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In recent years we have explored using Haskell alongside a traditional mathematical formalism in
our large-enrolment university course on topics including logic and formal languages, aiming to offer
our students a programming perspective on these mathematical topics. We have found it possible to
offer almost all formative and summative assessment through an interactive learning platform, using
Haskell as a lingua franca for digital exercises across our broad syllabus. One of the hardest exercises
to convert into this format are traditional written proofs conveying constructive arguments. In this
paper we reflect on the digitisation of this kind of exercise. We share many examples of Haskell
exercises designed to target similar skills to written proof exercises across topics in propositional
logic and formal languages, discussing various aspects of the design of such exercises. We also
catalogue a sample of student responses to such exercises. This discussion contributes to our broader
exploration of programming problems as a flexible digital medium for learning and assessment.

1 Introduction

We teach Models of Computation, a large-enrolment university course on introductory topics in logic,
discrete mathematics, formal languages, and computability [14]. Most of our students take the course as
part of their degree in computer science or software engineering, wherein they learn how to use code to
build complex software systems. In our course, an important goal is for our students to learn the language
of mathematical modelling and proof, to help them think and communicate with precision and rigour.

Over several years, we have experimented with a ‘programming approach’ to learning and assessment
activities [8], via the Haskell programming language [10] and the web-based programming education
platform Grok Academy [9]. We use Haskell as a stepping stone to traditional mathematical formalism,
offering students a programming perspective that leverages their computing background. Haskell also
serves as a lingua franca for our students to express themselves in exercises spanning our rather broad
syllabus in a unified digital learning interface. We have found Haskell problems to be a flexible medium
for exercises in many topics beyond programming skill itself.

Traditional exercises of one important class—written proofs—have been difficult to digitise. To this
end, we have designed a class of Haskell exercises targeting some of the same skills as certain simple
constructive proof exercises. In particular, our students implement the central construction algorithm of
a constructive proof as a Haskell function. This paper details our approach to partially digitising con-
structive proof exercises. We contribute: (1) a large catalogue of example proof-style Haskell exercises
from our course, covering topics in propositional logic and formal languages (Section 6); (2) an analysis
of student responses to two questions in a recent exam (Section 7); and (3) a discussion of similarities
and differences between written proof exercises and our proof-style Haskell exercises (Section 8).

This work also contributes to our broader initiative of digitising, or ‘programmifying’, our curricu-
lum with Haskell and Grok Academy, which we have outlined in recent work [8]. The current paper
demonstrates in detail how the expressiveness of a programming language affords the design of rich,
open-ended digital exercises for non-programming learning goals.

http://dx.doi.org/10.4204/EPTCS.363.4
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


M. Farrugia-Roberts, B. Jeffries, & H. Søndergaard 55

Week Topic in lectures and tutorials Haskell exercises for learning and assessment

1 Introduction Introduction to basic Haskell
(self-paced, self-contained tutorial
on functions, recursion, lists, basic
algebraic data types)

2 Logic (syntax and semantics of
propositional and predicate logic,
and mechanised reasoning via
resolution algorithms)

3
4 Worksheets: 6%

(four fortnightly
formative tasks
on algorithms for
propositional
logic, regular
languages, and
formal grammars)

5 Assignment 1: 12%
(mathematical and algorithmic
challenges in logic)

6 Discrete mathematics (sets,
functions, relations, termination)7

8 Formal languages (finite automata,
regular expressions, context-free
grammars, pushdown automata,
Turing machines)

Assignment 2: 12%
(mathematical and algorithmic
challenges in discrete mathematics
and formal languages)

9
10
11
12 Computability (undecidability)

Exams Exam: 70% (3 hours, all topics)

Table 1: COMP30026 Models of Computation, example semester calendar. Adapted from [8].

2 Course description

We begin by describing our course and our students. Our course is an introduction to logic, discrete
mathematics, formal languages, and computation. Table 1 gives an overview of the topics studied. The
emphasis of the intended learning outcomes is in (1) applying topics in logic and discrete mathematics
to reason about computational problems, and (2) analysing and creating computational models (from
finite-state automata to Turing machines) [14].

In particular, we consider it a learning goal for the students to be able to apply their understanding
of first-order logic and to analyse computational models by carrying out simple proofs regarding these
models. For example, a student should be able to prove simple properties of formal language classes,
show by construction that a given language belongs to a given class, or prove that a given language
is outside a class by applying a pumping lemma or a reduction argument. Though the emphasis is on
applications in computation we also study proofs in other areas such as propositional and predicate logic.

The course has a large enrolment, with over 500 students in the 2021 offering. Most of our students
take the course for either their undergraduate major or their coursework graduate program, in either
computer science or software engineering. Our students are familiar with one or more programming
languages as a prerequisite. Haskell is not a prerequisite, though some students take a concurrent elective
in functional programming. Most of our students have some university-level mathematics experience,
but the course is considered mathematically demanding by many of our students—especially when it
comes to learning to write proofs.

3 Learning with Haskell and Grok Academy

We have adopted Haskell exercises in learning and assessment tasks. The exercises are delivered through
a state-of-the-art web-based programming education platform, Grok Academy (Grok) [9]. In 2021 we
retained a small number of pen-and-paper exercises in assignments, primarily for exercising and assess-
ing students’ proof-writing skills. Haskell exercises comprise all other assessment, including the final
exam. We give an overview of this approach in recent work [8], and summarise the key elements here.
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Since Haskell is not a prerequisite, our semester begins with a self-paced introduction to a minimal
subset of features we use. Grok is a suitable platform for this introduction—designed for learning to
program, Grok offers a problem-based e-textbook interface. Moreover, Grok is familiar to many of our
students who have already used it in their introductory programming courses (Python, C, and/or Java).

However, programming is not one of our direct learning goals. Our students’ main use of Grok is
for learning with Haskell, not learning Haskell. We offer formative and summative assessment through
repurposed programming problems, specially designed to target our mathematical learning goals.

These exercises typically centre around a representation: a Haskell type capturing some mathemat-
ical object, such as a propositional logic formula, a relation, or a finite-state automaton. With these
representations, we offer students two main kinds of programming problems:

• Instance problems, where students answer a traditional short-answer-style exercise by defining
an instance of the representation type. For example, we may ask students to design a regular
expression for the language of odd-length binary strings, and expect them to respond with a Haskell
representation of the expression (0∪1)((0∪1)(0∪1))∗.

