
P. Achten & E. Machkasova (Eds.): Trends in
Functional Programming in Education (TFPIE) 2021/22
EPTCS 363, 2022, pp. 22–43, doi:10.4204/EPTCS.363.2

© D. Berezun, D. Boulytchev
This work is licensed under the
Creative Commons Attribution License.

Reimplementing the Wheel:
Teaching Compilers with a Small Self-Contained One

Daniil Berezun
St. Petersburg State University

St.Petersburg, Russia
JetBrains Research

d.berezun@2009.spbu.ru

Dmitry Boulytchev
St. Petersburg State University

St.Petersburg, Russia
JetBrains Research

dboulytchev@math.spbu.ru

We report on a one-semester compiler construction course based on the idea of implementing a
small self-contained compiler for a small model language from scratch, not using other compiler
construction frameworks. The course is built around an evolving family of languages with increasing
expressiveness and complexity, which finally is crowned by a language with first-class functions,
S-expressions, pattern matching, and garbage collection. The code generation technique is based on
the idea of symbolic interpreters, which allows to implement a robust albeit not a very efficient native
code generator. We give the motivation for the course, describe its structure, and report some results
of teaching based on students’ post-course surveys.

1 Introduction

Compilers are probably the most important tools for software engineers; understanding how com-
pilers work is one of the basic (if not the first) skills for them to master. Thus, to no surprise, compiler
design and construction as a separate subject often is included in the curriculum in many colleges and
universities all over the world.

Since the first compilers were implemented in the middle of the 20th century the craft of compiler-
making has advanced tremendously. Modern compilers implement a wide range of optimizations and
perform a large number of transformations on the way to the executables, and their sources total millions
of lines of code. This makes a balance between the completeness of covered topics and the robustness
of reference compiler implementation a tough problem. Typically, a course on compiler construction
collects a wide range of topics from lexical and syntax analysis to SSA form construction, register al-
location, instruction scheduling, etc. As a rule, instead of a working hardware some simplified abstract
machine (or even a high-level language like C or SCHEME) is taken; alternatively, an infrastructure like
LLVM [22, 5], GCC [1], GraalVM [2] or WebAssembly [7] is used as a backend. This, in turn, sweeps a
lot of work under the carpet. Even if some real processor is targeted the completeness of the implemented
compiler remains questionable since it requires a lot of testing and debugging to generate a correct code
for “serious” programs beyond simplistic ones used as smoke tests.

We advocate a different approach aimed at building a complete compiler for a simple, but not a toy
language from scratch, not relying on any compiler construction framework. Moreover, instead of text-
book code generation algorithms with advanced instruction selection, register allocation, and schedul-
ing [27, 26] we use a simplified one based on symbolic interpreters. Conventional approaches, while
providing ways of generating efficient machine code, are much harder to implement, debug and test, and
there is still a matter of discussion if the students are capable to come up with a robust implementation
that can correctly compile large realistic programs besides the simplistic tests. The approach based on a

http://dx.doi.org/10.4204/EPTCS.363.2
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


D. Berezun, D. Boulytchev 23

symbolic interpreter, on the other hand, is easier to understand, implement, debug and test, and it is not
as error-prone as the conventional ones at the price of less efficient code being generated. Yet it provides
a way to implement a full-fledged compiler from the source language to a real working machine code.
We argue that after a simplistic but complete compiler is implemented more advanced methods can be
easily mastered later by those who actually strive to work in the real compiler industry.

The choice of target and implementation languages is the first important decision to be made in the
preparation of a compiler course. In various other areas of science, there is a common practice to devise
a specific set of artificial exercises to demonstrate the application of certain techniques or develop certain
skills. Thus, inventing a language that would serve as a toolbox of features and constructs called to
demonstrate the most relevant techniques in compiler construction seems like a natural idea.

For the course we have developed a language called “λaMa” (pronounced “lamah”) [4], which is
an acronym for “λ-ALGOL” since the language inherited the shape of its syntactic constructs from
ALGOL-68. In a nutshell, λaMa is an ALGOL-like language with first-class functions and automatic
memory management in the form of garbage collection; we describe it in more detail in Section 2. The
compiler for λaMa was initially written in OCAML for X86-32/LINUX platform relying only on binu-
tilities and internally using GCC as a driver. For several years the students were implementing their
compilers in OCAML; however, during the recent three semesters, we switched the implementation lan-
guage to λaMa itself, which opens a way for bootstrapping. We consider using the same language both as
the source and implementation one as an important advantage for a number of reasons. First, the ability
to be used as implementation language is a strong argument for the maturity of the language and, more
importantly, the maturity of the methods used in its compiler implementation. Thus, by using exactly the
same language as they are implementing and the same compiler as they are writing the students acquire
a justification that they are studying a working technology. Then, to implement a correct compiler the
students need to internalize the knowledge of the source language semantics. Since the implementation
language is the same as the source one, this makes the students better understand the semantics of the
language they use. Finally, when the source language coincides with the implementation one some tasks
can be solved in a simpler way due to the identity of their semantics.

2 The λaMa Programming Language

λaMa borrows the syntactic shape of operators from ALGOL-68 [31]; HASKELL [3] and OCAML [6]
can be mentioned as other languages of inspiration. The general characteristics of the language are:

• procedural with first-class functions — functions can be passed as arguments, placed in data struc-
tures, returned and “constructed” at runtime via closure mechanism;

• with lexical static scoping;

• strict — all arguments of function application are evaluated before function body;

• imperative — variables can be re-assigned, function calls can have side effects;

• untyped — no static type checking is performed;

• with S-expressions and pattern-matching;

• with user-defined infix operators, including those defined in local scopes;

• with automatic memory management (garbage collection).



24 Reimplementing a Wheel

import List ;
import Fun ;

public inf ix l ⇒ before $ (x , f) {
fun (state) {

case x (state) of
[state , x] → [state , f (x ) ]

esac
}

}

public infix ⇒⇒ at ⇒ (x , f) {
fun (state) {

case x (state) of
[state , x] → f (x) (state)

esac
}
}

public fun returnST (x) {
fun (state) {[state , x]}

}

(a) State monad implementation

var simpleStmt = memo $ eta syntax (
kSkip {Skip}
| x=lident s[”:=”] e=exp {Assn (x , e)}
| kRead x=inbr[s (”(”) , lident , s (” )” ) ] {Read (x)}
| kWrite e=inbr[s (”(”) , exp , s (” )” ) ] {Write (e)}
| kWhile e=exp b=inbr[kDo , stmt , kOd] {While (e , b)}
| kDo b=stmt kWhile e=exp kOd {DoWhile (b , e)}
| −kIf ifPart −kFi
) ,
elsePart = memo $ eta syntax (
empty {Skip}
| −kElse stmt
| −kElif ifPart
) ,
thenPart = memo $ eta syntax (−kThen stmt) ,
ifPart = memo $ eta syntax (
cond=exp th=thenPart el=elsePart {If (cond , th , el)}

) ,
stmt = memo $ eta syntax (
simpleStmt
| s1=simpleStmt s [” ;” ] s2=stmt {Seq (s1 , s2)}
) ;

(b) An example of syntax description

Figure 1: λaMa Samples

Source Code AST SM Code Native Code

Source Interpreter SM Interpreter x86-32

Parser
SM
Compiler

Native
Compiler

Figure 2: The structure of reference λaMa compiler

The main purpose of λaMa design is to present a repertoire of constructs with certain runtime behav-
ior and relevant implementation techniques. The lack of a type system (a vital feature for a real-world
language for software engineering) is an intentional decision that allows demonstrating an unchained
diversity of runtime behaviors, including those which a typical type system is called to prevent. On the
other hand, the language can be used in the future as a raw substrate to apply various ways of software
verification (including type systems).

