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Proust is a small Racket program offering rudimentary interactive assistance in the development of
verified proofs for propositional and predicate logic. It isconstructed in stages, some of which are
done by students before using it to complete proof exercises, and in parallel with the study of its
theoretical underpinnings, including elements of Martin-Löf type theory. The goal is twofold: to
demystify some of the machinery behind full-featured proofassistants such as Coq and Agda, and
to better integrate the study of formal logic with other coreelements of an undergraduate computer
science curriculum.

1 Introduction

Most computer science programs include some exposure to logic as a required subject. Often it is
crammed into a single course on discrete mathematics, perhaps conflated with Boolean algebra and
wedged between combinatorial counting and graph theory. Atthe University of Waterloo, where I teach,
we are fortunate to have CS located in a Faculty of Mathematics, so our students take the same high-
quality math courses (discrete and continuous) taken by math majors. Nonetheless, we have a required
second-year CS course titled Logic and Computation (henceforth L&C).

L&C was a relatively recent addition to our curriculum (about fifteen years ago). While it is a prereq-
uisite for the data structures and algorithms courses, thatis more a matter of maturity rather than content,
and consequently the content of L&C has tended to vary acrossofferings, from “math-style” (Hilbert
proofs, emphasis on metamathematics) to “SE-style” (emphasis on program correctness). The efficacy
of these approaches is open to question, especially since the amount of material available encourages
broad, shallow treatments, and students may tend to come away with exposure to what an individual
instructor thinks is important, rather than what might be most beneficial for future courses or careers.

It might make more sense to deal with some of these topics as they arise in other courses. For ex-
ample, students in our first-year CS sequence learn structural recursion on natural numbers and lists, and
this might be a place to prove properties of the code (starting with correctness) by induction. But these
properties, as well as the subtasks involved in proofs by induction, involve manipulation of logical state-
ments with for-all quantifiers, and students have difficulties with this. At least some of these difficulties
stem from the fact that for-all is a binding construct whose use has consequences similar to the use of
lambda. Proofs might better be deferred until after students have experience with higher-order functions.

This similarity between for-all and lambda suggests another approach. In the Curry-Howard corre-
spondence, logical statements (propositions or formulas)correspond to types, and the proof of a for-all
statement is a dependently-typed function (a generalized lambda). At first glance, the idea of using de-
pendent types to introduce undergraduates to logic may seemmisguided. But this approach makes use
of the fact that CS students already have experience with a formal system: a programming language.

http://dx.doi.org/10.4204/EPTCS.230.5


64 Proust: A Nano Proof Assistant

Furthermore, our undergraduates have had a first course in functional programming, including both the-
oretical and concrete use of a substitution model (beta-reduction, though not called that or defined in full
generality) to explain the execution of programs.

Consider the interpretation of an implication. The way we prove a statement of the form “If T, then
V” is by assuming we have a proof of T, and using that assumption at several points in a proof of V.
If we were then given an actual proof of T, we could substitutethat for the assumption every place it
occurs, and get a self-contained proof of V. The substitution process corresponds to the substitution of an
argument value for a parameter name everywhere in the body ofa function. Thus a proof of “If T, then
V” corresponds to a function that consumes a proof of T and produces a proof of V, and the use of such
an implication in a proof corresponds to function application.

To a nascent computer scientist, this is a powerful metaphor, especially when they learn that “If T,
then V” is usually written in formal logic asT ÑV, which is also the notation for the type of a function
from T to V. The metaphor has more resonance than a representation of a proof as a tree or a DAG.
This is the starting point of the several construction stepsthat result in Proust, a program that both assists
students in building proofs (represented by functions) andchecks their validity. The construction process
is an integral part of the L&C course, with some programming tasks being homework exercises. I will
describe the development of Proust, as connectives and quantifiers are added incrementally, in sections 2
and 3, followed by discussion in section 4 of wider curricular issues.

I have chosen to use the Racket programming language [9] to implement Proust, because that is the
language used by our students in first year (plus all the reasons why we made that choice), and because
S-expressions are particularly convenient as a data representation, but other functional languages could
also be used. The design is a synthesis from many sources, notably the OPLSS 2014 lectures of Stephanie
Weirich [11] and her work with collaborators on the Trellys project; blog posts by Lennart Augustsson
[3] and Andrej Bauer [4]; papers on small dependently-typedsystems for tutorial purposes (e.g. Al-
tenkirch, Danielsson, Löh, and Oury [2]; Löh, McBride, and Swierstra [8]); monographs (e.g. Sorensen
and Urzyczyn [10]); and the extensive literature on the languages Agda [1] and Coq [5].

