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Proust is a small Racket program offering rudimentary axtdve assistance in the development of
verified proofs for propositional and predicate logic. Ic@nstructed in stages, some of which are
done by students before using it to complete proof exerceed in parallel with the study of its
theoretical underpinnings, including elements of Mattif-type theory. The goal is twofold: to
demystify some of the machinery behind full-featured prasdistants such as Coq and Agda, and
to better integrate the study of formal logic with other celements of an undergraduate computer
science curriculum.

1 Introduction

Most computer science programs include some exposure io &xya required subject. Often it is
crammed into a single course on discrete mathematics, pertanflated with Boolean algebra and
wedged between combinatorial counting and graph theorthéAUniversity of Waterloo, where | teach,
we are fortunate to have CS located in a Faculty of Mathesiasic our students take the same high-
guality math courses (discrete and continuous) taken b majors. Nonetheless, we have a required
second-year CS course titled Logic and Computation (hernteE&C).

L&C was a relatively recent addition to our curriculum (abbfteen years ago). While it is a prereg-
uisite for the data structures and algorithms coursesjdtmabre a matter of maturity rather than content,
and consequently the content of L&C has tended to vary aofiesngs, from “math-style” (Hilbert
proofs, emphasis on metamathematics) to “SE-style” (esipttn program correctness). The efficacy
of these approaches is open to question, especially siecaniount of material available encourages
broad, shallow treatments, and students may tend to comg aitla exposure to what an individual
instructor thinks is important, rather than what might bestiseneficial for future courses or careers.

It might make more sense to deal with some of these topicsegsatise in other courses. For ex-
ample, students in our first-year CS sequence learn stalcgaursion on natural numbers and lists, and
this might be a place to prove properties of the code (stastiith correctness) by induction. But these
properties, as well as the subtasks involved in proofs bydtidn, involve manipulation of logical state-
ments with for-all quantifiers, and students have diffiegltwith this. At least some of these difficulties
stem from the fact that for-all is a binding construct whose bas consequences similar to the use of
lambda. Proofs might better be deferred until after stugleave experience with higher-order functions.

This similarity between for-all and lambda suggests anadpproach. In the Curry-Howard corre-
spondence, logical statements (propositions or formwasgkespond to types, and the proof of a for-all
statement is a dependently-typed function (a generaliaibdia). At first glance, the idea of using de-
pendent types to introduce undergraduates to logic may sa@sguided. But this approach makes use
of the fact that CS students already have experience withiraalosystem: a programming language.
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Furthermore, our undergraduates have had a first coursadtidnal programming, including both the-
oretical and concrete use of a substitution model (betaetexh, though not called that or defined in full
generality) to explain the execution of programs.

Consider the interpretation of an implication. The way wavpra statement of the form “If T, then
V" is by assuming we have a proof of T, and using that assumpioseveral points in a proof of V.
If we were then given an actual proof of T, we could substithi for the assumption every place it
occurs, and get a self-contained proof of V. The substitupimcess corresponds to the substitution of an
argument value for a parameter name everywhere in the bodyuwfction. Thus a proof of “If T, then
V" corresponds to a function that consumes a proof of T andyxes a proof of V, and the use of such
an implication in a proof corresponds to function applicati

To a nascent computer scientist, this is a powerful metamspecially when they learn that “If T,
then V” is usually written in formal logic a§ — V, which is also the notation for the type of a function
from T to V. The metaphor has more resonance than a representationrobdfaas a tree or a DAG.
This is the starting point of the several construction stepsresult in Proust, a program that both assists
students in building proofs (represented by functions)aretks their validity. The construction process
is an integral part of the L&C course, with some programmizgks being homework exercises. | will
describe the development of Proust, as connectives andifigiamare added incrementally, in sectighs 2
and3, followed by discussion in sectioh 4 of wider curricigsues.