In addition to a conventional set of constructs, λaMa incorporates an extension to embed syntax
definitions in the form of semantic-extended EBNF into the programs. These definitions are converted
into the compositions of parser combinator applications from λaMa standard library. In Fig. 1 two λaMa
samples are given: a definition of state monad from the standard library (Fig. 1a) and an excerpt from
λaMa parser written in λaMa itself (Fig. 1b).



D. Berezun, D. Boulytchev 25

printf (”Hello , world!\n”)

(a) Source code

LABEL (”main”)
BEGIN (”main” , 2 , 0 , [ ] , [ ] , [ ] )
STRING (”Hello , world!\\n”)
CALL (”Lprintf” , 1 , false)
END

(b) Stack machine code

.globl main

.data
string_0 : .string ”Hello , world!\n”
main :
# BEGIN (”main” , 2 , 0 , [ ] , [ ] , [ ] ) /
# STRING (”Hello , world!\\n”) /

movl $string_0 , %ebx
pushl %ebx
call Bstring
addl $4, %esp
movl %eax , %ebx

# CALL (”Lprintf” , 1 , false) /
pushl %ebx
call Lprintf
addl $4, %esp
movl %eax , %ebx

# END /
movl %ebx , %eax

Lmain_epilogue :
movl %ebp , %esp
popl %ebp
xorl %eax , %eax
ret

(c) Native code

Figure 3: An example of a program, stack machine code and native code

3 The Structure of the Compiler

The current implementation of λaMa contains a native code compiler for X86-32, written in OCAML

(≈ 3000 LOC), a runtime library with garbage-collection support, written in C (≈ 1000 LOC), and
a small standard library, written in λaMa itself (≈ 900 LOC). The native code compiler uses GCC as
a driver. The standard library implements a minimalistic set of features needed to fulfill all the as-
signments for the course: a set of collections, implemented as AVL trees, list- and array-processing
functions, basic file operations, functional programming primitives for lazy evaluation, function appli-
cation/composition/fixpointing, etc., and the implementation of monadic CPS parser combinators with
memoization [21, 20], which support left recursion and are capable of recognizing all context-free lan-
guages.

The structure of the compiler is shown in Fig. 2. Overall, it maintains the generic scheme of compiler
implementation as a sequence of passes each of which performs a transformation of some intermediate
representation of a program being compiled. In our case, there are two such representations: an abstract
syntax tree (AST) and a code for an abstract stack machine (SM). The compilation from AST to stack
machine requires two passes (counting closure conversion); the transformation from SM code into the
native one requires one pass. In Fig. 3 an example of “Hello, world!” program compilation is presented;
besides the source program itself, its SM representation is shown as well as the native code for X86-32,
compiled directly from that representation.

Besides conventional components, the compiler contains two extra ones: a source-level reference
interpreter, which literally encodes the operational semantics, and an interpreter for the stack machine.



26 Reimplementing a Wheel

Language № Assignments

Straight-line Code with Assignments
1 INT, SM
2 X86
3 PARSER

Structural Control Flow
4 PARSER, INT

5 SM, X86
Control Flow Expressions 6 PARSER, INT, SM, X86

Functions and Declaration Scopes
7 PARSER, INT

8 SM, X86
Arrays and Strings 9 PARSER, INT, SM, X86
Fixnum Arithmetic 10 X86
S-expressions 11 PARSER, INT, SM, X86

Pattern-matching
12 PARSER, INT

13 SM, X86

Closure Conversion and First-Class Functions
14 PARSER, INT

15 SM, X86
Memory Management 16 RUNTIME

PARSER: parser
INT: reference interpreter
SM: stack machine interpreter and stack machine compiler
X86: native-code compiler
RUNTIME: runtime support library

Figure 4: The structure of the course

Thus, a λaMa program can be run in three modes: being interpreted in direct correspondence with
operational semantics, compiled to the stack machine code, and compiled to native code. It is expected
that the results of execution in all three modes should coincide for any program.

The decision to include two interpreters in the compiler serves didactic purposes. As student assign-
ments repeat the implementation of the reference compiler, they would involve implementing these in-
terpreters as well, which serves the purpose of better understanding of how operational semantics works.
In addition, the capability of running a program in different representations would make it possible to
discover and fix errors at earlier stages.

4 The Structure of the Course

The course revolves around a set of 12-16 assignments (depending on the actual schedule; it is
assumed that an assignment has to be completed within a week). The assignments are vertically-oriented:
a certain language feature has to be implemented in all components of the compiler from the parser to the
code generator. Thus, instead of implementing, say, a parser for the whole language first, then a reference
interpreter for the whole language, then stack machine compiler, etc., we ask students to implement in a
top-down manner a set of compilers for an evolving family of languages. We argue that this structure of
the course helps the students to internalize relevant compiler implementation techniques by completing
similar sets of tasks with increasing complexity levels over and over again.



D. Berezun, D. Boulytchev 27

As we said earlier, the compiler consists of a reference source-level interpreter, a stack machine
compiler and a stack machine interpreter, and a native code compiler. As a rule, each language in the
family is implemented in two steps: first, a parser and a reference interpreter are implemented, and then
the stack machine compiler and interpreter and native code compiler are added. For each language,
its operational semantics is given as well as operational semantics for the current version of the stack
machine (the stack machine evolves as well), which makes it possible to assess the correctness of the
compiler formally (although we do not require this to be done). For all students, this is the first time
when they get acquainted with operational semantics, so we introduce the topic thoroughly.

We supply the students with a set of regression tests, some of which are hand-written and some —-
autogenerated. The set of tests evolves together with the language to reflect its relevant properties. It
is required that the student implementation passes all the tests, and it is forbidden for students to make
changes in the infrastructural parts of the project (e.g. in the Makefiles).

In addition to the tests, we provide the students with the ready-to-use implementation of the infras-
tructure parts of the compiler. Such components as the driver (which controls the order of transforma-
tions, reads and writes files, parses command-line options, etc.), implementations of symbol tables/en-
vironments, the interfaces between passes, etc., are all important parts of the compiler that define its
architecture and are easy to mess with. At the same time, the implementation of these components has
only a distant relevance to the essence of compilation. By pre-supplying these components to the stu-
dents we, first, free them from the burden of implementing and debugging the most “boring” parts of
the compiler; at the same time, we facilitate the use of the best practices in compiler writing since we
provide students with an architecturally solid environment. Finally, using the same infrastructural parts
of the compiler makes it easier for students’ implementations to pass the same set of tests since there is
no difference in their interfaces.

The majority of assignments are incremental, meaning, that they amount to adding some functionality
to previously completed assignments. There are some cases, however, when the architecture of the whole
compiler changes drastically. We specifically point out these cases and help the students to go through
the refactoring by providing them with code samples that illustrate the transition.