2 Propositional Logic

Starting with the implication metaphor discussed in section 1, I derive proof rules for intuitionistic propo-
sitional logic (normally called inference rules, but that word will be useful elsewhere). The Proust pro-
gram that checks proofs is a straightforward implementation of these rules. Along the way, though, I
make some unconventional choices for pedagogical benefit.

From the previous discussion, we have types (logical statements, by the Curry-Howard correspon-
dence) constructed from variables (A,B,C. . .) and implication (infixÑ). We also have functions (proof
terms, by the correspondence) with parameters (also usually called variables,x,y,z. . .), and function ap-
plication. I will use lambda-calculus notation for terms (also called expressions) in the discussion here,
but the Proust language adapts the syntax somewhat to ease the Racket implementation. In sequents
(defined shortly) and proof rules, I will useT,V,W as type metavariables, andf ,g,a,b,c, t,v,w as term
metavariables.t : T will be the assertion that termt has typeT.

To checkλx.t : T ÑW, we need to checkt : W, but we need to do so with the knowledge thatx : T,
asx is likely to occur int. This suggests maintaining a set of name-type bindingsΓ (typically called a
context), yielding a three-way relationΓ$ t :W to be checked (this is a sequent). But checking a function
application gives us some slight trouble. To checkΓ $ f a : W, we need to checkΓ $ f : T ÑW and
Γ$ a : T. Where doesT come from? We must infer it by looking atf .
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This suggests a bidirectional approach [6]. I introduce thenotationΓ$ t ðW to refer to the idea of
type checking we started with, namely that termt has given typeW in contextΓ. But for type inference,
I use the notationΓ$ t ñ T, indicating that in contextΓ we are able to infer thatt has typeT. To infer
the type of a term that is simply a variable, we look it up in thecontext. DenotingΓYtx : Tu asΓ,x : T,
here are the proof rules derived so far.

Γ,x : T $ xñ T
(VAR)

Γ,x : T $ t ðW

Γ$ λx.t ð T ÑW
(ÑE)

Γ$ f ñ T ÑW Γ$ að T

Γ$ f añW
(ÑI )

Rules are given names with subscripts that indicate elimination (use) and introduction (creation), a
pattern that will recur with other logical connectives. To typecheck a term for which we don’t have a
proof rule, we infer it and check that we get the same type. We cannot infer the type of a lambda, which
means we also cannot check the type of an immediate application of a lambda. I discuss the curricular
implications in section 4; for convenience, we introduce optional type annotation on terms. Here are the
additional proof rules.

Γ$ t ñ T

Γ$ t ð T
(TURN)

Γ$ t ð T

Γ$ pt : Tq ñ T
(ANN)

Using this, we can avoid both the overhead of mandatory type annotation on term variables (as in the
simply-typed lambda calculus) and the need to discuss Hindley-Milner-style type inference. The result
is a set of syntax-directed proof rules which have a clear implementation as a pair of mutually-recursive
procedures for checking and inferring.

Here is the initial grammar for types and terms, as the user will specify them when using Proust.
expr = (λ x => expr)

| (expr expr)

| (expr : type)

| x

type = (type -> type)

| X

The program does not enforce the lexical restrictions on choice of variables described above, or even
the convention that parameters are lower-case while type variables are upper-case; any symbols may be
used. The program parses user input into an AST built with Racket structures (records), using Racket’s
built-in pattern matching.

(struct Lam (var body))

(struct App (rator rand))

(struct Arrow (domain range))
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; parse-expr : sexp -> Expr

(define (parse-expr s)

(match s

[`(λ ,(? symbol? x) => ,e)

(Lam x (parse-expr e))]

[`(,e0 ,e1)

(App (parse-expr e0)

(parse-expr e1))]

[(? symbol? x) x]))

; parse-type : sexp -> Type

(define (parse-type t)

(match t

[`(,t1 -> ,t2)

(Arrow (parse-type t1)

(parse-type t2))]

[(? symbol? X) X]

[else (error ...)]))