| have chosen to use the Racket programming language [9]aement Proust, because that is the
language used by our students in first year (plus all the nsasty we made that choice), and because
S-expressions are particularly convenient as a data mqadson, but other functional languages could
also be used. The design is a synthesis from many sourcafiyntie OPLSS 2014 lectures of Stephanie
Weirich [11] and her work with collaborators on the Trelly®ject; blog posts by Lennart Augustsson
[B] and Andrej Bauer[[4]; papers on small dependently-typgstems for tutorial purposes (e.g. Al-
tenkirch, Danielsson, Loh, and Outy [2]; Loh, McBride, angi&stra [8]); monographs (e.g. Sorensen
and Urzyczyn[[10]); and the extensive literature on the legs Agda[l] and Cogql[5].

2 Propositional Logic

Starting with the implication metaphor discussed in sefiol derive proof rules for intuitionistic propo-
sitional logic (normally called inference rules, but thaird will be useful elsewhere). The Proust pro-
gram that checks proofs is a straightforward implementatibthese rules. Along the way, though, |
make some unconventional choices for pedagogical benefit.

From the previous discussion, we have types (logical stesn by the Curry-Howard correspon-
dence) constructed from variableX B,C...) and implication (infix—). We also have functions (proof
terms, by the correspondence) with parameters (also ystadleéd variablesy,y, z...), and function ap-
plication. | will use lambda-calculus notation for termss(acalled expressions) in the discussion here,
but the Proust language adapts the syntax somewhat to eagatket implementation. In sequents
(defined shortly) and proof rules, | will uSeV,W as type metavariables, aridg,a,b,c,t,v,w as term
metavariablest : T will be the assertion that tertrhas typer .

To checkAx.t: T — W, we need to check: W, but we need to do so with the knowledge tkafT,
asx is likely to occur int. This suggests maintaining a set of name-type bindin@gypically called a
context), yielding a three-way relatidn—t : W to be checked (this is a sequent). But checking a function
application gives us some slight trouble. To chéck f a:W, we need to check - f : T — W and
I+ a:T. Where doeg come from? We must infer it by looking dt
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This suggests a bidirectional approach [6]. | introducenibi@tionl” -t < W to refer to the idea of
type checking we started with, namely that tdrhras given typ&V in contextl". But for type inference,
| use the notatio -t = T, indicating that in context we are able to infer thathas typerl. To infer
the type of a term that is simply a variable, we look it up in teatext. Denoting v {x: T} aslN,x: T,
here are the proof rules derived so far.

x:THt<=W MN-f=T->W Na<=T
E -1

N-fa=Ww

(VAR) —
Fx:TEx=T FrNAxt<=T->W

Rules are given names with subscripts that indicate elitiminguse) and introduction (creation), a
pattern that will recur with other logical connectives. Vpdcheck a term for which we don’t have a
proof rule, we infer it and check that we get the same type. &#mat infer the type of a lambda, which
means we also cannot check the type of an immediate applicatia lambda. | discuss the curricular
implications in sectiofll4; for convenience, we introducéal type annotation on terms. Here are the
additional proof rules.

MN-t=T Mt<T
_ ———— (ANN)
M -t<T FrM=t:T)=T

Using this, we can avoid both the overhead of mandatory tppetation on term variables (as in the
simply-typed lambda calculus) and the need to discuss Elnllliiner-style type inference. The result
is a set of syntax-directed proof rules which have a cleatempntation as a pair of mutually-recursive

procedures for checking and inferring.
Here is the initial grammar for types and terms, as the usiéspecify them when using Proust.
expr = (A x => expr)
| (expr expr)
| (expr : type)
| x

type = (type -> type)
| X
The program does not enforce the lexical restrictions oiicehaf variables described above, or even
the convention that parameters are lower-case while typablas are upper-case; any symbols may be
used. The program parses user input into an AST built withkBastructures (records), using Racket’s
built-in pattern matching.