Some tasks might require more than one week to implement, debug and test in full. In this case,
we decompose the assignments in such a way that the hard one comes first, being followed by relatively
simpler. We incrementally add more complex tests for the first one in each following assignment and
warn the students, that they will most likely encounter more errors in already implemented parts of
the compiler. Thus, we help the students to amortize their debugging and testing efforts by gradually
increasing the complexity and coverage of the tests.

The summary of the course is shown in Fig. 4. In the next subsections, we address specifically the
concrete languages in the family and describe the assignments in more detail.

4.1 Straight-line Programs with Assignments

The first language in the family contains a set of expressions and simple statements in the form of
assignments, sequential composition, empty operator (“skip”), and reading/writing primitives. Expres-
sions can contain variables, integer constants, and thirteen basic arithmetic and logic operators; logic
operators work on integer values a la C. Note, on this level the language is already equipped with a full
set of arithmetic and logic operators of λaMa. No declarative constructs exist in the language at this
stage; all variables are treated as global ones, defined implicitly.

The first assignment involves implementing a reference interpreter for the language, based on its big-
step operational semantics, a stack machine interpreter, and a compiler from the source language into



28 Reimplementing a Wheel

−− Redefinition of standard infix operators
infix + at + (l , r) {Binop (”+” , opnd (l) , opnd (r))}
infix − at − (l , r) {Binop (”−” , opnd (l) , opnd (r))}
infix * at * (l , r) {Binop (”*” , opnd (l) , opnd (r))}
infix / at / (l , r) {Binop (” /” , opnd (l) , opnd (r))}
infix % at % (l , r) {Binop (”%”, opnd (l) , opnd (r))}
infix == at == (l , r) {Binop (”==”, opnd (l) , opnd (r))}
infix != at != (l , r) {Binop (”!=” , opnd (l) , opnd (r))}
infix < at < (l , r) {Binop (”<”, opnd (l) , opnd (r))}
infix <= at <= (l , r) {Binop (”<=”, opnd (l) , opnd (r))}
infix > at > (l , r) {Binop (”>”, opnd (l) , opnd (r))}
infix >= at >= (l , r) {Binop (”>=”, opnd (l) , opnd (r))}
infix && at && (l , r) {Binop (”&&”, opnd (l) , opnd (r))}
infix ! ! at ! ! (l , r) {Binop (”! !” , opnd (l) , opnd (r))}

(a) A fragment of deep embedding implementation

read (”x”) >>
read (”y”) >>
”z” ::= ”y” * ”y” >>
write (”x”+”z”)

(b) A sample test in the form of
deep embedding

Figure 5: Deep embedding of straight-line programming language in λaMa

the stack machine code. It does not, however, contain such a task as implementing a parser. Instead of
the parser, we use a deep embedding of the language into the λaMa. This embedding is implemented
by redefining the standard binary operators of λaMa to work with abstract syntax trees instead of integer
values; additionally, C preprocessor is used in a minimalistic manner (see Fig. 5a for an implementation
snippet and Fig. 5b for a sample regression test in the form of deep embedding). This approach allows
students to concentrate immediately on essential tasks — implementation of interpreter and stack ma-
chine compiler — without distracting them with so far not very important problem of implementing a
parser.

The second assignment concerns implementing a native code generator. As we’ve said earlier, we
utilize the concept of a symbolic interpreter to generate machine code. We address this approach in more
detail in Section 5. Since in the first assignment the students have already implemented an interpreter
for the stack machine, the problem should not be very challenging. There are, however, a number of
subtleties — for example, unlike stack machine and source-level interpreter in machine code a number
of declarations for global variables have to be generated. Another issue concerns the implementation
of binary operators — while in source-level interpreter and stack machine the correspondence between
operators in target and source languages is one-to-one, in the machine code more elaborated projections
have to be used. Finally, in X86 registers are not fully symmetric — there are some dedicated registers
that should be used to perform certain operations, and these requirements have to be taken into account.
For the second assignment, we provide the students with a minimalistic set of tests that only verify
the basic cases. We add more tests in the next assignments thus providing the students more time for
debugging.

Finally, the third assignment consists of implementing a parser for the already implemented com-
piler. Thus, after three assignments (and three weeks) the students cover all essential tasks in order to
implement a native code compiler for a simple imperative language.

4.2 Structural Control Flow

The next language in the family introduces control flow constructs: branching and looping. Two
assignments are scheduled for this language: for the first, a parser and reference interpreter have to
be implemented, for the second — the compiler and interpreter for the stack machine and native code
compiler.



D. Berezun, D. Boulytchev 29

start :
JcK
JZ exit (?)
JsK
JMP start

exit :

(a) Naı̈ve

JMP cond
loop :

JsK
cond :

JcK
JNZ loop

(b) Advanced

Figure 6: A naı̈ve and advanced implementations for while c do s od

With this language, we introduce the students to the notion of a syntax extension, or “desugaring”.
On abstract syntax level, we only introduce a simplistic branching construct

i f c then s1 else s2 f i

However, in concrete syntax we add two derived forms: a reduced one with no “ else ” part and a
multiple-branching form

i f c1 then s1
e l i f c2 then s2
. . .
e l i f ck then sk
else sk+1
f i

and require to convert these derived forms during the parsing stage into the basic AST using the
obvious rules. Similarly, at the abstract syntax level, we introduce a basic looping construct

while c do s od

while in concrete syntax we add a derived form

for s1 , c , s2 do s3 od

which should be converted into

s1 ; while c do s3 ; s2 od

Thus, we show how using a simple method a language can be “pumped” with a variety of constructs.
And here comes a counterexample: we demonstrate, that this method cannot be used to implement a
post-condition looping construct. Indeed, an obvious conversion rule

do s while c od ; s ; while c do s od (?)

would lead to an exponential growth of AST in the case of nested loops. Thus, instead, we ask
the students to devise a direct big-step operational semantics for post-condition loops in such a way the
relation (?) holds, and implement the construct in a direct style.

In the stack machine, all control flow constructs are represented using labels and conditional/uncon-
ditional jumps. The correspondence between stack machine code and native code is almost one-to-one,
so the main job has to be done at the stack machine compilation stage. Here we address two subtleties:



30 Reimplementing a Wheel

ref x : Ref x : Val ignore x : Void x ∈X

z : Val ignore z : Void z ∈ N

l : Val , r : Val
l⊕ r : Val

l : Val , r : Val
ignore l⊕ r : Void

skip : Void

l : Ref , r : Val
l := r : Val

l : Ref , r : Val
ignore ( l := r) : Void

read (x) : Void

e : Val
write (e) : Void

s1 : Void , s2 : a
s1;s2 : a

e : Val , s1 : a, s2 : a
if e then s1 else s2 fi : a

e : Val , s : Void
while e do s od : Void

e : Val , s : Void
do s while e od : Void

Figure 7: Inference system for expression well-formedness

• A naı̈ve conversion of control constructs into the composition of labels and jumps can lead to
a situation when an exit from a nested branching/looping construct is performed by a chain of
jump-to-jump instructions of the length proportional to the nesting level;

• There is a well-known technique of compiling precondition loops when an additional jump to the
condition test is introduced first which allows reducing the number of jumps in the body. In Fig. 6a
a naı̈ve loop implementation is shown with extra jump instruction marked by (?); a better version
is given in Fig. 6b. Here J•K denotes the result of code generation for a given construct.

For modern processors with branch prediction, neither of these subtleties are essential from the per-
formance standpoint. We, however, still consider discussing these issues an essential component of the
course.

