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Classes on compiler technology are commonly found in Computer Science curricula, covering
aspects of parsing, semantic analysis, intermediate transformations and target code genera-
tion. This paper reports on introducing certified compilation techniques through a functional
language approach in an introductory course on Compiler Construction. Targeting students
with little or no experience in formal methods, the proof process is highly automated using
the Why3 framework. Underlying logic, semantic modelling and proofs are introduced along
with exercises and assignments leading up to a formally verified compiler for a simplistic
imperative language.

This paper covers the motivation, course design, tool selection, and teaching methods,
together with evaluations and suggested improvements from the perspectives of both students
and teachers.

1 Introduction

Software and software correctness play an undoubtedly increasing role in our society. Correctness
of any software application typically relies on the correctness of the compiler at hand, where
miscompilation may introduce severe and hard to find errors.

Over the last decades, formal methods have been gaining momentum in the field, see e.g.,
the seminal work on CompCert C[8] and LLVM verification [9]. Besides correctness guarantees,
the adoption of formal methods forces rigorous semantic modelling and specifications from input
language throughout the compilation process. Thus, taking the outset of formal methods into a
Compiler Construction course may bring a deeper understanding of the principles of compilation
techniques with additional insight into modelling and proofs of programs generally applicable
to high assurance application development. So, could the concepts of certified compilation be
brought into education, targeting students without prior exposure to formal methods?

A challenging task no doubt, Compiler Construction in its own right covers a vast field, and
adopting formal methods without prior experience needs at least a fair introduction. At hand
we have in total 9 weeks of half time studies (7.5 ECTS credits1), so topics covered need to be
carefully selected. Additionally, exercises and labs should be designed as to maximize learning
outcome and motivate students to put in the work needed to gain deeper understanding.

In Section 2 we discuss and motivate the selection of tools and teaching approach, while
Section 3 details lectures and exercises. Section 4 discusses experiences gained from the first
installment of the course in 2016. Here we review students’ impressions and give a teacher’s
view. Furthermore, we discuss and detail ongoing improvements to the course (to be given fall
of 2018). In Section 5 we review related work, followed by Section 6 where we summarize our
contributions.

1European Credit Transfer System.

http://dx.doi.org/10.4204/EPTCS.295.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
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2 Course Design

The course in Compiler Construction (D7011E) has been given on a bi-annual basis over the last
two decades as an elective course to students of the Computer Science (CS) program at Luleå
University of Technology. The course has established a good reputation and typically attracts
some 20 students for each installment. For 2016 we decided on reshaping the course, not due
to shortcomings of the D7011E course per-se but rather a lack of formal methods in the CS
curriculum.

So why not a dedicated formal methods course? Well, the CS curriculum at LTU is already
stacked, and introducing a new course would call for removing another. This could have been
an option, we have a course on Formal Languages and Theory of Computation D7006E that
interleaves with D7011E on a bi-annual basis (which traditionally attracts only a handful of
students). However, bi-annual courses pose several problems. Firstly, from a teaching perspec-
tive the lack of continuity has clear disadvantages, and secondly, maintaining two interleaved
courses poses twice the burden. From a student’s perspective, bi-annual courses might be hard
to squeeze into their studies (as there are more selectable courses than open slots in the CS
program). Thus, replacing D7006E with a dedicated course in formal methods would clearly
run the risk of attracting very few students (or cause migration from the D7011E course).

Hence, we opted to reshape the existing Compiler Construction syllabus from a formal meth-
ods outset and incorporate selected topics of D7006E and eventually offer D7011E on a yearly
basis after phasing out D7006E from the curriculum.

2.1 Course Aims

Looking to the course aims of prior installments we find the following:

Course Aim (taken from the official course syllabus prior to 2016)
The student shall be able to

• Demonstrate the ability to identify and formulate compilation of a high-level
programming language into executable machine code as a multi-phase translation
process.

• Demonstrate the ability to implement a compiler for a non-trivial language using
appropriate methods.

• Demonstrate the ability to present and discuss the technological solutions chosen
for such an implementation in writing, in an international context.