(struct Lam (var body))
(struct App (rator rand))

(struct Arrow (domain range))
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; parse-expr : sexp -> Expr ; parse-type : sexp -> Type
(define (parse-expr s) (define (parse-type t)
(match s (match t
(A, (7 symbol? x) => ,e) Gl > ,t2)
(Lam x (parse-expr e))] (Arrow (parse-type t1)
[*(,e0 ,el) (parse-type t2))]
(App (parse-expr e0) [(? symbol? X) XI]
(parse-expr el))] [else (error ...)1))

[(? symbol? x) x]))

| have elided the error messageptirse-type. When the type and term languages are extended with
new constructs in order to deal with additional logical cectives, students can implement the requisite
parser extensions themselves. The code for type checkaohgsatring follows a similar pattern, guided
by the grammar and the proof rules. Contexts are represastadsociation lists.

; type-check : Context Expr Type -> boolean

; produces true if expr has type t in context ctx (or error if not)

(define (type-check ctx expr type)
(match expr
[(Lam x t)
(match type
[(Arrow tt tw) (type-check (cons ~(,x ,tt) ctx) t tw)]
[else (cannot-check ctx expr type)l)]

[else (if (equal? (type-infer ctx expr) type) true (cannot-check ctx expr type))]l))

; type-infer : Context Expr -> Type

; produces type of expr in context ctx (or error if can't)

(define (type-infer ctx expr)
(match expr
[(Lam _ _) (cannot-infer ctx expr)]
[(Ann e t) (type-check ctx e t) t]
[(App f a)
(define tf (type-infer ctx f))
(match tf
[(Arrow tt tw) #:when (type-check ctx a tt) tw]
[else (cannot-infer ctx expr)])]
[(? symbol? x)
(cond
[(assoc x ctx) => second]
[else (cannot-infer ctx expr)])]))

; a simple way to test: a proof term annotated with expected type
(define (check-proof p) (type-infer empty (parse-expr p)) true)



P. Ragde 67

The cannot-check/infer procedures raise an error whose message includes prettgeprepre-
sentations of useful information (context, term, typeg pinetty-printers use matching, and again can be
written/extended by students.

We have a type checker for the implicational fragment ofitidnistic propositional logic. The size
of the code base thus far: 4 lines for datatypes, 12 linesdwsipg, 21 lines for checking/inference, one
line for a test function, and not shown here, 16 lines fortgrptinting and 6 lines for error handling, for
a total of 60 lines.

This program lets us check simple proofs such as

(check-proof (A x => (A y=> (y x))) : (A -> ((A ->B) ->B))))

but there are also more interesting things we can check,aitte proof of the transitivity of implication,
which is the function composition operator:

AfAgAxf(gx):(B—-C)— ((A—-B)— (A—-C))

Because this is intuitionistic logic, there are some thiwgsmight expect to be able to prove at this
point, but cannot, such as Peirce’s LafA — B) — A) — A. In sectiori 4, | discuss how one might deal
with this in the classroom.

| have not yet delivered on the promise of an interactive passistant. To this end we make use
of DrRacket’s REPL (read-evaluate-print loop), as welltasupport for hash tables. We introduce the
notion of holes (or goals), which are unfinished parts of tt@p A hole is a term represented by
in the term language and byHale structure in the AST with a field for a number. A hole typecheck
with any provided type. In Proust, we define state varialieshfe current expression, goal table (a hash

table mapping goal number to required type), and a counteutidber new holes, handled as simply as
possible.

(define current-expr #f)

(define goal-table (make-hash))

(define hole-ctr 0)

(define (use-hole-ctr) (beginO hole-ctr (set! hole-ctr (addl hole-ctr))))
(define (print-task) (printf "~a\n" (pretty-print-expr current-expr)))

Theset-task! procedure initializes state variables for a new task (dlesdras an S-expression).
A typical application is(set-task! '(? : T)), whereT is a logical statement to be proved.