I have elided the error message inparse-type. When the type and term languages are extended with
new constructs in order to deal with additional logical connectives, students can implement the requisite
parser extensions themselves. The code for type checking and inferring follows a similar pattern, guided
by the grammar and the proof rules. Contexts are representedas association lists.

; type-check : Context Expr Type -> boolean

; produces true if expr has type t in context ctx (or error if not)

(define (type-check ctx expr type)

(match expr

[(Lam x t)

(match type

[(Arrow tt tw) (type-check (cons `(,x ,tt) ctx) t tw)]

[else (cannot-check ctx expr type)])]

[else (if (equal? (type-infer ctx expr) type) true (cannot-check ctx expr type))]))

; type-infer : Context Expr -> Type

; produces type of expr in context ctx (or error if can't)

(define (type-infer ctx expr)

(match expr

[(Lam _ _) (cannot-infer ctx expr)]

[(Ann e t) (type-check ctx e t) t]

[(App f a)

(define tf (type-infer ctx f))

(match tf

[(Arrow tt tw) #:when (type-check ctx a tt) tw]

[else (cannot-infer ctx expr)])]

[(? symbol? x)

(cond

[(assoc x ctx) => second]

[else (cannot-infer ctx expr)])]))

; a simple way to test: a proof term annotated with expected type

(define (check-proof p) (type-infer empty (parse-expr p)) true)
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Thecannot-check/infer procedures raise an error whose message includes pretty-printed repre-
sentations of useful information (context, term, type); the pretty-printers use matching, and again can be
written/extended by students.

We have a type checker for the implicational fragment of intuitionistic propositional logic. The size
of the code base thus far: 4 lines for datatypes, 12 lines for parsing, 21 lines for checking/inference, one
line for a test function, and not shown here, 16 lines for pretty-printing and 6 lines for error handling, for
a total of 60 lines.

This program lets us check simple proofs such as

(check-proof ’((λ x => (λ y => (y x))) : (A -> ((A -> B) -> B))))

but there are also more interesting things we can check, suchas the proof of the transitivity of implication,
which is the function composition operator:

λ f .λg.λx. f pg xq : pBÑCq Ñ ppAÑ Bq Ñ pAÑCqq

Because this is intuitionistic logic, there are some thingswe might expect to be able to prove at this
point, but cannot, such as Peirce’s Law:ppAÑ BqÑ AqÑ A. In section 4, I discuss how one might deal
with this in the classroom.

I have not yet delivered on the promise of an interactive proof assistant. To this end we make use
of DrRacket’s REPL (read-evaluate-print loop), as well as its support for hash tables. We introduce the
notion of holes (or goals), which are unfinished parts of the proof. A hole is a term represented by?
in the term language and by aHole structure in the AST with a field for a number. A hole typechecks
with any provided type. In Proust, we define state variables for the current expression, goal table (a hash
table mapping goal number to required type), and a counter tonumber new holes, handled as simply as
possible.

(define current-expr #f)

(define goal-table (make-hash))

(define hole-ctr 0)

(define (use-hole-ctr) (begin0 hole-ctr (set! hole-ctr (add1 hole-ctr))))

(define (print-task) (printf "„a\n" (pretty-print-expr current-expr)))

Theset-task! procedure initializes state variables for a new task (described as an S-expression).
A typical application is(set-task! '(? : T)), whereT is a logical statement to be proved.

(define (set-task! s)

(set! goal-table (make-hash))

(set! hole-ctr 0)

(define e (parse-expr s))

(match e

[(Ann _ _) (set! current-expr e) (type-infer empty e)]

[else (error "task must be of form (term : type)")])

(printf "Task is now\n")

(print-task))
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Therefine procedure refines goaln with expressions, but makes sure it typechecks first. If it does,
it removes goaln and rewrites the current expression to replace that goal with s, usingreplace-goal-
with, which does straightforward structural recursion on the AST (the goal being at a single leaf).

