has
a large positive effect on self-perceived functional programming confidence (though this may be a result
of some students having no prior functional programming experience, see Section 4.4.1).

Our study is quite limited in scope, and the confidence intervals on our results are thus not very
narrow. A larger study is needed to obtain precise knowledge of effect sizes. Since students participated
in the survey of their own volition and with no compensation, we expect that our results also suffer from
some self-selection bias. Further studies are needed to determine whether our results generalize.

4.4.1 Post hoc exploratory analyses

Having seen the answers to our survey, we notice some phenomena that could be interesting to explore
further. Note that the analyses in this section are post hoc, i.e. they have been formulated after seeing the
data, and that further studies are thus necessary to confirm any effects described in this section.

In Section 4.3.2, we noted that the answers to question 5 seem to contain two distinct groups. We can
think of two possible reasons that a group of students almost never experiment with concrete examples
in Isabelle: either there is a group of students who simply had not understood that this is possible, or
some students do not find experimentation valuable enough to actually do it outside of the abstract. To
investigate this further, we can look at the distribution of answers to whether students think that experi-
mentation is important for students who answered that they almost never evaluate concrete examples in
Isabelle and students who answered otherwise. We can split the data set in ”Almost never” and ”Other”
and look at the distribution of how important students think experimentation is for each category. By
doing this, we see that the shapes of the two distributions do not seem to differ significantly.

We can also measure the association between students who think that experimentation is important
and students who often evaluate concrete examples in Isabelle. Since both categories are ranked from
low to high, there is no possibility of multiple choices, and we are interested in question 4 as a predictor
for question 5, we will use Somers’ Delta statistic [1] to measure the association [18]. The statistic is
−0.1039 (95% CI [−0.4777,0.2699]), which shows a small negative association between the variables,
i.e. that students who find experimentation more important evaluate concrete examples slightly less often
than those who find it less important. This is surprising. If we assume that the answers of ”almost
never” are due to students not knowing about the feature, and thus remove them from the data set as
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special cases, the association becomes−0.0814 (95% CI [−0.5046,0.3418]), which again shows a small
negative association. While there is not enough data to give good confidence intervals, it seems like there
is no statistically significant association between the perceived importance of experimentation and the
frequency of evaluating concrete examples in Isabelle. Note, however, that students still generally tend
to believe that experimentation is important, and that they generally tend to evaluate their own concrete
examples in Isabelle. One possible explanation is that some students who believe that experiments are
essential are used to doing experiments with pen and paper, and thus do this instead of using Isabelle to
evaluate examples, but we do not have any data to investigate this hypothesis in this study.

In Section 4.3.3, we noted that the answers to question 6 seem to contain two distinct groups. The
bimodality is interesting, since we know that many students did not have experience with functional
programming prior to our course (even though it was an explicitly stated prerequisite). We can test
whether there is an association between perceived functional programming ability and perceived ability
to implement the concepts in practice. We have data for perceived programming ability both before and
after the course, so we can analyze both. Since all categories are ranked from low to high, there is no
possibility of multiple choices, and we are interested in questions 10 and 12 as predictors for question
6, we will use Somers’ Delta statistic [1] to measure the associations [18]. For previous functional
programming ability, the statistic is 0.194 (95% CI [−0.139,0.527]). This suggests that there is an
association, but that it is barely significant [7]. For current functional programming ability, the statistic is
0.394 (95% CI [0.0807,0.707]). This suggests a small to moderate, but statistically significant association
[7].

We conclude that it seems that our formalizations may help students understand how to implement
the concepts in practice, but only significantly so if they were confident functional programmers after
following the course. Further studies are needed to confirm this effect, since the analysis above is post
hoc.

In Section 4.3.4, we concluded that students do not generally feel confident in their abilities to im-
plement their own logical systems. It could be interesting to measure the association between perceived
functional programming ability and perceived ability to implement logical systems. We have data for
perceived programming ability both before and after the course, so we can analyze both. Since both
categories are ranked from low to high, there is no possibility of multiple choices, and we are inter-
ested in questions 10 and 12 as predictors for question 8, we will use Somers’ Delta statistic [1] to
measure the associations [18]. For previous functional programming ability, the statistic is 0.108 (95%
CI [−0.259,0.474]). This suggests that there is no statistically significant association [7]. For current
functional programming ability, the statistic is 0.419 (95% CI [0.0445,0.794]). This suggests a small to
moderate association [7].