4.3 Control-Flow Expressions

In the previous language, there were two main syntactic categories: expressions and statements.
Thus, one could not write

i f x then y else 3 f i + z

or

i f x then y else z f i := 3

etc. As we eventually plan to end up with a language with first-class functions, which is expected
to be essentially expression-type, we need to refactor the language by converting statements into expres-
sions.



D. Berezun, D. Boulytchev 31

var simpleStmt = memo $ eta syntax (
kSkip {Skip}
| x=lident s[”:=”] e=exp {Assn (x , e)}
| kRead x=inbr[s (”(”) , lident , s (” )” ) ] {Read (x)}
| kWrite e=inbr[s (”(”) , exp , s (” )” ) ] {Write (e)}
| kWhile e=exp b=inbr[kDo , stmt , kOd] {While (e , b)}
| kDo s=stmt kWhile e=exp kOd {DoWhile (s , e)}
| . . . ) ;

(a) Simple semantic actions

var primary = memo $ eta syntax (
. . .
loc=pos kSkip {fun (a) {assertVoid (a , Skip , loc)}}
| loc=pos kRead x=inbr[s (”(”) , lident , s (” )” ) ] {fun (a) {assertVoid (a , Read (x) , loc)}}
| loc=pos kWrite e=inbr[s (”(”) , exp , s (” )” ) ] {fun (a) {assertVoid (a , Write (e (Val)))}}
| loc=pos kWhile e=exp b=inbr[kDo , exp , kOd] {fun (a) {assertVoid (a , While (e (Val) , b (Void ) ) , loc)}}
| loc=pos kDo s=exp kWhile e=exp kOd {fun (a) {assertVoid (a , DoWhile (s (Void) , e (Val ) ) , loc)}}
| . . . ) ;

(b) Semantics actions in the form of inference system

Figure 8: Parser implementation with simple semantic actions vs. semantic actions in the form of infer-
ence system

The only assignment at this point is the first non-incremental one. Although no new constructs are
introduced in the languages, the syntactic roles of some of them change, which amounts to an essential
refactoring of the compiler. Fortunately, this refactoring primarily concerns parser. All other components
of the compiler have to undergo only cosmetic changes.

The main problem which has to be addressed now is the problem of AST well-formedness. Indeed,
in the previous language, the well-formedness could easily be enforced syntactically. Now, however, we
need a more elaborated way to prevent one from writing a “meaningless” code like

while x do skip od := y

or

skip + 3

For this purpose, we equip the language with a simple effect system, which assigns a certain kind to
each expression. The kinds are propagated in a top-down manner, and are used both to check and infer
well-formed AST.

There are three kinds: Ref , Val , and Void , which correspond, respectively, to a reference (an
expression in assignment position), integer value, or an empty value. Additionally, there are two specific
nodes in the AST — “ ignore ” and “ ref ” — which do not have a direct representation in the concrete
syntax. These nodes are inferred in order to make the AST well-formed. The topmost kind is always
Void .

The inference system for kinds is shown in Fig. 7; we demonstrate how it works by example. Let us
have the following expression:

i f x then y else z f i := 2

The topmost kind is Void , and the topmost construct is an assignment. Thus, the only possible
well-formed AST which can be inferred is



32 Reimplementing a Wheel

ignore ( i f x then y else z f i := 2) : Void

under the assumptions

i f x then y else z f i : Ref

and

2 : Val

The second one checks immediately; the first one is reduced to

x : Val
y : Ref
z : Ref

which finally gives us the following well-formed AST:

ignore ( i f x then ( ref y) else ( ref z) f i := 2)

The inference system is implemented directly in the parser. As we noticed earlier, the kinds are
propagated in a top-down manner and the only inference steps are those inserting extra ref / ignore AST
nodes. This can be easily implemented by lifting parser semantic actions into kind-accepting functions.
Thus, a function that takes a top-level kind is returned from the parser. By applying this function to
Void we either get a well-formed AST or fail with an error. An example of parser implementation
with simple/lifted semantic actions is shown in Fig. 8. For the assignment, we give students a partially-
refactored parser and ask them to complete it.

4.4 Scopes of Definitions and Functions

The next language in the family adds scopes of definitions and functions. Although functions in this
language can be syntactically nested, at this stage they cannot use the declarations from the enclosing
functions yet; later we implement closure conversion, a general technique for first-class functions.

The declarations come in two flavors — for variables (mutable) and values (immutable). Of course,
these constructs are introduced at the expression level in the form of scope expressions. Additionally,
the existing parser is modified by allowing scope expressions in a number of contexts (for example, in
the branches of conditional expressions, etc.) Two assignments are scheduled for this language. In the
first, scope expressions and functions have to be implemented in the parser and reference interpreter. In
the interpreter, the scopes are represented in a direct way as lists of declarations and their values. In the
second assignment, a compiler for stack machine and native-code compiler have to be implemented; the
main work has to be done at stack machine level since the correspondence between stack machine and
native code is almost one-to-one. Unlike reference interpreter, in stack machine all local definitions in a
function have to be accumulated and properly addressed; in addition, in machine code calling conventions
have to be respected and activation records of functions have to be properly organized.

4.5 Arrays, Strings and Builtins

All previous languages in the family operated only with scalar integer values. The next one intro-
duces the constructs to deal with arrays and strings; in particular, it puts to work the notion of builtin
functions — predefined functions which the compiler is aware of.

Arrays and strings are introduced by adding new kinds of expressions:



D. Berezun, D. Boulytchev 33

Figure 9: The representation of boxed data

• string, character, and array constants;

• indexing expressions.

It is assumed that indexing expressions can be used both to extract an element from array/string as
well as to assign to an element; the kind inference system described in Section 4.3 is modified to handle
the new kinds of expressions.

As arrays and strings are represented by references, in operational semantics an abstraction of mem-
ory is introduced in a conventional way. It is interesting, however, that in reference interpreter no explicit
representation for memory abstractions is needed. Indeed, as the implementation language coincides
with source one, it is already natively equipped with exactly the same abstractions. In other words, in
reference interpreter, we can represent arrays by arrays and strings by strings, which delivers us the
expected behavior.

At this stage, for the first time, we need non-trivial support from the runtime library. In all previous
languages, the runtime support library only included two primitives for reading/writing integer values
from standard input and output. For arrays and string we need, first, to define their representation in
memory and, second, to provide a number of builtin functions.

The generic layout for arrays/strings is shown in Fig. 9. Both are represented as a contiguous region
of memory (buffer) preceded by a header. The header contains some supplementary information (in
particular, a tag to distinguish strings from arrays, and the length of the buffer; later a few bits are
allocated in the header for garbage collection support). The difference between string and arrays is that
for strings the length of the buffer is calculated in bytes, while for generic arrays — in words. In addition,
an extra ending zero is kept at the end of a string. The interesting part is that both strings and arrays are
represented in λaMa programs by a pointer to the beginning of the buffer, not to the header. This trick
makes it possible to mimic data representation compatible with GLIBC (in particular, it makes it possible
to pass λaMa strings as arguments to GLIBC functions). The same layout will be later used for the rest
of the data structures in λaMa — S-expressions and closures.