(define (refine n s)

(match-define (list t ctx)

(hash-ref goal-table n (lambda () (error 'refine "no goal numbered „a" n))))

(define e (parse-expr s))

(type-check ctx e t)

(hash-remove! goal-table n)

(set! current-expr (replace-goal-with n e current-expr))

(printf "Task is now\n" (format "„a goal„a" ngoals (if (= ngoals 1) "" "s")))

(print-task))

With still under a hundred lines of code, we now have the capability of interactions like the following,
which proves the “transitivity of implication” result described above. Theą character is the REPL
prompt. The interaction is crude, but genuinely helpful (more so with simple commands to pretty-print
information about the goal and its context), and foreshadows similar ideas in interactions with Agda and
Coq.

ą (set-task! '(? : ((B -> C) -> ((A -> B) -> (A -> C)))))

Task is now (?0 : ((B -> C) -> ((A -> B) -> (A -> C))))

ą (refine 0 '(λ f => ?))

Task is now ((λ f => ?1) : ((B -> C) -> ((A -> B) -> (A -> C))))

ą (refine 1 '(λ g => ?))

Task is now ((λ f => (λ g => ?2)) : ((B -> C) -> ((A -> B) -> (A -> C))))

ą (refine 2 '(λ x => ?))

Task is now ((λ f => (λ g => (λ x => ?3))) : ((B -> C) -> ((A -> B) -> (A -> C))))

ą (refine 3 '(f ?))

Task is now

((λ f => (λ g => (λ x => (f ?4)))) : ((B -> C) -> ((A -> B) -> (A -> C))))

ą (refine 4 '(g ?))

Task is now

((λ f => (λ g => (λ x => (f (g ?5))))) : ((B -> C) -> ((A -> B) -> (A -> C))))

ą (refine 5 'x)

Task is now

((λ f => (λ g => (λ x => (f (g x))))) : ((B -> C) -> ((A -> B) -> (A -> C))))

The strength of the metaphor persists for the connectives^ and_. A proof of T^W is a proof ofT
and a proof ofW, so the proof term is a two-field record. We could call itcons, but it makes proofs more
readable if we call the constructor (of the proof term that uses the introduction rule)̂ -intro, and call
the accessor functions (used in proof terms that use the two elimination rules)̂ -elim0 and^-elim1.

Γ$ t ð T Γ$wðW

Γ$^intro t wð T^W
(^I )

Γ$ vñ T^W

Γ$^elim0 vð T
(^E0)

Γ$ vñ T^W

Γ$^elim1 vðW
(^E1)
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Γ$ t ñ T Γ$wñW

Γ$^intro t wñ T^W
(^I )

Γ$ vñ T^W

Γ$^elim0 vñ T
(^E0)

Γ$ vñ T^W

Γ$^elim1 vñW
(^E1)

A proof of T_W is either a proof ofT or a proof ofW, so there are two introduction rules and two
constructors,_-intro0 and_-intro1. To use a proof ofT_W, we need a way to use it if it is a proof
of T, and if it is a proof ofW. If we want to produce a proof ofV, we must have a proof ofT ÑV we
can apply, and a proof ofWÑV. The deconstructor_-elim is a variation on a case expression. (It is
normally made a new binding form to avoid mixing connectivesin rules, but we already have a perfectly
good binding form, namely lambda.)

Γ$ t ð T

Γ$_intro0 t ð T_W
(_I0)

Γ$ wðW

Γ$_intro1 wð T_W
(_I1)

Γ$ vñ T_W
Γ$ f ð T ÑV Γ$ gðWÑV

Γ$_elim v f gðV
(_E)

Finally, we have negation, whose treatment remains intuitive but may seem incomplete. The logical
constantK denotes an absurdity or contradiction (we use this for both the term and its type).K has no
constructor, but its eliminatorK-elim can have any type. We define T to beT ÑK, and use this as a
desugaring rule in the parser.

Γ$ t ðK

Γ$Kelim t ð T
(KE)

There are now more statements we cannot prove:A_ A,  AÑA, and some of deMorgan’s laws.
But there are plenty of things we can prove, and this is a good point to assign some proof exercises – once
students implement the necessary changes to the parser, pretty-printer, type checking, and type inference
functions, because these are also reasonable programming exercises. Each connective requires a very
small number of additional lines of code.

While we are writing proof terms that are functions in a language tantalizingly close to the one we
are programming in, there is no notion of computation in thatlanguage so far. We draw conclusions
about the AST, but we do not interpret or otherwise execute the proof-programs. In effect, we have only
an evocative tree representation using S-expressions. This will change in the next section.