• Demonstrate a considerable degree of specialized knowledge in the theoretical
foundations of compiler technology.

• Demonstrate the competence and skill to systematically use proven tools for
compiler construction.

• Demonstrate the ability to analyze and critically evaluate different aspects of
modern high-level languages on the basis of their underlying implementation
techniques.

Our ambition was to stay with the (already established) course aim and adopt formal methods
to improve understanding on the theoretical foundations of compiler technology, while providing
additional learning outcomes to high assurance programming (in and beyond the particular scope
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of Compiler Construction) by introducing semantic specifications, proof techniques etc.

However, there is no free lunch, and adopting formal methods requires at least a minimum
of background information on logic and methods to deductive reasoning beyond the assumed
pre-requisite of discrete mathematics (M0009M, given the first year of CS studies). Moreover,
in order to adopt formal methods, our input language needs to be sufficiently simple to allow
for semantic modelling and proven compilation. Hence realistically, advanced language features,
like object orientation, subtyping, type classes/traits, etc. will be out of reach for modelling and
proofs in an introductory course.

On the upside, theoretical concepts like Structural Operational Semantics (SOS) and seman-
tically preserving transformations (at heart of any language and associated compiler) becomes
tangible as being concretely integrated in the students’ developments. With this at hand, we
have the basis for discussing extensions of a simplistic language.

In order to cover both compilation techniques and formal methods in an efficient manner,
supporting tooling as well as teaching approach were carefully selected.

2.2 Tools

Firstly, a functional programming approach was selected in order to facilitate semantic modelling
and reasoning on programs. Secondly, we sought a verification platform with a manageable
learning curve. Among possible candidates we opted for OCaml2, backed by the Why33 platform
for logic reasoning and proofs of programs.

OCaml is a modern ML style functional language with an imperative layer and exception
handling (facilitating e.g., I/O programming without introducing monads4). OCaml has a rich
standard library and a plethora of supporting tools.

Why3 is a platform for deductive program verification, where the Why language is used for
logic (semantic) specifications, and the WhyML language for program implementations. Why3 in-
tegrates to a variety of Satisfiability Modulo Theories (SMT) solvers for discharging Verification
Conditions (VCs) generated for WhyML programs. While the process is highly automated, some
degree of interaction may be required for more complex proof cases. To this end, the user can
apply transformations on the generated VC(s), such as splitting, simplification, induction, etc.
The Why3 platform allows extraction of WhyML programs into OCaml, and thus provides a path
for certified programming (given the assumption that the Why3 platform and SMT solver(s) are
correctly implemented).

Thirdly, we opted for the OCaml Menhir5 parser generator, motivated by ease of use (well
documented, good error messages, etc.). Finally we decided on the MIPS 3k RISC architecture as
a target for code generation. In this way we could draw on the benefits of the students already
being familiar with the architecture as being introduced in a prior course in Microcomputer
Engineering (D0013E). Moreover, we could re-use tooling for the compiler backend (binutils

assembler and linker) as well as the in-house development SyncSim for RTL emulation.

2https://ocaml.org/
3http://why3.lri.fr/
4For most of the students, this was their first exposure to functional/declarative programming.
5http://gallium.inria.fr/~fpottier/menhir/
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2.3 Teaching Approach

In this course the students installed the necessary tooling on their self hosted laptops. Students
brought their computers to the lectures as well as laboratory sessions. The lectures were designed
to interleave the introduction of theoretical concepts with hands on demonstrations. With their
laptops at hand, the students could replay the examples during class. In this way, theory and
practise could be brought together, with the potential benefit of improved attention.

Laboratory assignments were designed to focus on underlying principles and concepts. In
order to maximize efficiency, the students were given boilerplate code/solutions as a baseline for
their own development.

Assignments were designed in an open ended fashion, with a minimal requirement for passing
each associated topic (e.g., resolving parsing conflicts, construction of a virtual machine with
proof of partial correctness to its SOS specification, etc.), with optional requirements towards
higher grades. A high degree of freedom for extending/improving on the assignments were given,
e.g., adopting more rigorous models and proofs, and/or putting efforts in implementing further
code generation optimization techniques.