The set of builtin functions for array/string support includes those for creating arrays and strings,
assigning to an element, and taking an element by an index. All of them are implemented in C, some of
them take a variable number of parameters. We provide the students with these functions implementation.
The assignment at this stage includes studying the runtime and implementing arrays/strings at all levels
of the compiler — the reference interpreter, extended stack machine, and native code.

4.6 Fixnum Arithmetic

In λaMa numbers are represented in a fixnum form with the least significant bit of a value always
set to 1. This representation makes it possible to tell pointers apart from scalar values, which is essen-
tial for a number of language features support (in particular, pattern matching and garbage collection).



34 Reimplementing a Wheel

var primary = memo $ eta syntax (
. . .
loc=pos kSkip {fun (a) {assertVoid (a , returnST $ Skip , loc)}}
| loc=pos kWhile e=exp b=inbr[kDo , scopeExpr , kOd] {

fun (a) {
assertVoid (a , e (Val) ⇒⇒ fun (e) {

b (Void) ⇒ fun (b) {
While (e , b)
}} ,

loc)
}
}
| loc=pos kDo s=scopeExpr kWhile e=exp kOd {

fun (a) {
assertVoid (a , s (Void) ⇒⇒ fun (s) {

e (Val) ⇒ fun (e) {
distributeScope (s , fun (s) {DoWhile (s , e)})
}} ,

loc)
}
}
| . . . ) ;

Figure 10: Lifting semantic actions into a state monad

An assignment to introduce fixnum representation is the second non-incremental one since it requires
reimplementation of arithmetic binary operators support in the native code compiler. No changes to the
language itself are made at this stage.

4.7 S-expressions

In this assignment, S-expressions are introduced into the language. Similar to arrays/strings, this
requires a number of runtime functions to be implemented. In memory S-expressions are represented
similarly to arrays and strings (see Fig. 9); however, an additional word is required to store the symbol
itself. In the current implementation the first five characters of the symbol are packed into a 32-bit word;
thus, the symbols are distinguished only by their first five characters.

Since S-expressions are represented similarly to arrays, they can be operated in a similar way. In
particular, they can be indexed and their subvalues can be assigned. For example, the following equalities
hold

A (1 , 2) [1] == 2
A (B (3)) [0][0] == 3
length (C (1 , 2 , 3)) == 3

et cetera.

4.8 Pattern Matching

In the support of pattern matching, we again use desugaring in order to simplify the implementation.
Namely, we desugar bindings in patterns into a number of value declarations. For example, the following
source-level expression

case f (x + y) of



D. Berezun, D. Boulytchev 35

A (_ , n) → n
| B (C (k , l ) ) → k + l
esac

is desugared into

val s = f (x + y ) ;
case s of

A (_ , _) → val n = s [1] ; n
| B (C (_ , _ ) ) → val k = s[0][0] , l = s [0] [1] ; k + l
esac

This approach greatly simplifies the support for pattern bindings by reducing it to already imple-
mented support of nested declaration scopes. On the other hand, the desugaring has to be implemented
properly. As, generally speaking, we need fresh names to bind scrutinees to, we need to reimplement the
parser again, this time lifting the semantic actions into a state monad. The snippet from parser imple-
mentation is shown in Fig. 10.

Two assignments are scheduled for this language. First, the support for pattern matching has to be
implemented in the parser and reference interpreter; this assignment, again, is not incremental since it
involves the refactoring of the whole parser. Second, the support for pattern matching in stack machine
and native-code compiler has to be implemented. As a rule, students use a simple top-down branching
in their implementations, although we discuss in the class more elaborated methods for implementation
of pattern matching [24, 25].

4.9 Closure Conversion and First-class Functions

Implementing first-class functions constitutes the final step in the language family evolution. Two
assignments are scheduled for the task. In the first one first-class functions have to be implemented
in parser and reference interpreter. In parser besides the implementation of lambda-expressions call
expressions have also to be generalized to allow arbitrary expressions in the callee position. Surprisingly,
the support for first-class functions in the interpreter is not a hard task at all since we already have the
environments collected at the right places.

The second assignment involves implementing closure conversion. This step is performed during the
compilation to the stack machine code. First, a “draft” stack machine code is generated with placeholders
at closure initialization and call sites. During this first pass the following supplementary data structures
are built:

• function declarations nesting tree;

• immediate closure elements (i.e. immediately referenced declarations from enclosing scopes);

• function reference graph (which function references which).

The construction of these data structures is performed within a compilation environment which im-
plementation is provided as a part of the assignment; the students only need to call certain methods at
certain places. After these data structures are built, the closure conversion can be implemented by prop-
agating immediate closure elements using a function reference graph and function nesting tree. Then the
stack machine code generated during the first pass is traversed yet again and the placeholders for closure
initializations and calls are replaced with the correct instructions.



36 Reimplementing a Wheel

Once stack machine code is generated, the implementation of the native-code compiler becomes
straightforward. The closures are represented in a similar way as other data structures, so certain support
from the runtime library has to be provided.

4.10 Memory Management

In this assignment, the students are offered to implement a memory manager equipped with one of
the basic garbage collection algorithms — mark-and-copy. The assignment consists of two parts. The
first one is to implement a two-space heap with a simple sequential allocator which initializes garbage
collection in case the active space is full. The second is a garbage collector implementation consisting
of two classical subtasks: root identification and mark-and-copy phase. In order to identify all roots, it
is necessary to traverse the call stack and the static area word-by-word and identify all pointers into the
heap. Due to the fixnum arithmetics, the last bit of each word is used to precisely distinguish pointers
from integers. Next, the marking phase is implemented by a recursive procedure which copies all the
live objects into the second space eliminating external fragmentation, lefts a forwarding pointer in the
object’s old location, traverses the object for heap pointers, and recursively calls the marking procedure.
Finally, the second space has to be traversed in order to change the pointers to new objects locations. An
additional optional challenge is to implement the marking procedure in an iterative manner with support
for recovery after the stack overflow.

5 Code Generation with Symbolic Interpreters

In this section, we describe the code generation approach which we use throughout the course. As
we could see from the previous sections, the course involves implementing a variety of constructs in a
tight schedule. This means that a robust method for code generation has to be used since otherwise the
amount of required debugging and testing efforts would exceed the students’ capacity.

Conventionally, code generation can be logically split into the following subtasks:

• Instruction selection: a decomposition of source program constructs into a sequence of concrete
machine instructions.

• Register allocation: an assignment of concrete registers as operands to selected instructions.

• Instruction scheduling: reordering instructions to make use of intrinsic parallelism of a concrete
processor.

As a rule, these tasks cannot be solved independently: for example, some instructions cannot be
chosen due to the lack of available registers at the moment; the way machine code can be scheduled
depends on which concrete instructions were selected, etc. Thus, in real-world compilers, multiple
passes are performed in order to eventually solve all the tasks. Finally, generating production-quality
code involves some combinatorial problems (for example, graph coloring) to be solved, which, in turn,
require specific supplementary data structures to be constructed. All this makes the process of code
generator implementation a very fragile and error-prone task that requires a lot of effort to debug and test
properly. However, in our course the task of implementing a code generator has to be solved multiple
times, and applying conventional approaches would require an unreasonable amount of effort.