We conclude that it seems that our formalizations may help students understand how to implement
logical systems, but only if they are confident functional programmers after the course, and only slightly
so.

In Section 4.3.5, we noted that the answers to question 10 seem to have two modes. If we look at
the two modes independently, the students with the functional programming prerequisite tend to feel
moderately to quite confident while most students without the functional programming prerequisite felt
only slightly confident. This also supports the original hypothesis.
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We can try to remove the students with no functional programming experience and measure the
association between perceived ability with functional programming before starting the course and per-
ceived ability during the exercises and assignments in the course again to see whether the course requires
advanced functional programming skills. We will again use Somers’ Delta statistic to measure associ-
ation [18]. The value is 0.0000 (95% CI [−0.5019,0.5019]), which we interpret as meaning that only
basic knowledge of functional programming seems to be needed in our course. This tracks well with our
design choices in our systems, where we deliberately avoid “advanced” concepts such as folds in our
implementations and exercises in an effort to obtain this result.

In Section 4.3.6, we found that the course has a significant positive effect on perceived functional pro-
gramming ability. We can try to remove the students with no functional programming experience to see
whether there is still a significant difference for those students who already have functional programming
experience. We again perform a two-sample paired signed-rank test (i.e. a paired Wilcoxon signed-rank
test) to determine whether there is a significant difference in perceived functional programming ability
before and after the course [18]. The test shows V = 1, with p = 1. This means there is no statisti-
cally significant difference in perceived functional programming ability for the group of students who
already have functional programming experience. In fact, by inspection of the data set we see that every
student has answered exactly the same for both questions, except one student who moved from feeling
”Quite confident” to feeling only ”Moderately confident” after having taken the course. The lack of
effect on perceived functional programming ability for students who already have some experience is to
be expected since our course does not utilize any advanced concepts in functional programming.

4.5 Future work

Our results suggest that our approach seems to aid student understanding of logic, but that students do
not feel that our formalizations are enough to make it clear how to implement the concepts in practice,
and that students do not feel capable of designing and implementing their own logical systems after
the course. This suggests that we should attempt to find ways to make it more clear how to do this
in future iterations of the course. One possible way to do this would be to introduce a project about
implementing some system to solve a practical problem, but this would almost certainly require us to
extend the course load. It may also be possible to replace some assignments and exercises during the
course with more practically oriented ones. Additionally, we may be able to reduce the time spent on
lectures, since students do not seem to find them very important for their learning outcomes.

Our survey consisted almost entirely of attitudinal questions, which means that we are forced to
believe student self-perceptions to some degree. We could improve this aspect by assessing e.g. under-
standing of logic and experience with functional programming by learning outcome measures such as
previous grades or tests during the survey. Adding tests of aptitude to the survey would make completing
it a much larger endeavour, however, which might decrease the number of students willing to participate
and introduce additional self-selection bias. Including measures such as previous grades would require
us to handle non-anonymous data, which makes the survey a much larger undertaking, since we would
then need to collect informed consent letters, obtain institutional review board approval, etc. The same
is true for demographic data such as gender, age, etc.

The generalizability of our survey may be doubted, since it may have issues of self-selection bias, and
since our sample size was not large enough to obtain a narrow margin of error. Self-selection bias may
be decreased by screening participants to ensure that our sample is representative of the population, but
this will also require collection of demographic data and possibly previous grades, and will most likely
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reduce the sample size. Another way to reduce self-selection bias is to collect data on every student, but
this has obvious ethical issues. In the future, our survey could be repeated on other cohorts to increase
the generalizability of our results.

Since our course is new, we have no data from previous pen-and-paper based courses at our university
to compare our approach to. Performing such a comparison in a rigorous way would also be difficult,
since it is not obvious how to choose a test of student learning outcomes that is comparable for both
pen-and-paper approaches and our approach.

Finally, it may be interesting to conduct further studies to determine whether the effects discussed
in Section 4.4.1 actually exist. We have noted the following interesting questions which arise from
phenomena in our sample, but which, being the result of post hoc analyses, cannot be confirmed from
the answers to the present survey:

• Why do students who think experimentation is important do it less? Do they do it on paper instead?

• Does functional programming experience play a significant role in understanding of how to imple-
ment concepts in practice?

• Does functional programming experience play a significant role in understanding of how to design
and implement one’s own logical systems?

• Does our course have a positive effect on functional programming skill for students who are already
confident functional programmers?