To further motivate the students, the “best compiler” was crowned at the end of the course.

3 Lectures, exercises and assignments

3.1 Course design and week by week agenda

For 2016, the week by week agenda was outlined as follows:

w1 Introduction, tools, lexing and parsing.

w2 Building your compiler frontend.

w3 Logic and deductive program verification.

w4 “imp” semantics and building a virtual machine (VM).

w5 Proving correctness of the VM.

w6 MIPS backend for “imp”.

w7 Hoare logic and verification condition generation for “imp”.

w8 Optimal and proven register assignment.

w9 Examination (individual grading)

As seen, the agenda is quite dense, giving roughly 2 weeks for the frontend (lexing/pars-
ing/AST generation), 3 weeks for program logic (proof techniques and verification of a VM for
“imp”), and 3 weeks for the compiler backend (MIPS assembly code generation), encompassing
register allocation and rewriting optimizations.

3.2 Lecture by lecture breakdown

Lectures were given in a fairly traditional format, each lecture being two times 45 minutes with
a short break. Students were encouraged to bring their laptops to follow and replay examples
throughout the lectures. In the following we outline the lecture contents as of 2016.
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1. Introduction. In the first lecture we cover course texts (Compilers: principles, techniques
and tools [1]) and Real World OCaml [6]), an overview of Compiler Technology (introduc-
ing concepts of lexing, parsing into AST representation, desugaring, semantic analysis,
linearisation to SSA, high level optimization, RTL level optimization, and ABI confor-
mance). A special focus was given to miscompilation and correctness (GNU C lexing [4],
LLVM SSA optimizations [9]), and the CompCert C certified compiler [8]). The use of
compilation techniques outside compilers were covered, such as the general use of parsers,
transformations and optimizations. A first informal description of the simple imperative
“imp” language was introduced.

2. Tools. The second lecture covers the tooling involved. The programming language OCaml,
its package manager opam and the suggested Eclipse plugin OcaIDE; the LR(1) parser gen-
erator menhir (producing a shift/reduce parser in OCaml); and two verification platforms
(Coq and Why3). In an accompanying tutorial session the students installed the tools on
their own (or lended) laptops, with the assistance of a TA.

3. Compiler Frontend. The third lecture covers lexical analysis, regular expressions and
practical details of the menhir parser generator. Moreover the lecture introduces EBNF
grammars with examples to parse Boolean and arithmetic expressions. The concept of
algebraic data types in OCaml is introduced. Thanks to the extraction of WhyML models
to OCaml, the generated parser and extracted code can share the same AST definition.
The lecture is accompanied with a lab assignment where the students implement new
lexing rules (for strings). A parser for “imp” (syntax) programs into a common AST
(shared with WhyML) is provided, however it is ambiguous. The tasks for the students are to
identify conflicts and come up with a conflict free grammar with well defined precedence
and associativity rules. Ambitious students are encouraged to extend the core “imp”
language with additional constructs (later to be desugared into the core AST).

4. Logic. The fourth lecture introduces logic, and deductive reasoning. Firstly, logic in-
ference is demonstrated on propositional logic using the Why3 framework. Secondly, the
theory of First-Order Logic (FOL) is introduced, with concepts such as logical symbols
(quantifiers, connectives, parentheses, punctuations, and optional equality); non-logical
symbols (predicates, functions/constants, and relations); terms and expressions; and fi-
nally formulas with the notion of free and bound variables with substitution under Leibniz
equality, leading up to sentences with truth values and interpretations of FOL. From there
we introduce First-order structures, with notions of validity (Tautology), satisfiability and
logical consequence (implication).

The theoretical concepts are backed with a running example of a theory with an interpre-
tation (Peano numbers) in Why3. The example provides a natural outset for introducing
deductive reasoning (declaring (inductive) predicates, lemmas, theorems and goals), and
discussing proof approaches (e.g., proof by induction).

The lecture is accompanied with a tutorial and a set of assignments, where the students
formulate inductive predicates, learn to shape goals and devise various proofs on Peano
numbers using the Why3 framework (where proof obligations are discharged automatically
using external SMT solvers).