There is, however, a simple method that makes it possible to perform instruction selection and regis-
ter allocation in one pass. The approach in question in fact is a part of compiler-writing folklore which
is used to be known under the name “abstract interpretation” before the term was taken by a framework



D. Berezun, D. Boulytchev 37

case i of
READ → case readWorld (w) of

[n , w] → [n : st , s , w]
esac

| WRITE → case st of
n : st→ [st , s , writeWorld (n , w ) ]

esac
| CONST (n) → [n : st , s , w]
| LD (x) → [s (x) : st , s , w]
| ST (x) → case st of

n : st → [st , s <− [x , n] , w]
esac

| . . .
esac

(a) Regular

case i of
READ →

case env .allocate of
[s , env] → [env , code <+

Call (”Lread”) <+
Mov (eax , s ) ]

esac
| WRITE →

case env .pop of
[s , env] → [env , code <+

Push (s) <+
Call (”Lwrite”) <+
Pop (eax ) ]

esac
| CONST (n) →

case env .allocate of
[s , env] → [env , code <+ Mov (L (n) , s ) ]

esac
| LD (x) →

case env .addGlobal (x ) .allocate of
[s , env] → [env , code <+> move (env .loc (x) , s ) ]

esac
| ST (x) →

case env .addGlobal (x ) .pop of
[s , env] → [env , code <+> move (s , env .loc (x ) ) ]

esac
| . . .
esac

(b) Symbolic

Figure 11: Regular vs. symbolic interpreters for stack machine

in the area of static analysis. The key idea is to use a symbolic interpreter for a language being compiled
which operates on locations of data instead of the data itself. Thus, the task of implementing a code gen-
erator reduces to the task of implementing yet another interpreter, making the whole approach scalable
and robust at the price of poorer code quality.

We demonstrate the code generation with the symbolic interpreter at work by the following simple
example. Assume we have a stack machine with the following instructions:

• LD x — loads a value of a global variable x onto the stack;

• ST x — stores a value from the top of the stack into a global variable x;

• CONST n — puts a constant n onto the stack;

• BINOP⊗ — performs a binary operation “⊗” on the top two positions of the stack and puts the
result back.

This stack machine is actually an essential subset of that for the first assignment. Let us have the
following stack machine code:

CONST 1
LD x
BINOP +
ST y

A conventional stack machine interpreter would operate on a stack of numbers; the symbolic one,
however, operates on a stack of locations w.r.t. hardware architecture (in our case, X86-32). We can



38 Reimplementing a Wheel

assume that each location is either a hardware register (%eax, %ebx, ... ) or a position on the hardware
stack (S (0), S (1), S (2) etc., later converted into −4(%ebp), −8(%ebp), etc.) The evaluation steps of
the symbolic interpreter update the content of the symbolic stack and emit corresponding machine code,
which can be summarized as the following table:

Stack before Stack machine instruction Stack after Machine instruction emitted
{} CONST 1 {%eax} movl $1, %eax

{%eax} LD x {%eax, %ebx} movl $x, %ebx

{%eax, %ebx} BINOP + {%eax} addl %ebx, %eax

{%eax} ST y {} movl %eax, $y

The rightmost column accumulates generated code. As one may notice we in fact generated extra
instructions in this very short example (in X86-32 the effect can be expressed with a single instruction).
However, it’s rather clear that with this simplistic method the number of generated machine instructions
cannot be less than the number of stack machine instructions. In Fig. 11 the snippets from two interpreters
of the second assignment — regular and symbolic — are shown. In the symbolic one, all the operations
on the symbolic stack are implemented by means of an immutable environment (env); otherwise, the
structure of the interpreters is very similar.

There is a number of considerations that have to be taken into account in order for this method to work
properly. First, an essential invariant that has to be preserved is the order of allocations on the symbolic
stack, which has to be fixed. With the fixed order of symbolic stack allocation, we can always recover
the contents of the stack from its depth. A reasonable solution is to allocate the registers first (and in a
fixed order) and only when the depth of the stack exceeds the number of available registers we allocate
hardware stack slots. The motivation for this is very clear: we use registers first since they provide better
performance. An interesting question is the efficiency of the register allocator, implemented this way. In
our case, taking into account the way the stack machine compiler generates code, registers are assigned
in a bottom-up left-to-right traversal of an expression tree. It is known [8, 30] that for n registers this
method allows generating a machine code with no spilling for a balanced tree with 2n−1 nodes, which
is not bad at all.

Another issue with the symbolic interpreter is that in fact it sometimes performs steps that are never
taken by a conventional one. Indeed, the conventional one interprets the program in a normal way,
making use of available actual data. In particular, it performs conditional and unconditional jumps as
prescribed by their semantics. In contrast, the symbolic interpreter traverses the program once in a top-
down manner, thus taking some branches which in fact are never taken by the regular interpreter — for
example, while the regular one jumps to an appropriate label when it encounters an unconditional jump,
the symbolic one goes to the next instruction. These observations raise the question if the symbolic
interpreter approach can work at all.

Fortunately, it can be shown that stack machine programs generated by the stack machine compiler,
in fact, possess the following important invariants:

A: no unreachable code is introduced;

B: all instructions are always performed with the same stack depth;

C: for each label there is at least one preceding instruction that jumps (conditionally or uncondition-
ally) to this label.



D. Berezun, D. Boulytchev 39

These properties obviously do not hold for stack programs of general shape; thus, a symbolic in-
terpreter approach works properly only by being coupled with a specific stack machine compiler. The
invariants we mentioned above can be put at work as follows:

• By invariant A for each label the depth of the stack is the same since labels are instructions.

• When we encounter a jump (conditional or unconditional) we associate the current stack level with
corresponding label; by the invariant C, every label will be associated with a certain depth during
the top-down traversal prior to visiting.

• When we encounter an unconditional jump, the next instruction has to be a label (otherwise the
next instruction is unreachable, which contradicts the invariant A), and this label has already a
stack depths associated with it. Thus, we can reconstruct the stack contents and continue.

• When we encounter a conditional jump, nothing has to be done additionally since the next instruc-
tion corresponds to a fallthrough branch.

With these invariants preserved there is not much difference in implementation between the symbolic
interpreter and the regular one. As the target language evolves so does the stack machine (new instruc-
tions are added gradually), and these instructions have to be interpreted properly by both regular and
symbolic interpreters. Since in each assignment regular interpreter is implemented (and tested) before
the symbolic one, writing a code generator becomes rather a routine task.

Another issue that has to be addressed is if this method of code generation worth studying from a
didactic standpoint. As we’ve shown before, by choosing a symbolic interpreter we traded code quality
for the simplicity of the code generation approach; in addition, we completely omitted from consideration
the methods which are actually used in production compilers implementation. The question is if we
sacrificed too much. We argue that we actually did not.

From a didactic point of view, while we, indeed, do not consider advanced code generation methods
like bottom-up rewriting systems [29, 18, 17] or register allocation by coloring [23, 14, 14], we still
present the students with the tasks of instruction selection and register allocation, albeit in a very simple
form. They still need to study the instruction set of a concrete real-world processor, the assembly lan-
guage, calling conventions, etc., and they have a certain freedom in controlling the quality of the code
they generate. Thus, for the first-time encounter with the essence of native code generation, they already
have enough on their plates. At the same time, while, indeed, the generated code comes 2-3 times slower
than when using more advanced techniques, it actually much faster than could be produced by other
methods with comparable simplicity (for example, threaded code).

Finally, we have to note, that actually the stack machine compiler is organized in the same way as a
symbolic interpreter of the source language. Thus, we put the same idea to work twice.