5 Conclusion

We have presented our approach for teaching logic and metatheory using functional programming and
demonstrated how logical concepts can be defined as simple functional programs about which we can
prove metatheoretical results in a natural way. We have surveyed our students to determine their percep-
tions of our teaching approach. Our survey shows that students feel that our formalizations do aid them
in understanding concepts in logic. We also confirm that students do in fact use the formal definitions
as learning tools by experimenting with examples and definitions within Isabelle. On the other hand,
students did not feel that our formalizations were enough to make it clear how to design and implement
their own logical systems, or the concepts in the course in general. This suggests that we should attempt
to find ways to make this clearer in future iterations of the course. Our survey also revealed a number of
interesting phenomena which may be interesting to pursue further in future studies. Future studies are
also needed to improve the generalizability of our results. We believe that our study design can serve as
a useful methodology for such further studies.

For now, our course material consists of a series of lecture notes and corresponding formalizations
and student exercise templates in Isabelle/HOL, and we combine this with excerpts from textbooks and
tutorials. It would be great to have a comprehensive and coherent textbook written with this style of
teaching in mind, but our course material has not yet stabilized enough for us to consider writing one.
We would like to make clear that a book containing nothing but programs is not what we advocate;
instead, we would like a textbook containing explanations based on, and corresponding to, the precise
definitions in the functional programs, such that readers can always clarify any doubts about the “intu-
itive” explanations given in the text by referring to the programs implementing the definitions. Similarly,
we do not believe that textbooks should contain meticulous proofs going into every detail of every case,
but that such proofs should be available to the reader if they are not convinced by the abbreviated argu-
ments given in the text.
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Cǎtǎlin Hriţcu, Vilhelm Sjöberg & Brent Yorgey (2017): Software Foundations. Electronic textbook. http:
//www.cis.upenn.edu/~bcpierce/sf.

[23] R Core Team (2022): R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria. Available at https://www.R-project.org/.

[24] Anders Schlichtkrull, Jørgen Villadsen & Andreas Halkjær From (2018): Students’ Proof Assistant (SPA). In
Pedro Quaresma & Walther Neuper, editors: Proceedings 7th International Workshop on Theorem proving
components for Educational software, ThEdu@FLoC 2018, Oxford, United Kingdom, 18 July 2018, EPTCS
290, pp. 1–13, doi:10.4204/EPTCS.290.1.

[25] Aaron Stump (2016): Verified Functional Programming in Agda. Association for Computing Machinery and
Morgan & Claypool, doi:10.1145/2841316.

[26] Jørgen Villadsen (2020): Tautology Checkers in Isabelle and Haskell. In Francesco Calimeri, Simona Perri
& Ester Zumpano, editors: Proceedings of the 35th Italian Conference on Computational Logic - CILC
2020, Rende, Italy, October 13-15, 2020, CEUR Workshop Proceedings 2710, CEUR-WS.org, pp. 327–341.
Available at http://ceur-ws.org/Vol-2710/paper21.pdf.

[27] Jørgen Villadsen, Andreas Halkjær From & Anders Schlichtkrull (2018): Natural Deduction Assistant
(NaDeA). In Pedro Quaresma & Walther Neuper, editors: Proceedings 7th International Workshop on Theo-
rem proving components for Educational software, ThEdu@FLoC 2018, Oxford, United Kingdom, 18 July
2018, EPTCS 290, pp. 14–29, doi:10.4204/EPTCS.290.2.

[28] Jørgen Villadsen, Asta Halkjær From & Patrick Blackburn (2022): Teaching Intuitionistic and Classical
Propositional Logic Using Isabelle. In João Marcos, Walther Neuper & Pedro Quaresma, editors: Pro-
ceedings 10th International Workshop on Theorem Proving Components for Educational Software, (Remote)
Carnegie Mellon University, Pittsburgh, PA, United States, 11 July 2021, Electronic Proceedings in Theoret-
ical Computer Science 354, Open Publishing Association, pp. 71–85, doi:10.4204/EPTCS.354.6.

[29] Jørgen Villadsen & Frederik Krogsdal Jacobsen (2021): Using Isabelle in Two Courses on Logic and Au-
tomated Reasoning. In João F. Ferreira, Alexandra Mendes & Claudio Menghi, editors: Formal Methods
Teaching, Springer International Publishing, Cham, pp. 117–132, doi:10.1007/978-3-030-91550-6 9.