5. “imp” semantics. In this lecture we give meaning (semantics) to the syntactic structure of
an “imp” program. The concepts of small- and big-step Structural Operational Semantics
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(SOS) are introduced along with stores and configurations. Rules for variable lookup,
arithmetic/Boolean reductions (expressions), assignments, sequencing, conditionals and
loops are introduced both in small- and big-step form 6.

We show how the rules for expression evaluation can be encoded in compliance to the SOS,
and prove some simple reduction properties. Rules for commands in “imp” are captured
in the form of an inductive predicate along with a proof of transitivity.

The lecture is accompanied by a set of assignments, where the students implement the VM,
and prove partial correctness to the specification 7. The students adopt a logic view of the
store as a map (key/value pairs) 8. Expression evaluation is implemented recursively over
the algebraic representation, providing a well founded termination condition. However
sequences and loops are not structurally decreasing. To this end, a fueling parameter is
added, decreasing for each iteration (rendering a proof of partial correctness), where the
VM is guaranteed to either return with an out of fuel error or a correct (final) configuration
9.

By backing the store view with a list representation, executable OCaml code can be ex-
tracted from the proven WhyML model 10.

The ambitious students are encouraged to find the appropriate fueling parameter (measure)
for a given program, by tracing the SOS rules (reductions) leading up to termination.
(This is a problem related to execution time analysis of the compiled program to the VM
language.)

6. Hoare Logic. This lecture covers the generation of proof obligations (verification condi-
tions) under Hoare logic, in a similar fashion as implemented by the Why3 platform.

We first review the concepts of preconditions and postconditions and their use to form
Hoare triples. The axiom schemata for SKIP, ASSIGNMENT, COMPOSITION, CONDI-
TIONAL, WHILE and CONSEQUENCE are introduced and exemplified. The CONSE-
QUENCE rule allows for strengthening the precondition and/or weakening the postcondi-
tion. Furthermore we cover the computation for weakest liberal 11 precondition (WP) for
loop free code, together with an approximation of weakest precondition for WHILE. From
there we introduce an algorithm for computing Verification Conditions (VCs), but omit
formal proof of correctness.

In order to make the WP and VC generation tangible, we encode the algorithms by shallow
embeddings in Why. This allows us to demonstrate the WP/VC generation for simple
programs in “imp” and discharge them as Tasks using the underlying SMT solvers 12

6The primitive “imp” language does not support functions.
7Total correctness would be harder as requiring a well founded termination condition (measure), which is not

straightforwardly obtained in the presence of loops.
8Variables are of unbound integer type, Booleans are constants (and cannot be assigned/stored for sake of

simplicity).
9For any terminating program there exists a fueling parameter rendering a correct final configuration (as the

“imp” language at hand does not model execution errors).
10Maps defined in the Why3 standard library are theories, without backing implementation, hence useful only

in proofs and cannot be extracted into executable code.
11Referring to partial correctness.
12WP/VC formulas are represented by internally generated functions, for which we cannot view the concrete

representation. However, we can seek their truth values using the Why3 platform.
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7. Stack Machine. In this lecture we revisit the stack machine (originally defined in Double
WP [5]). We review the proof approach of the compiler backend from “imp” to the stack
machine language. In particular we focus on the correctness proofs for arithmetic and
Boolean expression compilation, while proof details regarding the command layer are only
briefly reviewed due to their complexity [2].

8. MIPS Assembly. In a previous course in Microcomputer Engineering, students are exposed
to assembly level programming, including stack memory management. In this course they
also get initial experience with compiler generated code (using the GCC C compiler), the
compilation process and tools like binutils ld, and the in-house simulator SyncSim.

We review the compilation and linking process and give guidelines for the use of registers.
As assignments, students are to implement (unoptimized) code generation along the lines
of the Stack Machine covered in a previous lecture 13. The compiler should be able to
generate assembly output, and at a minimal pass assembling, linking and testing. Ambi-
tious students are encouraged to model the compiler in WhyML and use extraction to obtain
executable OCaml code.