• Implementation problems, where students implement a topical algorithm involving the relevant
representations, such as a resolution algorithm for propositional formulas in conjunctive normal
form, or an algorithm for determinising a non-deterministic finite automaton.

To configure each problem in Grok, we supply (1) a problem description, (2) skeleton code (including
the representation definition, scaffolding, and supporting libraries), and (3) a suite of test cases and
associated feedback messages. A student reads the description and writes their answer in Grok’s web-
based programming interface. They may run the test cases on their answer at any point. Depending
on the configuration, the results and/or contents of the test may or may not be revealed to the student.
Figure 1 shows the student interface in Grok, with an example instance problem using a representation
for deterministic finite automata (see Section 6.2).

(a)

(b)

(c)

Figure 1: From the student perspective, a programming problem comprises (a) a description (shown: an
embedded diagram); (b) a Haskell program editor; (c) feedback messages from a suite of tests. From [8].
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The definition of a ‘test case’ is very flexible, allowing essentially arbitrary Haskell programs to
analyse the student’s answer. As a result in many cases, especially for instance problems, we can verify,
rather than merely ‘test’, a student’s response, and sometimes we can also provide helpful contextual
feedback. For example, in the automaton exercise in Figure 1, or the regular expression exercise men-
tioned above, we can run one test to determine if the language of the student’s answer precisely matches
the desired language. If not, we can provide the student with example strings their solution misclassifies.

We think this approach has the potential to lead to many pedagogical and logistic benefits, provided
our students can overcome the concomitant language-related barriers [8]. Realising these benefits re-
quires the careful design of Haskell exercises. In this paper, we expand upon our recent overview [8]
with a deep focus on the design of one kind of Haskell exercise. These exercises aim to address the
challenging learning goal of proof-writing by partially mimicking a traditional proof exercise.

4 Related work

There is a rich tradition for engaging teaching of functional programming, with great ideas for excit-
ing projects and exercises. More recently, the challenges of effective feedback provision for formative
assessment, the quest for rapid marking for summative assessment in very large classes, and a world-
wide pandemic have spurred developments in reliable auto-marking [20]. This includes the marking of
functional programming tasks [1, 13].

It has long been realised that a functional programming language can serve as a powerful learning aid
for topics beyond programming. Perhaps the most obvious such topic is discrete mathematics. Several
authors have pointed to the value that lies, for a student, in the ability to implement and experiment
with discrete structures, based on executable definitions written in a formalism that is close to familiar
mathematical notation [11, 18, 27]. Some authors extend this to topics in logic [7], and there is a body
of work on the teaching of proof techniques firmly grounded in declarative programming (e.g., [12,
19]). Moreover, functional programming is sometimes introduced following a “correct-by-construction”
philosophy, that is, it is taught hand in hand with program verification [13]. One tool for this is CYP

(“check your proof”) [4, 5], with support for auto-marking of proof exercises.
Some use functional programming to teach finite-state machines and related topics. For example,

Stoughton [25] has used a domain-specific language (DSL) embedded in Standard ML, for the learning
of formal language theory. Similarly, FSM [15] offers a DSL embedded in a Lisp variant, for work with
state machines. Independently of functional programming, the teaching and learning of automata theory
and formal languages have been helped greatly by a range of sophisticated interactive graphical learning
tools, of which JFLAP [23, 24] is a prominent example.

The aims of all these tools resemble ours, but we use Haskell uniformly across our varied syllabus,
on a state-of-the-art interactive learning platform, that (most of) our students already know from their
programming education. The use of a functional programming language as a lingua franca for for-
mative and summative assessment across such a wide syllabus (including constructive proof exercises)
seems rare. The closest approach we know of is Waldmann’s use of AUTOTOOL [28]. AUTOTOOL has a
simple web-based interface and offers Haskell exercises in non-programming topics such as logic [29],
computation [22], and others [29, 30, 31, 32]. Those exercises include implementation tasks and short-
answer questions using Haskell as an expression language. Rahn and Waldmann notably demonstrated a
Haskell-function-based pumping lemma exercise [22], following a similar analogy to our own.

The use of proof assistants (including those based on functional programming) is orthogonal to our
programming-based learning approach. Such tools could potentially fill the gaps we leave through our
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‘construction only’ approach to proof. But we note that the teaching of proof techniques is very different
from the application of proof assistants. In our context, where students are trying to learn proof princi-
ples, a proof assistant may often hide proof details that we would want to expose, such as the details of
an inductive step. Examples of proof assistants used in teaching logic are common [12, 17, 19]. We are
not aware of examples in introductory formal languages, although there are undoubtedly such cases.

5 Constructive proof exercises and construction problems

In general, we have found proof exercises challenging to digitise as Haskell exercises. However, the
algorithmic aspects of certain constructive proofs lend themselves to digitisation. In this section, we lay
out the partial analogy we have drawn between written constructive proof exercises and a certain kind of
Haskell exercise we call construction problems.

Many of the important results in our syllabus are of a simple logical form: “for all objects in some
class X , there exists an object in some class Y such that the object has some property P”. Examples
include proofs of closure properties of formal language classes, or that a certain restricted logical form
is universal. Moreover, the most appropriate method of proof is often a direct constructive argument that
(1) demonstrates how to build an object in class Y systematically from the object in class X , and (2)
justifies that the constructed object indeed has the property P.

Our analogy captures the systematic construction (1) as a Haskell function. Given a data type X
representing objects of class X , and a data type Y representing objects of class Y , the systematic con-
struction can be implemented as a Haskell function of type X -> Y. A construction problem is then a
Haskell exercise that asks students to implement such a function, framed as a way of proving the original
result. Construction problems are thus a kind of implementation problem in the terminology of Section 3.

We contend that construction problems evoke similar skills to writing constructive argument at the
heart of a pen-and-paper proof, with Haskell serving as an alternative mathematical notation. First,
implementing the construction algorithm requires a working understanding of the ‘input’ (class X ) and
‘output’ (class Y ) objects. In particular, it requires enough understanding to manipulate their Haskell
representations. Moreover, the implementation requires a rigorous understanding of the details of the
construction algorithm. Similar rigour is required as for a precise written description of the algorithm.