6 The Course Trivia, Results, and Students’ Feedback

In this section, we present some technical details concerning the organization of the course; we also
summarize the results of the post-course anonymous surveys which were collected during the last three
semesters.

The course is being taught at a number of universities in Saint Petersburg, Russia. Initially, those
included the Saint-Petersburg University1, the Saint-Petersburg Department of the Higher School of

1https://english.spbu.ru

https://english.spbu.ru


40 Reimplementing a Wheel

Economics2, and the ITMO University3. However, the unfolding of the coronavirus pandemic forced the
course to go online, which made it possible for the students from other cities of Russia to join. For now,
those include Nizhni Novgorod, Novosibirsk, and Moscow.

We put the following soft prerequisites for the course:

• hardware architecture and assembly language programming;

• formal languages and grammars;

• functional programming.

We cannot put these as strong prerequisites, however, due to the diversity of curricula in different
universities. However, our experience shows that these requirements are partially fulfilled by the majority
of the students.

There are 50-80 attendees each semester. As students come from different universities with different
programs and different specializations, and for some of them the course is mandatory, we offer them a
choice of a “lightning” division: a test of 100+ questions for the grade C (3 of 5, “satisfactory” in Russian
grading system), instead of the regular assignments. Around 1/3 of students usually take this route.

For the rest, we announce a GITHUB repository4, in which all the assignments are being published
as the course proceeds. Each assignment is put in a separate branch and contains the implementation
of the compiler for relevant language with some parts replaced by placeholders. The students fill in
these parts and use provided tests to debug and fix the errors. When they have all the tests passed
locally, they make pull requests to the parent repository. Each pull request is built and test on the CI
server via the GITHUB to TRAVIS CI integration. The results of CI build are analyzed and accounted
for automatically. Additionally, we selectively review pull requests in order to identify plagiarism or
make recommendations. The deadline for each assignment is set for one week with yet another week
added as a grace period. In addition to regular weekly lectures, we also provide the students with live
support via TELEGRAM chat, where they can ask general and concrete technical questions, complain
about assignment incompleteness, etc.

Our experience shows that among those students who have chosen the “hard way” around 25% form
a motivated core, whose members complete the assignments on time, ask questions in the chat, suggest
various improvements, and even implement some optimizations in the compiler besides those required
by the assignments. Overall, we do not feel that the students have any essential problems with the course,
and by the end of a semester we, indeed, have 15-20 compilers freshly baked.

By the end of the course, we ask students to provide us some feedback in the form of a survey. The
average results over the last three semesters are as follows:

• The vast majority qualified the course material as new for them (42% — completely new, 58% —
mostly new);

• 42% qualified the material as potentially irrelevant to their future professional activity; 25% as
relevant, and the rest as partially relevant;

• An essential fraction complained about the lack of a type system in λaMa (prior to the spring of
2020 — about the type system in OCAML);

• A self-estimated weekly workload for completing the assignments were estimated as 10+ hours by
20% of students, 7-9 hours by 20% of students, 4-6 hours — by the rest 60%.

2https://spb.hse.ru/en
3https://en.itmo.ru
4The current one: https://github.com/danyaberezun/compilers-2021-spring

https://spb.hse.ru/en
https://en.itmo.ru
https://github.com/danyaberezun/compilers-2021-spring


D. Berezun, D. Boulytchev 41

We would like to complete this section by citing two drastically different students’ summaries:

Writing a compiler for λaMa in λaMa was a terrible thing when you had no experience
with neither λaMa nor its relative language OCAML.

A very pleasant thing was that λaMa was developed specifically for the course and was
truly convenient for compiler implementation, especially if one had no prior experience with
OCAML.

7 Related Work

In this section, we survey some works which we consider related to our course. The amount of
existing literature on compiler construction is enormous, and there are hundreds of compiler construction
courses around. Thus, it would be virtually impossible to cite and compare with everyone. Instead, we
mention here some of those which we found the most relevant to the objectives and the structure of our
course, or which were served as the source of our inspiration.

No paper on compiler construction can manage without mentioning the classical “behemoths” in the
area [27, 26, 9], including probably the earliest one [10], which, from the standpoint of modern com-
piler implementation, now can be only of historical interest. These works were never designed as short
(one-semester) introductions to the subject. Instead, they present a comprehensive and close to complete
survey of relevant methods for productive-level compiler construction. An attempt to implement a com-
piler using all the covered techniques would end up by another infrastructure like GCC or LLVM. At the
same time, these books can be used to compile a short course by carefully choosing the topics considered
relevant. We can categorize our course as a prerequisite for a fearless reading of these books.

A classical book by Wirth [32] and a more recent series of books by Appel [11, 13, 12] take a
similar to our approach. In [32] an implementation of a compiler for OBERON-0 language (a simplified
OBERON) is considered in details. The compiler itself is written in OBERON and generates an idealized
RISC code, so the approach is very close to ours. In [11, 13, 12], a compiler from a model language
TIGER to MIPS processor is chosen for the reference. In both approaches, the source languages belong to
procedural/object-oriented family (in particular, they do not provide the support for first-class functions,
S-expressions or pattern matching). In addition, in contrast to our approach, the compilers are constructed
in a horizontal manner, from complete frontends to complete code generators.

We have also to mention an interesting works [16, 15] on retargetable compiler for ANSI C. Being
written in ASNI C itself, it can be bootstrapped and represents an interesting attempt to implement a
self-contained retargetable compiler. As a code generation engine bottom-up-rewriting system [29] is
used, and bin-packing is utilized for register allocation.

In [19] a very similar to ours approach — incremental compiler construction, — is reported. A
subset of SCHEME is implemented in SCHEME as an evolving family of languages. Each language
incrementally extends the previous one (hence the name), and the implementation is organized vertically.
However, the code generation follows a more direct approach with no intermediate representation in the
form of stack machine code. We argue, that this representation is important from both pedagogical and
technical standpoints as it introduces yet another level of abstraction, allows earlier detection of certain
errors, and makes the retargeting simpler. In addition, no garbage collector is implemented (but this can
be considered as rather an incompleteness of the implementation). An incremental approach has directly
influenced the course on compiler construction at Indiana University5, and a corresponding textbook is

5https://iu.instructure.com/courses/1735985

https://iu.instructure.com/courses/1735985


42 Reimplementing a Wheel

going to be published by MIT Press in 2022.
Finally, we can mention a work on CHOCOPY [28] — a compiler for a subset of PYTHON to RISC-

V, written in PYTHON. The compiler is implemented in a horizontal manner; in contrast to regular
PYTHON, in CHOCOPY first-class functions are not supported.

In conclusion, we can state that, to our knowledge, currently there is no course on compiler construc-
tion that would incorporate all the following features at the same time:

• The source language coincides with the implementation one.

• The compiler is gradually implemented for an evolving family of languages.

• For each language its operational semantics is provided, as well as for abstract machine used as an
intermediate representation.

• As a result a self-contained code generator for a real hardware processor is implemented with no
heavy compiler construction infrastructure used.

8 Conclusion and Future Work

We shared here our experience on teaching compiler construction with a simple native code compiler
implemented from scratch. Several further improvements to our work can be done. First, we consider
extending the native code part to a few new targets, for example, X86-64. Then, we plan to address the
performance issues with the generated code. We consider generating efficient native code with symbolic
interpreters an interesting research problem. We can also consider extending the language with more
advanced features — objects, continuations, or some means for concurrent/parallel programming.