9. Register Allocation. In this lecture we review register allocation algorithms for tree
expressions[3] (including optimal register allocation), and prove them correct using a sim-
ilar approach to Double WP[2]. The students are encouraged to use the optimal register
allocation integrated in their MIPS backend 14

10. AST level optimization. Here we introduce a number of optimization techniques appli-
cable at the AST level, namely for expressions constant reduction (e.g., a + 1 + 2 → a + 3
, structural equality (e.g., a − a → 0), and dominance (e.g., true||→true), and trivial dead
code removal for conditionals and loops at command level. The students are assigned to
model the transformations in WhyML and prove semantic preservation to the specification.
The extracted code should be integrated in the compiler and optionally enabled through
an invocation parameter (-O n, n being the optimization level). This allows the students
to compare generated code efficiency before and after optimization(s).

11. General Optimization. In this lecture we give an overview of optimization goals (speed,
footprint, dynamic memory usage, power consumption etc.) and discuss obstacles and
challenges with respect to correctness and complexity. Optimization at AST, RTL and
post processing (link level optimization) are covered. In particular, the concept of general
Control Flow Analysis with Local Optimization is discussed (constant folding/common
sub-expression elimination), operator strength reduction, copy propagation, non-trivial
dead code elimination. Furthermore, global optimizations based on data flow analysis are
briefly covered (introducing the concepts of expressions being defined, available, and killed,
allowing further sub-expression elimination and re-use. Moreover, code motion (hoisting),
register allocation (using graph coloring) and instruction scheduling (peephole optimization
and architecture aware exploitation mechanisms for pipelined and VLIW machines) are
mentioned. Ambitious students are encouraged to adopt techniques (e.g. hoisting) into
their working compiler.

13The SyncSim MIPS model does not implement native multiplication, thus the students have the option to
generate either an error for input programs containing multiplication, or emulate multiplication (for higher marks)

14This can accomplished either by using extraction or by re-implementation directly in the OCaml compiler
harness.
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12. Coq. In the final lecture, we turn to the interactive proof assistant Coq. Here we revisit
the theory of “imp” expression evaluation, and model the semantics in terms of an induc-
tive predicate. We give a functional declaration for the evaluation as a fixpoint definition,
and prove it by explicitly applying the induction principle (yielding two sub-goals, one for
the base-case, and one for the inductive case.) While the base case can be immediately
discharged (solved) by simplification and reflexivity, the inductive goal requires interac-
tively applying various tactics. The example is sufficiently complex to show the trade-off
between automation (as offered by Why3) and interaction as offered by Coq, (the later with
the downside of learning curve and effort, but with the upside of a proof process, where
the user is in total control provided an informative view of the proof state (obligations and
assumptions) 15. Why3 allows verification conditions (including proof context) to be ex-
ported to Coq. Thus in case automatic solvers do not suffice, an interactive proof process
is possible.

3.3 Exercises and Laboratory Assignments

Exercises and assignments have been designed with alignment to the learning goals in mind.
Moreover, we have strived to make the assignments both motivating and challenging, with
progression throughout the course, (e.g., proof techniques picked up earlier on can be later re-
used and refined). Moreover, students may revisit and improve on prior assignments as they
mature and gain knowledge during the course.

3.3.1 Compiler frontend for “imp”

In order to facilitate the learning process, a compiler harness (cimp written in OCaml) was
provided, together with a boilerplate lexer and grammar for the Menhir parser generator.

The compiler harness cimp, includes stub code for parsing command line arguments, calls
the generated parser, performs basic error handling and reporting etc. In this way, the students
could directly dig into working with the lexer/parser, to extend lexing rules for strings, to resolve
conflicts, define precedence, and come up with their own syntactic extensions.

3.3.2 Virtual machine for “imp”

The semantic modelling was adopted from the Double WP[2, 5] Why3 development. Double WP
provides a model of a certified compiler from the “imp” core language to machine code for a
minimalistic stack machine.

Here the students implemented a virtual machine in WhyML, and proved its correctness against
the semantic specification (inductive predicate). By adopting extractable data types in WhyML,
OCaml code for the proven implementation was obtained and the code could be straightforwardly
integrated into the compiler harness.