We emphasise that the analogy is partial. The Haskell function mirrors the written construction part
of the written proof, not the entire written proof. In particular, construction problems do not require the
students to justify that the constructed objects indeed have the property P.

Nevertheless, this partial analogy suggests that at least some of what is pedagogically valuable in
written proof exercises may also exist in construction problems. We return to discuss important learning
goals missed by construction problems, and other related topics, in Section 8. For now, let us take a tour
through our syllabus, looking for constructive proof exercises to convert into construction problems.

6 Example construction problems from our course

Here we focus on the design of construction problems for our course, exemplifying the analogy outlined
in Section 5. We list the representations and constructions relevant to propositional logic (Section 6.1),
regular languages (Section 6.2), and non-regular languages (Section 6.3), and we showcase several ex-
ample Haskell exercises in some detail. Throughout, we remark on the design of construction problems
based on our experience, and how the exercises fit into our broader Haskell-based approach. Finally, in
Section 6.4, we comment on several examples using slight variations of the analogy.
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6.1 Examples from propositional logic

Our students study propositional logic primarily as a tool for modelling and analysing computational
problems. We use a Haskell data type to represent propositional expressions, as outlined in Figure 2.

data Exp
= VAR Char
| NOT Exp
| AND Exp Exp
| OR Exp Exp
| IMPL Exp Exp
| BIIM Exp Exp
| XOR Exp Exp

Example: The formula:

X ∧ (X ⇒ Y )

would be expressed in Haskell with the
following code:

AND (VAR 'X')
(IMPL (VAR 'X') (VAR 'Y'))

Variants: In some cases, we
include FALSE and TRUE con-
structors for propositional con-
stants, and/or allow VAR labels
of types other than Char.
It would also be possible to de-
fine the type with infix con-
structors.

Figure 2: The Exp type, our representation for propositional logic expressions.

This representation captures the recursive structure of propositional expressions. This structure is
convenient when defining recursive constructions. For instance problems, the syntax quickly becomes
cumbersome—hence we also provide a string parser utility so that students can write answers such as
parseExp "X & (X => Y)".

For the testing/verification of exercises involving propositional expressions, we use Haskell imple-
mentations of Wang’s algorithm [33] for checking propositional entailment or equivalence, and the
Tseitin transform [26] for efficiently encoding expressions in 3-CNF (for processing by a third-party
SAT solver). Though testing propositional formulas is NP-complete in general, students typically face
small instances. We find that we can comfortably provide automatic feedback within seconds.

A neat feature of our approach is that students get to implement their own version of these tools
in early worksheets, giving them at once tools to support and test their own work, and also a deeper
understanding of the tools we use in testing.

6.1.1 Functional completeness constructions

As part of the study of propositional logic, we explore the expressiveness of certain logical connectives.
In particular, we explore the diverse functionally complete combinations of connectives (cf. Post’s re-
sults [21]). To prove a set of connectives functionally complete, it suffices to show how every formula
expressed with a set of connectives known to be complete can be equivalently expressed with the set
in question. That constructive argument is readily cast as a construction problem (where the student
implements the translation into the restricted form). We outline an example in Figure 3. We revisit this
example, denoted FC, in Section 7.

6.1.2 Normal form constructions

A similar class of exercises arises from studying various normal forms. Well-known examples include
conjunctive normal form, disjunctive normal form, negation normal form, and XOR normal form. We are
also free to define our own normal forms (as in FC above). A constructive proof that some set of formulas
is a normal form involves translating arbitrary formulas to equivalent formulas in the set. Implementing
this translation constitutes a constructive problem.
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Exercise description: Prove
that the set {⇒,⊕} of con-
nectives is functionally com-
plete. Do this by writing a
function tr :: Exp -> Exp
that translates arbitrary propo-
sitional formulas into equiva-
lent formulas using no other
connectives.
Testing: Check that output
uses ⇒ and ⊕ only and is
equivalent to input.

Haskell answer: A recursive construction.
tr :: Exp -> Exp
tr (VAR x) = VAR x
tr (IMPL e f) = IMPL (tr e) (tr f)
tr (XOR e f) = XOR (tr e) (tr f)
tr FALSE = XOR (VAR 'P') (VAR 'P')
tr TRUE = IMPL (VAR 'P') (VAR 'P')
tr (NOT e) = IMPL (tr e) (tr FALSE)
tr (AND e f) = IMPL (IMPL (tr e) (IMPL (tr f)

(tr FALSE))) (tr FALSE)
tr (OR e f) = IMPL (IMPL (tr e) (tr FALSE)) (tr f)
tr (BIIM e f) = IMPL (XOR (tr e) (tr f)) (tr FALSE)

Figure 3: An example propositional logic construction problem for a functional completeness result. We
return to this example, denoted FC, in Section 7.

6.2 Examples from regular languages

A rich vein of constructive results comes from the theory of regular languages, since they are defined by
the existence of some simple automaton or expression, which must usually be constructed.

We offer Haskell data types for deterministic finite automata (DFAs), non-deterministic finite au-
tomata (NFAs), and regular expressions. The DFA representation (Figure 4) directly mirrors the stan-
dard mathematical ‘5-tuple’ definition. The NFA type is similar, but with multiple start states1. Regular
expressions use a recursive type (Figure 5). Like for propositional formulas, the type is optimised for
expressing recursive algorithms, and we provide a string parser for expressing instances.

type State = Int
type Symbol = Char
type DFA

= ( [State] -- states
, [Symbol] -- alphabet
, [((State, Symbol), State)]

-- transitions
, State -- start state
, [State] -- accept states
)

Variants: We sometimes use other state types.
We represent the transition function as an ex-
plicit relation. One could use a Haskell function
of type State -> Symbol -> State.

Example: The DFA traditionally depicted:

is then expressed with the Haskell code:

([0,1], "ab", d, 0, [1])
where

d = [ ((0, 'a'), 0)
, ((0, 'b'), 1)
, ((1, 'a'), 1)
, ((1, 'b'), 1)
]

Figure 4: The DFA type, our representation for deterministic finite automata.