3 Predicate Logic

A conventional treatment introduces predicate logic by adding relational symbols and first-order quan-
tification to propositional logic, possibly followed by axioms for equality and arithmetic. But just as
students benefit from the use of higher-order functions in programming, they can benefit from the in-
creased expressivity of higher-order logic. Our goal in this section, and in the development of Proust,
is to reach the point where we can state and prove a suitable translation of “For all natural numbersn,
pluspn,0q “ n”, whereplus is a user-implemented function using structural inductionon the first argu-
ment (necessitating a proof by induction).
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In the previous section, we maintained a grammatical distinction between terms and types. But this
example illustrates the need to eliminate this distinction. We rewind to the first program of section 3,
handling the implicational fragment of propositional logic without holes, and merge the grammar rules.

expr = (λ x => expr)

| (expr expr)

| (expr : expr)

| x

| (expr -> expr)

| X

The grammar is too permissive. We enforce well-formedness in code, adding aType structure which
will be the type inferred for a term which satisfies the previous grammar rule for types. We will soon
addTypeto the term language, but not yet, as we need to refactor the program so that the structure of our
functions mirrors that of the merged grammar. Having done that, we are ready to consider quantification.
As before, we will reason about what the proof rules should be, and what proof terms should look like.

We will write a for-all statement as@px : Tq ÑW, whereT andW are terms (Agda uses a similar
syntax). How do we use such a statement in an informal proof? We instantiatex with a specific value
t of type T, substitutingt for x everywhere thatx occurs inW. Using the notationWrx ÞÑ ts for this
substitution, and leaving the proof terms unspecified for the moment, the rule looks like this:

Γ$?ñ@px : Tq ÑW Γ$ t ð T

Γ$?ðWrx ÞÑ ts
(@E)

If we consider the special case whereW does not usex, the substitution has no effect, and the rule
looks like implication elimination. This suggests that for-all is a generalization of implication, that the
introduction proof term should be a generalization of lambda, and that the elimination proof term should
be function application. We can keep implication in the termlanguage for convenience, and desugar it to
an equivalent for-all. This version of for-all is a dependent product type, often writtenΠ in the literature
(as in the title of [2]).

Γ,x : T $ t ðW

Γ$ λx.t ð@px : Tq ÑW
(@I )

Γ$ f ñ@px : Tq ÑW Γ$ t ð T

Γ$ f t ðWrx ÞÑ ts
(@E)

Once we addTypeas a constant to the language of terms, we can, for example, write the polymorphic
identity function asλx.x : @py : Typeq Ñ pyÑ yq. We remove propositional variables from the term
language; we only have variables that are parameters. But ifTypeis a value, what is its type? Here I
make a decision that is contrary to our goal of a reliable proof assistant:Typehas typeType. This was
done by Martin-Löf in the earliest version of his type theory, but it was shown by Girard [7] to result
in an inconsistent logic. The proof is complicated and not a simple, direct construction as in Russell’s
paradox, so it is unlikely to be an issue for students. Inconsistency can be avoided by a hierarchy of types
(Type0 : Type1, etc.), and this is what is done in Coq and Agda, though Coq hides the details from the
user until they become relevant. Managing this hierarchy isnot difficult, but it is tedious, and some of
the tutorial materials discussed in section 1 choose to avoid it in the same fashion as I have ([2],[8],[11]),
while others tackle it ([4]). Avoidance seems best in a context where we are moving towards use of
full-featured assistants.
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Implementing the above rules requires implementing substitution, with attention to variable reuse and
variable capture. There are places in the code where the Racket predicateequal? is used to compare
types for structural equality (for example, in the implementation of the “turn” rule). But the polymorphic
identity function mentioned above could equally well be typed as@pz : Typeq Ñ pzÑ zq. The name of
the variable should not matter. In other words, we need alpha-equivalence. These topics are typically
covered in a full treatment of the lambda calculus (and in a principled treatment of predicate logic), but
students in L&C will not have seen them. Since one goal is for them to understand the implementation,
they should be covered in lecture.