[30] Hadley Wickham, Jim Hester & Jennifer Bryan (2022): readr: Read Rectangular Text Data. https://

readr.tidyverse.org, https://github.com/tidyverse/readr.

https://files.sketis.net/Isabelle_Workshop_2022/Isabelle_2022_paper_9.pdf
https://files.sketis.net/Isabelle_Workshop_2022/Isabelle_2022_paper_9.pdf
https://www.uc.pt/en/congressos/thedu/ThEdu22
https://www.uc.pt/en/congressos/thedu/ThEdu22
https://doi.org/10.3109/0142159X.2014.889814
https://rcompanion.org/handbook
https://functional-algorithms-verified.org/
https://functional-algorithms-verified.org/
https://doi.org/10.1007/978-3-319-10542-0
https://doi.org/10.1007/978-3-319-10542-0
https://doi.org/10.4204/EPTCS.118.4
http://www.cis.upenn.edu/~bcpierce/sf
http://www.cis.upenn.edu/~bcpierce/sf
https://www.R-project.org/
https://doi.org/10.4204/EPTCS.290.1
https://doi.org/10.1145/2841316
http://ceur-ws.org/Vol-2710/paper21.pdf
https://doi.org/10.4204/EPTCS.290.2
https://doi.org/10.4204/EPTCS.354.6
https://doi.org/10.1007/978-3-030-91550-6_9
https://readr.tidyverse.org
https://readr.tidyverse.org
https://github.com/tidyverse/readr


92 Teaching Functional Programmers Logic and Metatheory

Appendix: Survey data

To save space, the survey data has been compressed using numeral encodings. The questions are numer-
ically encoded according to the following table, which also shows the Likert-type scale used for their
response options (see subsection 4.1 for details).

# Question Scale
1 How important have the implementations in Isabelle been for your understanding of

the course topics?
Importance

2 How important has the reading material been for your understanding of the course
topics?

Importance

3 How important have the lectures been for your understanding of the course topics? Importance
4 How important do you think it is to experiment with your own examples when learn-

ing about a new concept?
Importance

5 When using Isabelle, how often do you evaluate your own concrete examples to un-
derstand new concepts? (E.g. using the ”value” command.)

Frequency

6 How confident are you that you could implement a system introduced in this course
(without any formal proofs) in a programming language of your choice using the
Isabelle implementation as a reference?

Confidence

7 How confident are you that you can design your own formal logical system to solve
a practical problem?

Confidence

8 How confident are you that you can implement your own formal logical system in a
programming language of your choice?

Confidence

9 How confident are you that you can prove your own implementation of a formal
logical system to be correct?

Confidence

10 How confident did you feel with functional programming before starting the course? Confidence
11 How confident in your abilities have you felt when doing the exercises and assign-

ments in this course?
Confidence

12 How confident do you feel with functional programming now? Confidence

The responses to our questionnaire are numerically encoded in the following table according to the
position on the Likert scale of the question, with 1 being the lowest possible level and 5 being the highest
possible level.

Question # Answers (each column contains the answers from a single student)
1 5 4 4 5 3 5 3 4 5 5 4 4 3 4 4 5 5 5 3 5 3
2 5 5 3 3 4 5 4 3 5 2 4 2 5 2 2 2 3 2 5 2 4
3 3 2 2 3 2 2 2 3 2 2 1 1 3 1 1 2 1 1 1 3 2
4 5 2 4 4 5 5 4 5 4 5 5 5 4 4 4 3 5 5 5 5 5
5 5 5 4 5 4 4 4 1 4 5 3 1 5 3 5 1 4 1 5 5 4
6 5 2 1 1 5 3 1 5 4 1 2 2 2 2 4 1 1 2 3 4 5
7 5 1 1 1 3 3 1 3 4 2 2 2 3 2 1 3 1 1 3 3 2
8 5 1 1 1 3 3 1 4 4 2 2 1 2 2 1 4 1 2 3 4 3
9 5 1 1 1 2 4 2 4 3 2 3 2 3 4 4 3 1 1 4 2 2
10 1 3 4 3 5 4 1 4 5 1 4 5 4 4 3 4 1 1 1 1 4
11 3 4 4 3 3 4 1 4 4 2 4 2 3 3 2 2 2 4 2 2 4
12 5 3 4 3 5 4 2 4 5 3 3 5 4 4 3 4 1 3 4 2 4
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