1Our Haskell and mathematical NFAs allow a set of start states, as needed in Brzozowski’s minimisation method [2, 34].



M. Farrugia-Roberts, B. Jeffries, & H. Søndergaard 61

data RegExp
= Symbol Char
| EmptyStr
| EmptySet
| Concat RegExp RegExp
| Union RegExp RegExp
| Star RegExp

Example: The regular expression

0∗ (1∪ ε)

could be expressed in Haskell with the following code:

Concat (Star (Symbol '0'))
(Union (Symbol '1') EmptyStr)

Figure 5: The RegExp type, our representation for regular expressions

When testing exercises involving DFAs, NFAs, and regular expressions, we can provide comprehen-
sive analysis of instances using a suite of Haskell tools for converting NFAs and regular expressions to
DFAs (see Section 6.2.3), and then testing equivalence between the resulting DFA and a known solution
DFA (by testing if the symmetric difference automaton accepts any strings). This means we can ‘test’
the correctness of individual DFAs, NFAs, and regular expressions with perfect accuracy, compared to,
say, checking a small number of input strings.

Moreover, we can search exhaustively for any strings accepted by the symmetric difference automa-
ton and provide such strings as misclassified examples to the student, as a form of rich, contextual
feedback (a similar approach is found in other systems [22, 6]).

The computational complexity of conversion to DFAs and constructing the symmetric difference
automaton limit the size of automata and expressions we can analyse (while maintaining responsive
automatic feedback). In practice, these limitations do not manifest at the sizes of DFAs and regular
expressions we consider but rule out NFAs with more than around 10 states.

6.2.1 Closure property constructions

Regular languages are closed under the regular language operations (union, concatenation, and the
Kleene star), as well as the operations of language intersection, complement, reversal, and many others.
Proving each such closure property requires an argument that takes automata or expressions character-
ising arbitrary regular input language(s), and constructs an automaton or expression characterising the
output language of the operation. Implementing such constructions makes a suitable Haskell construction
problem. Figure 6 shows an example, adapted from an assignment question.

We note that the choice of language representation influences the difficulty of the construction. For
example, showing closure under union is trivial for regular expressions and straightforward for NFAs, but
requires some care with a DFA representation. Conversely, closure under complement is straightforward
in a DFA representation, but for regular expressions or even NFAs, we are unaware of a direct method of
construction (not involving, essentially, conversion to a DFA representation).

When it comes to proving these properties for their own sake, one has the choice of representations.
In the pedagogical setting, there is value in exploring each method. The choice of representation can be
made based on the desired topic or difficulty level. The strategic choice of representations is also a point
of interest for our students. While we have not explored this direction in our course, it would possible to
allow students to choose a representation as part of their response to a construction problem (by using an
appropriate algebraic data type).
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Exercise description: Consider the opera-
tion skip defined by

skip(L) = {xy | xzy ∈ L,x ∈ Σ
∗,y ∈ Σ

∗,z ∈ Σ}

Informally, the language skip(L) contains all
strings obtained from the strings of L by remov-
ing any one symbol. For example:

• if L = {ε,ab}, then skip(L) = {a,b}
• if L = {a,b}, then skip(L) = {ε}

Show that the class of regular languages is
closed under skip by writing a Haskell function
skip :: DFA -> NFA such that

L (skip d) = skip(L (d)) .

Hint: Build an NFA containing two layers with
copies of the initial DFA. Think about how to
connect the layers and how to define the start
and accept states.

Testing: For several inputs, check that output
NFA is equivalent to known correct DFA.

Haskell answer: Following the hint:
skip :: DFA -> NFA
skip d@(qs, xs, ts, q0, as)

= ( qs++qs'
, xs
, ts++ts'++ts''
, [q0]
, as'
)

where
-- With helper fn. 'renameDFA',
-- make 2nd layer with distinct
-- states
rename

= (+(1+(maximum (map abs qs))))
(qs', _, ts', _, as')

= renameDFA rename d
-- Epsilon transitions between
-- layers implement the skip:
ts''

= [ ((q, epsilon), rename r)
| ((q, x), r) <- ts
]

Figure 6: An example construction problem based on a closure property of regular languages.

6.2.2 Language family constructions

A favourite class of constructions is to give students a parameterised family of languages and ask them
to prove that all languages in the family are regular. It is sufficient to construct a DFA (for example)
for each parameter, generalising the traditional task of designing a DFA for a particular language. This
exercise is readily cast as a construction problem, where the student writes a function to build the DFA
based on the parameter. Figure 7 shows an example (LA) adapted from a final exam.

Many variations of this example are possible. A challenging construction exercise we used in a
previous assignment highlights one of the advantages of using a single medium for exercises across our
broad syllabus. We designed a family of languages parameterised by propositional logic formulas. Given
a formula, the corresponding language consisted of strings encoding satisfying truth assignments for the
formula. Through a recursive DFA construction algorithm, students were able to prove that this family
of languages is regular. The recursive construction was also an opportunity for students to use, as helper
functions, constructive algorithms for product and complement DFAs, built in a previous worksheet.

6.2.3 Representation conversion constructions

A staple of an introductory course on formal languages are the constructive proofs showing that DFAs,
NFAs, and regular expressions all capture the same class of languages, since for every regular expression
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Exercise description: Consider the singleton
alphabet Σ = {a}. Given a positive natural num-
ber d, we can define a language of strings on Σ:

Md =
{
an

∣∣ n≥ 0, n is a multiple of d
}
.

In other words, Md is the language of all strings
of ‘a’s whose length is a multiple of d.
Prove that all languages of this form are regular:
Write a function m :: Int -> DFA so that ‘m d’
returns a DFA recognising Md (for d > 0).

Testing: Check that the output DFA is equiv-
alent to a known solution DFA.
Haskell answer: A direct construction,
closely mimicking a pen-and-paper definition.
m :: Int -> DFA
m d = (qs, "a", ts, 0, [0])

where
qs = [0..d-1]
ts = [ ((i, 'a'), (i+1) `mod` d)

| i <- qs
]

Figure 7: An example DFA construction based on a simple parameterised family of languages. We return
to this example, denoted LA, in Section 7.

there is a corresponding DFA, and so on. Some of these construction algorithms are well-suited as
complex implementation exercises. In particular, we typically include an exercise to implement an NFA
determinisation algorithm in a worksheet, and we have in the past included, in an assignment, a guided
implementation of Brzozowski’s algorithm for converting regular expressions directly to DFAs [3].