As our proof terms are going to get more complicated, we add anassociation list of global definitions,
managed by functions such asdef, which typechecks an annotated term and adds it to the list with
a symbolic name. But substituting such a definition for the use of a name will result in expressions
that require simplification through reduction. We have already coded the basic substitution mechanism.
Reduction to weak normal head form suffices in some places, but strong reduction (full beta-reduction)
is needed in others. Definitional equality is the alpha-equivalence of two strongly-reduced expressions.

All of this takes considerably more care to present in the classroom than I have taken here. A
proper presentation takes students through the reasons foreach additional requirement, by pointing out
expressions that we would expect to typecheck but do not in anincomplete implementation. The code
base is still under two hundred lines (an additional 10 linesfor alpha equivalence, 30 for substitution, 30
for reduction and equivalence, 20 for support for definitions).

The reward for all this work is a surprisingly expressive language, considering its size. To start
with, we can implement Church encodings. The Boolean type isimplemented by its eliminator, namely
if-then-else, which makes it easy to implement other Boolean functions.

(def 'bool '((@ (x : Type) -> (x -> (x -> x))) : Type))

(def 'true '((λ x => (λ y => (λ z => y))) : bool))

(def 'false '((λ x => (λ y => (λ z => z))) : bool))

(def 'band '(((λ x => (λ y => (((x bool) y) false))))

: (bool -> (bool -> bool))))

We can implement logical AND (̂), and show that it commutes. Logical OR (_) is also possible.

(def 'and '((λ p => (λ q => (@ (c : Type) -> ((p -> (q -> c)) -> c))))

: (Type -> (Type -> Type))))

(def 'conj '((λ p => (λ q => (λ x => (λ y => (λ c => (λ f => ((f x) y)))))))

: (@ (p : Type) -> (@ (q : Type) -> (p -> (q -> ((and p) q)))))))

(def 'proj1 '((λ p => (λ q => (λ a => ((a p) (λ x => (λ y => x))))))

: (@ (p : Type) -> (@ (q : Type) -> (((and p) q) -> p)))))

(def 'proj2 '((λ p => (λ q => (λ a => ((a q) (λ x => (λ y => y))))))

: (@ (p : Type) -> (@ (q : Type) -> (((and p) q) -> q)))))

(def 'and-commutes

'((λ p => (λ q => (λ a => ((((conj q) p) (((proj2 p) q) a)) (((proj1 p) q) a)))))

: (@ (p : Type) -> (@ (q : Type) -> (((and p) q) -> ((and q) p))))))
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Arithmetic can be implemented using Church numerals.

(def 'nat '((@ (x : Type) -> (x -> ((x -> x) -> x))) : Type))

(def 'z '((λ x => (λ zf => (λ sf => zf))) : nat))

(def 's '((λ n => (λ x => (λ zf => (λ sf => (sf (((n x) zf) sf)))))) : (nat -> nat)))

(def 'one '((s z) : nat))

(def 'two '((s (s z)) : nat))

(def 'plus '((λ x => (λ y => (((x nat) y) s))) : (nat -> (nat -> nat))))

We can check that((plus one) one) andtwo are definitionally equivalent, but we have no way of
expressing this in our term language. The next step is to add equality. From this point on, algorithmic
descriptions are shorter and clearer than proof rules.

The proof term(eq-refl t) will have type(t = t). The type(t = w) will have a proof term
exactly whent andw are definitionally equal. The elimination formeq-elim implements the principle
that “equals may be substituted for equals”. It is applied tofive things: a termt of typeT, a “property”
P that has type(T -> Type), a termpt of type (P t) (that is, a proof thatt has propertyP), a term
w of type T, and a termpeq of type (t = w). The application ofeq-elim has type(P w) (that is, it
proves thatw has propertyP), and the reduction rule produces the result of reducingpt. All this takes
more space to describe in English than does the implementation. Here are some proofs.