3.3.3 Code transformation and MIPS backend

During the course we also adopted techniques from other developments such as the register
allocator for tree expressions[3], and an in house development of a weakest precondition and

15Proof state in Why3 is displayed as a Task, which may be hard to decipher and control in detail.
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verification condition generation for the “imp” language (based on a shallow embedding in
Why3).

In this exercise, the students first implemented a simplistic code generator along the lines of
the Stack Machine covered in lectures. Here the register assignment was static, with subexpres-
sions evaluated on the stack.

However, using the stack is highly inefficient, thus in a second part the students implemented
register allocation following the lines of the optimal register allocation algorithm presented.
Here, ambitious students were encouraged to implement and prove their register allocator in
WhyML, while less ambitious students could opt for an OCaml implementation. As a final exercise,
students were to implement and prove a set of simple code transformations at AST level. The
ambitious students were encouraged to implement further optimizations (covered in lectures).

4 Results and Lessons Learned

4.1 Students’ views, Course Evaluation

Each course installment is followed by a course evaluation, where the students anonymously
and voluntarily fill out a questionnaire. For the 2016 installment, on average each question was
answered by more than half of the students (the course was followed by 20 students in total). A
summary of the poll is given below with results in italic 16:

• How many hours of study have you on average dedicated to this course per week, including
both scheduled and non-scheduled time? A majority of the students reported 16-25h.

• Self Assessment

– I am satisfied with my efforts during the course. Average 4.3 of 6.0.

– I have participated in all the teaching and learning activities in the course. Average
5.0 of 6.0.

– I have prepared myself prior to all teaching and learning activities. Average 3.7 of
6.0.

• Course aims and content

– The intended learning outcomes of the course have been clear. Average 4.0 of 6.0.

– The contents of the course have helped me to achieve the intended learning outcomes
of the course. Average 5.0 of 6.0.

– The course planning and the study guide have provided good guidance. Average 4.1
of 6.0.

• Quality of teaching

– The teacher’s input has supported my learning. Average 5.2 of 6.0.

– The teaching and learning activities of theoretical nature have been rewarding. Av-
erage 4.6 of 6.0.

– The practical/creative teaching and learning activities of the course e.g. labs, have
been rewarding. Average 4.9 of 6.0.

16The complete course evaluation amounts to 6 pages (including free text comments mostly in Swedish) can be
obtained from the authors on request.
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– The technical support for communication, e.g. learning platform, e-learning resources,
has been satisfactory. Average 5.3 of 6.0.

• Course Materials

– The materials assigned for the course, e.g. books, lab instructions, presentation
frameworks, has supported my learning. Average 3.7 of 6.0.

• Examination

– The examination was in accordance with the intended learning outcomes of the course.
Average 4.0 of 6.0.

• Overall assessment

– The workload of the course is appropriate for the number of credits given.Average 5.1
of 6.0.

– Given the aims of the course the level/difficulty of work required has been appropriate.
Average 4.9 of 6.0.

– My overall impression is that this has been a good course. Average 4.9 of 6.0.

Among the free text comments, a few highlights (translated to English) is given below:

• The course gives a good overview of what a compiler needs to do. Proof of correctness
was a pleasant surprise.

• Easy to contact the teacher (Telegram) to get help/assistance. Challenging assignments.

• Good examples covered in lectures, useful to the lab assignments.

• Hands-on and theory mixed to reasonable amount. Large degree of freedom to approach
and methods used in labs. Functional languages was a blast.

• Interesting subject, and interesting labs.

• Interesting setup, fun laboratory assignments, good support from teachers.

• Code generation (fun and interesting).

• Assignments should be easier to find (now as part of lecture notes).

• Change the course name to better reflect course content.

• Better distinction between lectures and tutorials (new material was brought up on the
tutorials, should be moved to lectures).

• Lack of good information on Why3, somewhat fragmented feeling of lectures.

• More focus on compiler construction, less boilerplate code (ideally none).