These same tools form part of our testing apparatus for regular language exercises, which first con-
verts a student’s NFAs or regular expressions to DFAs, as discussed above. Once again, students can take
part in the building of tools that we (and they) use to analyse their work.

These conversions are also useful as ‘helper functions’ in other exercises. For example, after im-
plementing the NFA determinisation function, our students are a short step away from implementing
Brzozowski’s double-reversal method for DFA minimisation [2, 34].

Another construction algorithm of interest is the ‘union-free decomposition’ of regular expressions.
For any regular language, there is always a representation of the language as a union of a finite number
of regular expressions which, themselves, do not contain the union operation [16]. In a challenging
construction problem, which we have used in a final exam, we explain this representation to students,
and then ask them to write the conversion algorithm. We detail this example in Figure 8.

6.3 Examples from non-regular languages

In the study of more complex languages, our students complete exercises involving Haskell represen-
tations of context-free grammars (CFGs), (deterministic) pushdown automata ((D)PDAs), Turing ma-
chines, and other models of computation. For brevity, we omit a detailed description of the represen-
tations here—suffice it to say that they are similar to the DFA representation shown in Figure 4, again
mirroring the standard tuple-based mathematical representation of these objects.

With instances of these models, we quickly move into the realm of the undecidable. It is not possible
in general to decide if a student’s model recognises a particular language. We have a suite of emulation
tools, and can fall back on string-based testing and, if necessary, manual inspection, which is usually
sufficient (students do not often submit pathological or even large instances).

Most of our non-regular language exercises involve the creation or analysis of specific instances (in
the case of analysis, we can often design the exercise so that correctness is decidable). However, we have
designed a small number of construction problems, as we outline below.
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Exercise description: A regular expres-
sion is union-free if it does not use the union
operator. A union-free decomposition of a
regular language R is a finite list of union-
free regular expressions r1, . . . ,rk such that
R = L (r1)∪ ·· · ∪L (rk) . Prove that every
regular language has a union-free decomposi-
tion. Do this by writing a Haskell function uf
:: RegExp -> [RegExp] that takes a reg-
ular expression r and produces a union-free
decomposition of L (r).
Hint: The following rules for regular expres-
sions may be useful.

L
(
r(r1∪·· ·∪ rn)

)
= L

(
r r1∪·· ·∪ r rn

)
L

(
(r1∪·· ·∪ rn)r

)
= L

(
r1 r∪·· ·∪ rn r

)
L

(
(r1∪·· ·∪ rn)∗

)
= L

(
(r1 ∗ · · · rn∗)∗

)

Haskell answer: Following the hint:
uf :: RegExp -> [RegExp]
uf (EmptyStr) = [EmptyStr]
uf (EmptySet) = [EmptySet]
uf (Symbol x) = [Symbol x]
uf (Union r s) = uf r ++ uf s
uf (Concat r s)

= [Concat a b | a <- uf r, b <- uf s]
uf (Star r)

= [Star (cat [Star s | s <- uf r])]

Note: A helper function, equivalent to cat =
foldr1 Concat was provided to students with
documentation.
Testing: For various inputs, check that the output
decomposition is equivalent to the input regular ex-
pression.

Figure 8: An example construction problem based on a representation of regular languages.

6.3.1 Closure property constructions

As with regular languages, one class of construction exercises comes from closure properties of higher
language classes. For example, students can write the construction by which one can see that the classes
of context-free and decidable languages are closed under the regular operations, or other operations such
as reversal, and intersection with regular languages.

6.3.2 Representation conversion constructions

Though we are yet to deploy examples in this vein, there are also several representation conversion results
for higher language classes that may be suitable for construction problems. For example, one could
consider conversions between CFGs and PDAs, or various Turing-equivalent models, and converting
CFGs to Chomsky normal form. These detailed constructions could be worth students’ implementing as
an assignment challenge or in a guided worksheet.

One class of conversions that we have considered is to convert regular models into CFGs, PDAs, and
TMs. A student can prove that the language classes associated with these models contain the regular lan-
guages through such constructions. Most of these constructions are quite straightforward (e.g., making
no use of the PDA stack or TM tape), but may still be worthwhile for students.

A more challenging variation is to apply a restriction on the construction. For example, it is possible
to construct a deterministic PDA for any regular language (say, represented as a DFA) using only three
PDA states (regardless of the DFA size) by utilising the stack. We detail this example in Figure 9. Similar
constrained constructions are available for TMs and may be possible for other models. To prove these
results, students can implement the constrained construction algorithms in Haskell.

As with many construction problems, but particularly in this case, we must take care to avoid an
overload of low-level Haskell details. It is important to design exercises with clean implementations.
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Exercise description: Prove that any reg-
ular language can be recognised by a deter-
ministic PDA (DPDA) with just three states.
To do this, write a Haskell function,
dfa2pda :: DFA -> DPDA that converts
an arbitrary DFA to an equivalent DPDA
with exactly three states.
Hint: While there is a limit on the size of the
PDA’s state machine, there is no limit on the
size of the PDA’s stack alphabet.

Haskell answer: From the start state, load
the second DFA state onto the stack while
consuming the first symbol. Transition to an
accept or non-accept state in the DPDA de-
pending on where you would be in the DFA.
Carry out the remaining transitions using the
symbol on the stack to represent the state in
the DFA, and the DPDA state to represent
whether the DFA is ready to accept or reject.

dfa2pda :: DFA -> DPDA
dfa2pda (qs, as, ts, q0, fs)

= ([0, 1, 2], as, qs, ts', 0, fs')
where

accepts q
= if (elem q fs) then 2 else 1

fs'
= if (elem q0 fs) then [0,2] else [2]

ts'
= [ ( (accepts b, a, b)

, (accepts b', b')
)

| ((b, a), b') <- ts
]

++ [ ( (0, a, eps)
, (accepts b', b')
)

| ((b, a), b') <- ts
, b == q0
]

Figure 9: An example construction problem based on a non-regular model of computation.