(def 'one-eq-one '((eq-refl one) : (one = one)))

(def 'one-plus-one-is-two '((eq-refl two) : (((plus one) one) = two)))

(def 'eq-symm

'((λ x => (λ y => (λ p => (eq-elim x (λ w => (w = x)) (eq-refl x) y p))))

: (@ (x : Type) -> (@ (y : Type) -> ((x = y) -> (y = x))))))

(def 'eq-trans

'((λ x => (λ y => (λ z => (λ p => (λ q => (eq-elim y (λ w => (x = w)) p z q))))))

: (@ (x : Type) -> (@ (y : Type) -> (@ (z : Type) ->

((x = y) -> ((y = z) -> (x = z))))))))

The Church numerals are inefficient and awkward. Furthermore, even if we add backK (which we
should do, to facilitate expressing logical negation), we can state but cannot prove p0“ 1q. To address
these issues, we implement Peano numbers, with typeNat, zeroZ and successor functionS. What should
the elimination form be? Computationally, we use natural numbers via structural recursion, with aZ case
and a function to be applied to the predecessor in theS case. We could implement this with a recursor
nat-rec, whose type would be@pT : Typeq Ñ T Ñ pT Ñ Tq Ñ NatÑ T. The reduction rules would
reduce(nat-rec ZCase SCase 0) to ZCase and would reduce(nat-rec ZCase SCase (S n)) to
(SCase (nat-rec ZCase SCase n)).

But we can generalizeT to be dependent, having it be a propertyP indexed by aNat. The type
becomes@pP : NatÑ Typeq Ñ pP Zq Ñ p@pk : Natq Ñ pP kÑ P pS kqqq Ñ p@pk : Natq Ñ P kq. This
is familiar: it is the induction principle for natural numbers, which we can callnat-ind. If P is the
constant function that producesT, we recover the recursor, and the reduction rules fornat-ind are the
obvious generalization of those fornat-rec.
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(def 'nat-rec

'((λ C => (λ zc => (λ sc => (λ n => (nat-ind (λ _ => C) zc (λ _ => sc) n)))))

: (@ (C : Type) -> (C -> (C -> C) -> Nat -> C))))

(def 'plus

'((λ n => (nat-rec (Nat -> Nat) (λ m => m) (λ pm => (λ x => (S (pm x)))) n))

: (Nat -> Nat -> Nat)))

(def 'plus-zero-left '((λ n => (eq-refl n)) : (@ (n : Nat) -> ((plus Z n) = n))))

(def 'plus-zero-right

'((λ n => (nat-ind (λ m => ((plus m Z) = m)) (eq-refl Z)

(λ k => (λ p =>

(eq-elim (plus k Z) (λ w => ((S (plus k Z)) = (S w)))

(eq-refl (S (plus k Z))) k p)))

n))

: (@ (n : Nat) -> ((plus n Z) = n))))

That last definition demonstrates the capability we promised at the start of this section, and we can
also prove p0“ 1q, or more generally,@pn : Natq Ñ  p0“ S nq. To fulfil the promise of the title of the
section, we need to add the existential quantifier. We use thenotationDpx : Tq ÑW for the dependent
sum type often calledΣ in the literature (again, see the title of [2]). The introduction formD-intro tuples
a typeT, a “witness”a of typeT, and a valuepa of typeWrx ÞÑ as (that is, a proof thata has property
W). The elimination formD-elim is applied to a typeV, a function f of type@px : TqÑ pWÑVq, and a
valueb of typeDpx : TqÑW. The witnessa embedded inb will be used as the argument tof to produce
a value of typeV, which is the type of the application of the elimination form. The associated reduction
rule reduces(D-elim V f (D-intro T a pa)) to (f a pa).

As was the situation in the previous section, we have implemented intuitionistic logic, and so there
are some theorems of classical logic that we cannot prove. For example, we can prove the theorem
 pDpx : AqÑ BqÑ p@px : AqÑ Bq, but p@px : AqÑ BqÑ pDpx : AqÑ  Bq eludes us. By adding the
law of the excluded middle, suitably quantified, as an antecedent, we can prove the latter.

Why stop here? The code base is still under three hundred lines, and there are some easy additions
that make Proust more friendly. The encodings of^ and_ are not inefficient, but they are awkward to
use, and it is simple to add them as we did in section 2. We couldadd lists as a datatype without much
difficulty. Racket supports various UI improvements. But many technical improvements significantly
complicate matters: a proper treatment of holes in the context of dependent types; dependent pattern
matching to simplify the use of eliminators; a general mechanism for user-defined recursive datatypes; a
tactics language to avoid large explicit proof terms.