4.2 Teacher’s View

4.2.1 Overall impression

As the course was being given for the first time, we were satisfied to see that the efforts spent
by the students were in line with the 20 hour per week target (the students take two courses in
parallel with a total target of 40 hours workload per week). It is a delicate matter to estimate
required efforts, to which end we can conclude to have succeeded. Moreover, the participation at
lectures, tutorial sessions and labs remained very high throughout the course (as confirmed by
the course evaluation), which leads us to believe that the students found the sessions rewarding.
Additionally, the technical support using Telegram worked out very well, both as confirmed by
the course evaluation and our experiences teaching the course.
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4.2.2 Teaching material

At large, the teaching material (slides, lab instructions etc) sufficed to reach the course aims.
However, the lack of easily accessible documentation of the Why3 framework clearly posed some
challenges. The lack of a textbook, presenting compilation techniques from a formal methods
perspective was also challenging to teaching the course.

The lecture slides were designed with the aim to give sufficient background without being
too verbose. For the most part, we succeeded, but there is still room for further improvements.
However slides alone cannot fully replace a textbook on the subject aiming at the novice to
formal methods.

4.2.3 Learning outcomes and assessment

As regarding the learning outcomes and meeting course goals, we are pleased with the overall
effort spent, dedication and creativity shown by the students. Students were allowed to collabo-
rate in groups of two for the assignments and in building a working compiler. However, most of
the students chose to make individual solutions and eventually came up with their own compiler
in the end.

Grading instructions were formulated as follows (snippet from the lecture notes).

Evaluation and grading
Evaluation and grading will be based on your efforts and results obtained. Grades are
individual, meaning that even if you worked together on labs, be fair to each other,
awarding credit where credit is due. You will bring your developments to the exam
date, and demonstrate the implemented features, proofs and obtained results to defend
your grade.

• Grade 3. All mandatory assignments carried out. (See per-assignment criteria)

• Grade 4. Grade 3 + documented efforts into further features and proofs. (See
per-assignment criteria.)

• Grade 5. Grade 4 + documented in depth understanding and reflection of con-
cepts covered during the course.

Since first time given in this format, no prior assessment of the efforts required is avail-
able, to this end a fair grading is only possible by evaluating Your efforts, contributions
and results.

As seen, the assessment criteria for Grades 3 and 4 were quite concrete (as separately specified
per-assignment), while for Grade 5 (highest) assessment was based on documented in depth
understanding and reflection and thus left more open ended in order to spawn creativity.

All students were able to successfully meet the goals for Grade 3, while half of the set of
students met the criteria for Grade 4 and a handful of students reached and defended the highest
grade (by showing skillful adoption of theoretical concepts covered into their own developments).

4.3 What is next?

At the time of writing, the 2018 installment of the course is under preparation. We intend to
keep the overall format of the course with the following set of improvements:
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• Moving all development to Why3 1.0. The recent release offers a much improved user
experience with the accompanying IDE now offering on the fly editing, interactive proof
construction and improved SMT solver integration (with easily accessible counterexample
support).

• Further clarification of course goals, expected learning outcomes, examination criteria and
compiler competition rules.

• Split out assignments/labs from lecture material.

• Clear separation between lectures and tutorials (some restructuring of course material).

• Strengthening the discussion of formal languages (migrated from D7006E).

• Introduction of fixed-width integers, bit-level operations and type checking.

While, as one student suggested “the compiler should be built from scratch (not based on
boilerplate code)”, this is not going to happen. The reason is twofold. Firstly, the 9 week time
frame does not allow for more code development. Secondly, more coding does not necessarily
lead to deeper understanding of the underlying concepts. We strongly believe that boilerplate
code is beneficial in the context of this type of course, as allowing (and forcing) the students to
focus on the central concepts, not implementation details.

With the move to Why3 1.0, we expect the further streamlining of the laboratory work.
Firstly, the new IDE facilitates the proof process (user interaction), and secondly we have been
able to simplify the boilerplate code to completely eliminate the need for auxiliary library defini-
tions. Furthermore, the problem of non-termination of “imp” program evaluation (and execution
of VM code) are now treated by the native diverges contract in WhyML, which allow proofs of par-
tial correctness to be achieve without introducing well founded termination conditions through
additional fueling parameters. Other changes include clarifications and slide improvements,
which we anticipate to further increase course efficiency.