6.4 Variations of construction problems

So far we have discussed construction problems based on constructive algorithms of the form X -> Y for
some representation types X and Y. In this section we collect notes on several variations on this theme.

6.4.1 Instantiation as scaffolding

To each construction problem correspond many simpler problems of the form ‘for this given object of
class X , construct the corresponding object of class Y ’. While the general construction problem is
a kind of implementation problem, that is, a Haskell exercise with answer type X -> Y, these simpler
problems correspond to instance problems—Haskell exercises with answer type Y.

When designing an assignment or exam, we can often calibrate the level of difficulty, as well as
target a different set of learning outcomes, by changing between instance problems and implementation
problems. Moreover, a useful design pattern is to run instance problems and implementation problems
together. For example, in one multi-part exam question, students might be presented with one or two
examples of a construction in the form of instance problems and then be asked in a final part to implement
the general construction. The instances serve as a ‘warm-up’ for the general algorithm, and also give
students credit for time spent considering examples as they prepare to provide a general answer in the
final part.
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6.4.2 Proof-based framing of instance problems

There are many places in our course where we might use the term ‘constructive proof’ in a slightly differ-
ent sense than above, not referring to a particular general construction algorithm, but to the construction
of a witness to an existential claim (or a counterexample to a universal one).

By a similar analogy to that underlying construction problems (of the implementation type), we
can draw an analogy between these instance constructions and instance problems. The distinction is
that between a Haskell function with parameters, and a constant Haskell function. We often frame an
instance problem this way, as a kind of ‘proof’, to more closely relate our Haskell instance exercises to
the mathematical topics of our syllabus. For example, rather than describing an exercise involving CFG
ambiguity as “give an example string for which this CFG permits at least two distinct parse trees”, we
might say “prove that this CFG is ambiguous by giving a string for which . . . ” Many other examples of
this form exist, across propositional logic, regular languages, non-regular languages, and also predicate
logic and discrete mathematics.

Once again, this analogy is partial, since students usually are not required to carefully justify the
correctness of their examples. However, we can often verify correctness with appropriate tests if the
problems are carefully designed so that correctness remains decidable.

6.4.3 Proof-based framing of algorithm implementation problems

In a sense that is relevant to the topics of our course, all of the implementation problems we study,
whether framed as constructive proofs (such as the examples earlier in this section) or as algorithms
(such as a DFA minimisation algorithm, Wang’s algorithm, the Tseitin transform, or a propositional
resolution algorithm), are a kind of existence proof that certain problems are decidable (and inhabit a
certain complexity class).

For example, while we usually frame the students’ implementation of the Tseitin transform in an early
worksheet as the completion of a useful tool for computing with propositional logic representations, it is
equally an existence proof that a (polynomial-time) algorithm exists to convert an arbitrary propositional
formula to 3-CNF. This particular algorithm also serves as a (polynomial-time) reduction between the
Boolean satisfiability problem for arbitrary formulas, and the 3-SAT problem. Thus it provides a nice
opportunity to link several topics within our broad course.

Again we note that the analogy is partial, as students are not normally asked to carefully justify their
implementation’s correctness (or complexity).

6.4.4 Higher-order constructions

In logical terms, the construction problems we have examined in detail above correspond to a constructive
proof of a universally quantified existence result. Similarly, appropriately-framed instance problems
correspond to a constructive proof of a simple existence result.

The possibility of extending this analogy is suggested: Could we make a Haskell exercise out of the
proof of a higher-order result? For example, a result of the form “for all x ∈X , there exists y ∈Y , such
that for all z ∈Z , there exists u ∈U , such that the property P(x,y,z,u) holds.”

For example, a proof that a language does not have the pumping property for regular languages
has exactly the above form. Such a proof, together with the well-known pumping lemma for regular
languages, is often sufficient to show that a language is non-regular. The same holds for a proof that a
language does not have the pumping property for context-free languages. Pumping lemma exercises are
regarded by many of our students as a very challenging part of our course, perhaps partly because of
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their mathematical complexity. If some Haskell-based exercise could assist the students in constructing
a pumping lemma proof, this could be pedagogically valuable.

It would be possible to ask students to implement functions that play the role of the interacting
agents in a query-based proof of the pumping property for a language, for example. This approach to the
pumping property would be similar to the ‘pumping lemma game’ available in JFLAP [23]. A similar,
Haskell-based approach has already been developed for AUTOTOOL [22].

One concern is that the specification of the Haskell-based exercise could retain the complexity of
the mathematical approach, due to the necessary use of higher-order functions and other challenging
language features. If this analogy is to be extended, it will not remove the inherent logical complexity of
the results to be studied.

7 Student performance in high-stakes assessment

As we have gradually moved to our new assessment regime, eventually delivering all assessment through
Grok, we have naturally wondered what consequences (predicted or unforeseen) there might be for stu-
dents. The concern was never that students might be uncomfortable with online assignment submission
and online exams—if anything, there seems to be a growing percentage of students who feel uncomfort-
able with pen-and-paper assessment and instead value the better writing and editing features offered by
online tools. Instead our concern has been that we are forcing students to communicate their knowledge
in a new and unforgiving notation, namely Haskell. There are arguable advantages and disadvantages
involved, for learning, feedback provision, learning support, student engagement, marking, and course
management generally [8]. So how do students respond to the change?

We do not have data from surveys asking students directly (apart from standard student experience
questionnaires, to which students continue to respond positively about the course generally). Grok,
however, provides us with logs that allow us to explore students’ activity, for example during exams.
This gives us some insight into whether Haskell ends up being a significant barrier to students expressing
themselves, in particular in their answers to more difficult problems, such as proof constructions.

In this section, we sample student responses to two exam questions. These are the questions we
labelled FC and LA in Section 6. High-stakes assessment is arguably the most suitable context for this
analysis. During an exam, students can submit answers to a problem repeatedly until they are happy with
their answer—only the latest submission counts. In the exam setting they receive real-time feedback
from the compiler, and, where relevant, additional automated feedback about the well-formedness of
their answer, beyond syntax. They do not see the results from any of our correctness tests.