This is a natural transition point from Proust. Students areready to move to a system like Agda
or Coq. Agda uses explicit proof terms (eased by pattern matching and a nice Emacs interface); Coq
hides proof terms, though they can be exposed and even written explicitly as needed. Proust’s treatment
of holes, quantifiers, typechecking, and induction principles are in line with these more sophisticated
systems. We have fulfilled our twin goals of demystification of full-featured proof assistants and properly
motivated/situated exposure to logic for computer sciencestudents.
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4 Curriculum

The previous two sections focussed on the development of Proust as it might be presented to students, but
a course using it will intersperse attention to related topics. A nonstandard treatment of a subject must
take care to demonstrate connections to more traditional approaches, and that will be a major theme in
this section.

The main point of the syntactic notion of proof is to be able todraw conclusions about the semantic
notion of truth. It is standard to writeΓ$ T if there is a proof ofT usingΓ (in our notation, if there exists
t such thatΓ $ t : T). Students will be familiar with Boolean values and functions from programming,
and have a tendency to confuse proof and truth, so it is best tointroduce early the formal definition of a
valuation for variables, the value of a formula with respectto a valuation, and the notationΓ( T if every
valuation that makes the formulas inΓ true also makesT true.

One can then discuss the notion of soundness (Γ $ T always impliesΓ ( T) and completeness
(the converse). For a CS student, soundness is the more useful property; completeness is interesting
more from a metamathematical viewpoint. Our logics are sound, but they are not complete. It is worth
mentioning the existence of alternate models for which our logics are complete (Heyting algebras, Kripke
models), and perhaps demonstrating the use of these for unprovability results.

My experience of requiring students to write natural deduction proofs on paper is that they are frus-
trated by the inflexibility of the formal system relative to their previous experiences with informal proofs
and what they know of Boolean algebra. While a buggy program may also frustrate them, they are more
inclined to see it as something worth fixing. With Proust, an incorrect proof is a buggy program, and
this combined with immediate feedback on correctness puts proof construction into familiar territory.
Students should still see a couple of proofs presented as trees built from rules in the standard fashion,
and the explicit correspondence with proof terms.

In the bidirectional system we use, an immediate application of a lambda cannot be typechecked;
proofs must be normal forms. But students may know from earlier courses that immediate application
of lambda is the easiest way to get local definitions (as in theRacket macro implementation of thelet
construct). Proofs in propositional logic are usually not complicated enough to require local definitions,
and if necessary, either the definition mechanism of section3 can be implemented earlier, or a specific
local binding construct can be added to the term language.

The treatment of propositional logic in section 2, is close to a traditional approach. The main differ-
ences are the restriction to intuitionistic logic and the use of Proust. Lectures should discuss the lack of
intuition and simple computational interpretations for rules that result in classical logic (such as double
negation elimination), and that they can be added as axioms to Proust without difficulty.

The treatment of predicate logic in section 3 is not at all traditional, and students will benefit from a
sketch of first-order logic, notably the rules and axioms needed to add equality and arithmetic, and the
corresponding completeness and incompleteness results.

I included the Church encodings above to demonstrate the expressivity of the type system, but this
material may not be suitable for all students. As an alternative, one can easily add back to Proust the
mechanisms developed in the section of propositional logic.

It is not clear how much time there will be, in a one-semester treatment, for students to spend much
time with Agda or Coq. At the least, a demonstration should beincluded at the end, and perhaps a short
one at the beginning to increase motivation.

Finally, students will benefit from an understanding of the historical development of this material. It
is best incorporated in short vignettes through the term, rather than crammed into a history lecture full of
names and dates.
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At the time of publication, the first offering of this versionof L&C is in progress as a special enriched
section in the Fall 2016 term. I hope to use this material withregular sections in Spring 2017. The
material could be offered at the introductory graduate level, at an increased pace that permits the inclusion
of additional material (System F, Gödel’s System T) or more exposure to Agda and/or Coq. The section
on predicate logic could be adapted as an introductory or parallel tutorial for a graduate course that makes
heavy use of these proof assistants. The advantage of Proustover the tutorials cited earlier is primarily
due to the low overhead of Racket and an S-expression representation of proofs and logical statements,
the ease of minor uses of mutation (counters, hash tables), and the advantages of the DrRacket IDE.
It is possible that use of a dynamically-typed language to implement typechecking may avoid student
confusion between levels of abstraction.
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