Altogether, we feel confident that there is room to strengthen the discussion on formal
languages (migrated from D7006E) and introduce fixed-width integers, bit-level operations and
type checking. While the arithmetic expressions in “imp” operate on unbound integers (as
reflected by evaluation and VM execution), target code for the MIPS operate either on signed
or unsigned integers (both backed by 32-bit representations).

In the 2016 installment, students used signed MIPS operations causing exceptions on arith-
metic overflows, thus ensuring partial correctness to the specification semantics. However, real-
istic languages typically provide data types and (unsigned) fixed-width operations reflecting the
programmer’s intent of wrapping/modulo operational semantics without overflow exceptions.
Introducing (unsigned) fixed-width data types and operations thus moves the “imp” language
a small but important step closer to a realistic language (in particular for high assurance em-
bedded applications). Moreover, from a Compiler Construction point of view, by discriminating
between signed and unsigned types and operations, students will encounter type checking as a
step in the compilation process. For 2018 students will formulate necessary conditions for well
typed programs (under the notions of type casting, conversion, and coersion), implement and
(optionally) prove their type checker. Additionally, fixed-width data types enables ambitious
students to add bit-vector operations (bit-wise not/and/or/xor etc.) to the “imp” language and
compiler.

Obtaining tangible results is highly motivating (while obtaining proofs may not be, unless
already interested in theoretical aspects). To that end, a second category for best compiler award
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will be added, where students are competing for highest assurance compiler (most rigorously
designed and proven).

5 Related/Similar Work

To the best of our knowledge, the course design is unique in introducing both compilation tech-
niques and deductive program verification to students without prior experience in the respective
fields.

The Why3 homepage [7] lists a number of courses adopting the Why3 platform in teaching
formal methods and program verification.

• Course Proofs of Programs at the Master Parisien de Recherche en Informatique

• (in Portuguese) Courses Formal methods and Certified Programming at the Universidade
da Beira Interior, Portugal

• (in French) Course Méthodes formelles et développement de logiciels sûrs at the Master
Informatique de l’Université de Rennes

• (in French) Course Programmation de confiance at the Licence Informatique de l’Université
de Rennes

• (in French) Course sémantique des langages, third year of Supelec Engineering School

In comparison, our focus is on the application of formal methods (not formal methods per-
se). Hence, we cover theoretical concepts with less depth than would be possible in a dedicated
course. Another difference is that we have a running example (our compiler), where we directly
apply and integrate verification techniques throughout the course.

In the context of traditional courses in compiler technology, in comparison we obviously cover
less ground. In particular our “imp” language is (implicitly) integer only typed at expression
level. Hence, for simplicity type checking is done syntactically (at the stage of lexing/parsing).
Advanced type system concepts like object orientation, Traits/typeclasses etc. are omitted from
the syllabus in our case. (We aim to close the gap, by including a simple type system/typing
rules for 2018.) Moreover, backend code optimization is covered in less depth than would be
possible in a dedicated class.

On the other hand, in comparison to traditional compiler classes, the formalization of the
structural operational semantics becomes tangible, as concretely used from (language) specifi-
cation throughout the compilation process. Adopting formal methods brings the dimension of
semantic reasoning, and forces the students to address problems in a rigorous manner.

6 Conclusions and Future Work

In this paper we report on our experiences introducing certified compilation techniques using
a functional language approach in an introductory course on Compiler Construction. We have
covered the selection of tools, teaching approach and course syllabus (including a lecture by
lecture breakdown and an overview of assignments). Moreover we have discussed results and
lessons learned together with an overview of related work in the field.
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For the next installment (fall 2018), the course format and syllabus will remain unchanged at
large. Notable improvements planned are to strengthen the coverage of formal languages, fixed-
with data types and operations, type checking and add a new category of most trustworthy
compiler for the student competition (in addition to the best code generation award).
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