7.1 The FC example from Section 6.1

In the exam, 517 students submitted answers to this question, while 38 did not submit. Students who
did submit made 2.57 submissions, on average. In the following, we analyse each student’s final answer
only, in case they made multiple submissions. Of the 517 answers, 483 passed the well-formedness tests
and were then marked for (partial) credit according to their degree of correctness. The remaining 34
failed to compile. According to GHCI’s feedback to the 34 students, the errors were distributed as shown
in Table 2, second column.

More careful scrutiny reveals that almost all (12 of 13) type errors were the result of incorrect use of
parentheses in function applications. In essence, 12 students wrote something of form a b c when they
meant a (b c). Many scope errors came from code such as
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Issue FC (Fig. 3) LA (Fig. 7)
Indentation problem 3 10
Syntax error 2 16
Variable scope error 14 7
Hole (‘_’) used as expression 1 0
Nonlinear pattern 1 0
Pattern overlap 0 1
Bad enumeration 0 2
Type error 13 6
Generation of ill-formed DFA — 22
Failure to terminate 0 2

Table 2: Number and kind of responses received by students regarding ill-formed submissions.

tr FALSE = tr (AND (VAR x) (NOT (VAR x)))

which shows a fair understanding of the propositional logic problem. But the variable scope error pre-
vents such understanding from being recognised, even by sophisticated auto-marking. For this reason,
we mark all non-compiling submissions manually. That way (possibly partial) marks can still be awarded
for plausible code. There were three cases of GHCI flagging an indentation error; in all cases, these were
caused by students using a layout similar to that in Figure 3, but leaving one or more cases unfinished,
with no text after a defining ‘=’.

To summarise, student performance on this question does not suggest that Haskell has “gotten in the
way”, except for a small number of students who struggle with the role of parentheses in a language
where simple juxtaposition is used for function application.

7.2 The LA example from Section 6.2

In the exam, 499 students submitted answers to this question, while 56 did not submit. Students who
did submit made 2.39 submissions, on average. Again the analysis we perform of the submitted answers
involves only each student’s final answer. Of the 499 answers, 42 failed to compile. GHCI feedback
suggests the errors were distributed as listed in the third column of Table 2.

Altogether 66 students would have received immediate feedback to warn them that something about
their answer was wrong. Namely, in addition to the 42 with compiler errors, two were warned about
termination issues, and another 22 failed to generate well-formed DFAs. In the last case, a message,
auto-generated by us, explained in what way the DFA was ill-formed (perhaps it was not deterministic,
or it used letters outside its alphabet, or states outside its state set). For 22 students, it appears this was
not sufficient help, or alternatively, some students had insufficient time left to fix the issue.

As the feedback generated at submission time was based on a single test case (d = 5), there may
be cases of ill-formedness (and non-termination) that go undetected. Indeed, the full set of test cases
identified another 11 cases of ill-formed DFAs being generated—almost always for the corner case d = 1.

The 10 indentation errors are mostly because of incorrectly placed where clauses. Of the 16 syntax
errors, 10 show difficulty with list comprehension syntax, like pointing arrows in generators the wrong
way. The scope errors are all from expressions involving list comprehension. This kind of error, where a
student uses a variable outside its scope, should not necessarily be taken as evidence that Haskell has hin-
dered expression; rather these cases mirror the identical mistake we see when students use mathematical
notation, such as set comprehension, leaving variables free.
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We mentioned that 56 students did not submit an answer. In some cases, the distinction between “no
attempt” and “syntax error” is not clear. For example, when a student submits

makeDFA d = (

we classify that as a syntax error, but in all likelihood, it is the result of a student deciding not to attempt
the question (and submitting the snippet nevertheless). Of the 16 syntax error cases mentioned in Table 2,
third column, five are arguably in this category, that is, they do not really suggest a lack of knowledge of
Haskell syntax. Likewise, three of the 22 ill-formed DFAs come about because a student simply submits
the bare code that was provided as scaffolding for the question—evidence that the student simply decided
to give up this question.

Hence the number of student submissions (in the case of this particular question) that point to a
struggle with Haskell notation is perhaps more accurately given as 34, but in any case, it is in the vicinity
of 7% of submissions. The number of students who appear to give up the question (whether for lack
of time or ability) is 64, that is, around 12%—not unlike what we would previously see in a typical
pen-and-paper question of this kind.

To summarise, submitted answers for this question suggest that 5–10% of our students begin to
struggle with Haskell once a question calls for a combination of language features including recursive
definition, where clauses and list comprehension. To preserve fairness, manual marking seems unavoid-
able for answers that get rejected by GHCI.

8 Discussion

We turn to discuss the various pedagogical and logistic dimensions of the choice between written proof
exercises and our proof-inspired Haskell implementation exercises.

8.1 Pedagogical evaluation

In terms of the pedagogical value of these two learning activities, a comparison must account for the skills
which each task will exercise for students, and the alignment of these skills with the intended learning
outcomes. Section 8.1.1 discusses aligned skills neglected by our Haskell exercises, and Section 8.1.2
discusses additional skill requirements introduced by the change in exercise format.

8.1.1 Additional skills exercised by written proofs

As we have outlined above, we believe that well-designed Haskell implementation exercises can bring
out many of the same kinds of skills as the writing of a detailed written description of a construction
algorithm. These include the ability to specify the construction itself with a high level of precision,
drawing on a detailed understanding of the formal objects involved, and of the analysis and creation
techniques embodied by the construction. These all may be considered intended learning outcomes in
many maths-based classes such as our own.

As we produce a partial analogy, it is clear that the skills involved in analysing and justifying one’s
construction are not exercised directly in the same manner as in a written proof. If this is considered an
important learning outcome, it may be necessary to augment Haskell-based activities with opportunities
for students to practice and receive feedback on written justifications, as we do in our course.

It is worth considering the role that rapid corrective feedback from automated tests could play as a
kind of substitute for explicit justification tasks. We suppose a student has an implicit justification in mind
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guiding the design of their constructive algorithm. When they receive feedback from tests, for example
that their construction fails in some case, they may adapt their implicit justification to resolve an error
in their approach. The student is exercising their justification skills in a minor way, though not the skill
of formalising and explicating their justification. On the other hand, unlimited rapid feedback may lead
students to somewhat mindlessly tweak their implementation, using a kind of ‘trial-and-error’ approach,
without maintaining an internal justification. Future work could investigate how students respond to
feedback, for example with a think-aloud study.