References

[1] GCC, the GNU Compiler Collection. Available at https://gcc.gnu.org/.

[2] GraalVM. Available at https://www.graalvm.org/.

[3] Haskell Language. Available at https://www.haskell.org.

[4] Lama Language and Compiler. Available at https://github.com/JetBrains-Research/Lama.

[5] The LLVM Compiler Infrastructure. Available at https://llvm.org/.

[6] OCaml Language. Available at https://www.ocaml.org.

[7] WebAssembly. Available at https://webassembly.org/.

[8] A. V. Aho & S. C. Johnson (1976): Optimal Code Generation for Expression Trees. J. ACM 23(3), p.
488–501, doi:10.1145/321958.321970.

[9] Alfred V. Aho, Ravi Sethi & Jeffrey D. Ullman (1986): Compilers: Principles, Techniques, and Tools.
Addison-Wesley Longman Publishing Co., Inc., USA.

[10] Alfred V. Aho & Jeffrey D. Ullman (1972): The Theory of Parsing, Translation, and Compiling. Prentice-
Hall, Inc., USA.

[11] Andrew W. Appel (2004): Modern Compiler Implementation in ML. Cambridge University Press, USA.

[12] Andrew W. Appel (2007): Modern Compiler Implementation in Java. Foundation Press, Inc., USA.

[13] Andrew W. Appel & Maia Ginsburg (1998): Modern Compiler Implementation in C. Press Syndicate of the
University of Cambridge.

https://gcc.gnu.org/
https://www.graalvm.org/
https://www.haskell.org
https://github.com/JetBrains-Research/Lama
https://llvm.org/
https://www.ocaml.org
https://webassembly.org/
http://dx.doi.org/10.1145/321958.321970


D. Berezun, D. Boulytchev 43

[14] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E. Hopkins & Peter W.
Markstein (1981): Register Allocation via Coloring. Comput. Lang. 6(1), p. 47–57, doi:10.1016/0096-
0551(81)90048-5.

[15] Christopher W. Fraser (1991): A Retargetable Compiler for ANSI C. SIGPLAN Not. 26(10), p. 29–43,
doi:10.1145/122616.122621.

[16] Christopher W. Fraser & David R. Hanson (1995): A Retargetable C Compiler: Design and Implementation.
Addison-Wesley Longman Publishing Co., Inc., USA.

[17] Christopher W. Fraser, David R. Hanson & Todd A. Proebsting (1992): Engineering a Simple, Efficient Code-
Generator Generator. ACM Lett. Program. Lang. Syst. 1(3), p. 213–226, doi:10.1145/151640.151642.

[18] Christopher W. Fraser, Robert R. Henry & Todd A. Proebsting (1992): BURG: Fast Optimal Instruction
Selection and Tree Parsing. SIGPLAN Not. 27(4), p. 68–76, doi:10.1145/131080.131089.

[19] A. Ghuloum (2006): An Incremental Approach to Compiler Construction. Scheme and Functional Program-
ming.

[20] Anastasia Izmaylova, Ali Afroozeh & Tijs van der Storm (2016): Practical, General Parser Combinators. In:
Proceedings of the 2016 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation, PEPM
’16, Association for Computing Machinery, New York, NY, USA, p. 1–12, doi:10.1145/2847538.2847539.

[21] Mark Johnson (1995): Memoization in Top-down Parsing. Comput. Linguist. 21(3), p. 405–417.
[22] Chris Lattner & Vikram Adve (2004): LLVM: A Compilation Framework for Lifelong Program Analysis &

Transformation. In: Proceedings of the International Symposium on Code Generation and Optimization:
Feedback-Directed and Runtime Optimization, CGO ’04, IEEE Computer Society, USA, p. 75.

[23] S.S. Lavrov (1962): Store economy in closed operator schemes. USSR Computational Mathematics and
Mathematical Physics 1(3), pp. 810–828, doi:10.1016/0041-5553(63)90176-9.

[24] Fabrice Le Fessant & Luc Maranget (2001): Optimizing Pattern Matching. SIGPLAN Not. 36(10), p. 26–37,
doi:10.1145/507669.507641.

[25] Luc Maranget (2008): Compiling Pattern Matching to Good Decision Trees. In: Proceedings of the 2008
ACM SIGPLAN Workshop on ML, ML ’08, Association for Computing Machinery, New York, NY, USA,
p. 35–46, doi:10.1145/1411304.1411311.

[26] Robert Morgan (1998): Building an Optimizing Compiler. Digital Press, USA.
[27] Steven S. Muchnick (1998): Advanced Compiler Design and Implementation. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA.
[28] Rohan Padhye, Koushik Sen & Paul N. Hilfinger (2019): ChocoPy: A Programming Language for Compil-

ers Courses. In: Proceedings of the 2019 ACM SIGPLAN Symposium on SPLASH-E, SPLASH-E 2019,
Association for Computing Machinery, New York, NY, USA, p. 41–45, doi:10.1145/3358711.3361627.

[29] E. Pelegrı́-Llopart & S. L. Graham (1988): Optimal Code Generation for Expression Trees: An Application
BURS Theory. In: Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’88, Association for Computing Machinery, New York, NY, USA, p. 294–308,
doi:10.1145/73560.73586.

[30] Ravi Sethi & J. D. Ullman (1970): The Generation of Optimal Code for Arithmetic Expressions. J. ACM
17(4), p. 715–728, doi:10.1145/321607.321620.

[31] A. van Wijngaarden (1969): Report on the Algorithmic Language ALGOL 68. Printing by the Mathematisch
Centrum.

[32] N. Wirth (1996): Compiler Construction. International computer science series, Addison-Wesley. Available
at https://books.google.de/books?id=GDUzAAAAMAAJ.

http://dx.doi.org/10.1016/0096-0551(81)90048-5
http://dx.doi.org/10.1016/0096-0551(81)90048-5
http://dx.doi.org/10.1145/122616.122621
http://dx.doi.org/10.1145/151640.151642
http://dx.doi.org/10.1145/131080.131089
http://dx.doi.org/10.1145/2847538.2847539
http://dx.doi.org/10.1016/0041-5553(63)90176-9
http://dx.doi.org/10.1145/507669.507641
http://dx.doi.org/10.1145/1411304.1411311
http://dx.doi.org/10.1145/3358711.3361627
http://dx.doi.org/10.1145/73560.73586
http://dx.doi.org/10.1145/321607.321620
https://books.google.de/books?id=GDUzAAAAMAAJ

	1 Introduction
	2 The -.5exa.2exM-.5exa Programming Language
	3 The Structure of the Compiler
	4 The Structure of the Course
	4.1 Straight-line Programs with Assignments
	4.2 Structural Control Flow
	4.3 Control-Flow Expressions
	4.4 Scopes of Definitions and Functions
	4.5 Arrays, Strings and Builtins
	4.6 Fixnum Arithmetic
	4.7 S-expressions
	4.8 Pattern Matching
	4.9 Closure Conversion and First-class Functions
	4.10 Memory Management

	5 Code Generation with Symbolic Interpreters
	6 The Course Trivia, Results, and Students' Feedback
	7 Related Work
	8 Conclusion and Future Work