Another class of skills that may be neglected in Haskell-based exercises arise due to the structure
imposed by our interface. In designing a test suite we usually make assumptions about the Haskell type
of the student’s answer. We must then explain to the student which type we expect as part of the exercise
description. Thus the student does not get to exercise the skill of taking a proposition and thinking for
themselves about what sort of constructive proof would be appropriate to establish this proposition. This
gap could potentially be addressed through careful Haskell exercise design, such as by offering students
a choice of types with which to respond using a suitable algebraic data type. However, the most direct
response may be to offer students an opportunity to practice open-ended written proofs.

The skill of writing fluent and clear mathematical arguments in mathematical notation is clearly not
directly accessible through Haskell exercises. If this skill is an intended learning outcome, then perhaps
written exercises should be emphasised. It is possible to practice communication skills by writing clear
Haskell programs as answers to Haskell exercises, but assessing these dimensions of Haskell programs
falls beyond the remit of the compiler and simple automatic tests. Anyway, the premise of using Haskell
as a bridge to a mathematical formalism and notation suggests that we should eventually help our students
cross the bridge into the more conventional language of mathematics.

8.1.2 Additional skills demanded by Haskell exercises

The main skill demanded by Haskell exercises in addition to those required to complete a written proof is,
of course, the ability to express one’s ideas in a functional programming language. Completing Haskell-
based exercises requires students to become reasonably proficient in Haskell. At times, students are also
required to provide some language-level details in the specification of the construction which would be
below the level of abstraction appropriate for a clear written proof. Furthermore, taking advantage of the
feedback provided by the compiler also requires the skill of interpreting Haskell error messages.

To minimise these barriers, we take care to design and select Haskell exercises that use a minimal
subset of language features, and have answers that do not require much low-level detail. This sometimes
involves carefully scoping problems for students to implement a small part of a larger program, with
the aid of helper functions that present a clear abstraction hiding complicated parts of the construction
(noting that adding novel helper functions to an exercise itself adds cognitive load for students). The
overall impact of these barriers on student outcomes in our course requires further evaluation.

8.2 Digital formative and summative assessment

Rapid compiler-based and test-based feedback have the potential to enhance student learning of the
exercised skills, compared to written proof exercises. With traditional proof exercises, providing rapid
feedback to students at scale and on-demand is infeasible. In our case, this kind of environment can
only be provided to students during a fraction of time spent in tutor-lead weekly tutorials (that fraction
when the tutor is available to interact directly with a small group of students, and the syllabus allows
this time to be spent on proof-writing exercises, as opposed to some other intended learning outcome).
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In comparison, Grok affords students flexible, on-demand, instant corrective feedback from our pre-
designed test suites. No doubt this feedback helps students notice gaps or errors in their specifications of
constructions, and train the related skill.

Aside from providing rapid feedback in formative assessment, we also provide compiler-based and
limited test-based feedback to students during high-stakes tests such as final exams, and we allows stu-
dents to fix such errors and resubmit their answers an unlimited number of times. We believe that this
policy can increase the validity of assessment by helping students filter out small errors such as typos,
syntax errors, and well-formedness errors from their answers before they are evaluated.

When it comes to marking student responses in a digital format compared to marking written proofs,
we find that Haskell exercises allow for more flexible and often more efficient marking workflows com-
pared to written proofs. Note that as a baseline, it is always possible to print and manually mark student
programs, as if they had been written on paper in the traditional manner. At the other extreme, high-
quality, fully automated marking of the kinds of complex Haskell programs we are discussing in this
paper would require more sophisticated analysis programs than we typically have the resources to com-
mission for our course. The key point is that, with a student’s digital response, we are free to blend
manual marking work and automation in a flexible way, and even to change this mix during marking.
We can automate tasks that are well-suited to automation, such as compilation and testing of student
programs (cf. a tutor poring over a student’s handwritten construction, attempting to run it through her
own mental logical compiler and correctness tests). And we can manually handle the remainder: the
parts that may call for human judgement, such as evaluating non-compiling solutions for partial credit,
and judging student programs against a marking scheme that takes more than test correctness into ac-
count. Importantly, for most instance problems we can also simplify the manual marking residue by
automatically clustering incorrect responses. For example, submitted formulas or regular expressions
can be grouped by size and/or semantic equivalence, requiring a human marker to determine the merits
only of representative solutions—something of considerable value when enrolment numbers are large.

9 Conclusion

The objective behind our use of Haskell as an assessment medium in a non-programming course has been
to give computing students a bridge to a mathematically demanding syllabus. We saw potential benefits,
both logistic and pedagogical, of a digitisation of elements of the course [8]. Auto-marking especially is
attractive, though it is far from clear that depth, quality and reliability of assessment can be maintained
in the transition. We now conduct practically all assessment digitally, through Haskell.

Harnessing Haskell to do the job of traditional online question types, such as multiple-choice, is
straightforward, once students have completed a short intensive introduction to the language. But we
would like to also use Haskell for various open-ended (or “constructed response”) questions. In this paper
we have shown how we administer certain proof-style problems. Our approach integrates seamlessly with
the other question types we use—all are delivered on one interactive learning platform using Haskell as
the assessment medium. We have provided many examples of constructive-proof problems that we have
used in assessment, including exams.

These more sophisticated problem types are well-suited for testing higher-order cognitive skills. But
they also tend to assume a greater mastery of Haskell, something that is not actually expressed as an
intended learning outcome in our course. This raises the question of whether Haskell might present a
barrier for some students who would otherwise have no difficulty expressing themselves in traditional
mathematical language. We have very limited data on which to base an answer, and more research is
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needed. However, the analysis presented in Section 7 suggests that 5–10% of our students do find it hard
to express themselves well in Haskell when an answer calls for a combination of Haskell features. Given
the logistic benefits of the programming approach, we will continue to calibrate assessment tasks to find
the right balance between medium and expressiveness.
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