(define (set-task! s)

(set! goal-table (make-hash))

(set! hole-ctr 0)

(define e (parse-expr s))

(match e
[(Ann _ _) (set! current-expr e) (type-infer empty e)]
[else (error "task must be of form (term : type)")])

(printf "Task is now\n")

(print-task))
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Therefine procedure refines goalwith expressiors, but makes sure it typechecks first. If it does,
it removes goah and rewrites the current expression to replace that gohlsyiisingreplace-goal-
with, which does straightforward structural recursion on thd AtBe goal being at a single leaf).

(define (refine n s)
(match-define (list t ctx)
(hash-ref goal-table n (lambda () (error 'refine "no goal numbered ~a" n))))
(define e (parse-expr s))
(type-check ctx e t)
(hash-remove! goal-table n)
(set! current-expr (replace-goal-with n e current-expr))
(printf "Task is now\n" (format "~a goal~a" ngoals (if (= ngoals 1) "" "s")))
(print-task))

With still under a hundred lines of code, we now have the ciipabf interactions like the following,
which proves the “transitivity of implication” result desiwzed above. The- character is the REPL
prompt. The interaction is crude, but genuinely helpful (enso with simple commands to pretty-print
information about the goal and its context), and foreshadsimilar ideas in interactions with Agda and
Coq.

> (set-task! '(? : ((B -> C) -> ((A ->B) -> (A -> O
Task is now (70 : ((B -> C) -> ((A -> B) -> (A -> O))))

> (refine 0 '"(A f => 7))

Task is now ((A £ => 71) : ((B ->C) -> ((A ->B) -> (A -> C))))

> (refine 1 '(A g => 7))

Task is now ((A £ => (A g =>72)) : ((B ->C) -> ((A ->B) -> (A -> (C))))

> (refine 2 '(A x => 7))

Task is now ((A £ => (A g=> (A x=>73))) : ((B->C) -> ((A ->B) -> (A ->0C))))

> (refine 3 '(f 7))

Task is now

(A f=>Ag=>Azx=>(f74))) : ((B->C ->((A->B) ->(A->C))

> (refine 4 '(g 7))

Task is now

(A f=>Ag=>Azx=(f (g?))))) : ((B->C -> (A ->B) ->(A->0C))))
> (refine 5 'x)

Task is now

(A Ef=>Ag=>Azx=(f (gx))))) : (B->C) -> (A ->B) -> (A ->0C))))

The strength of the metaphor persists for the connectivasd . A proof of T AW is a proof of T
and a proof oW, so the proof term is a two-field record. We could calldhs, but it makes proofs more
readable if we call the constructor (of the proof term thasuthe introduction rule) -intro, and call
the accessor functions (used in proof terms that use thelimmation rules)A -elim0 and A-elimil.

TMFt=TIMN—weW FrEv=TAW M=v=TAW
(A1) (~E0) (~E1)

A\ VAN
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TMFt=TTIMI—w=W FrEv=TAW M=v=TAW

N Ainrotw=T AW (~1) ' AeimoV=T (ne0) I Aelim V=W (rew)

A proof of T v W is either a proof ofl or a proof ofW, so there are two introduction rules and two
constructorsy -intro0 andv -introl. To use a proof ol v W, we need a way to use it if it is a proof
of T, and if it is a proof ofW. If we want to produce a proof &f, we must have a proof of — V we
can apply, and a proof &/ — V. The deconstructor -elim is a variation on a case expression. (It is
normally made a new binding form to avoid mixing connectiverules, but we already have a perfectly
good binding form, namely lambda.)

MrMN-v=TvW
Nt<=T NrMNFw<=Ww NMN-f<T->V INrg=W-V
(vio) (vi1) (vE)

Finally, we have negation, whose treatment remains imtutiit may seem incomplete. The logical
constantl denotes an absurdity or contradiction (we use this for bdoghtérm and its type).l has no
constructor, but its eliminatar -elim can have any type. We defir€l to beT — 1, and use this as a
desugaring rule in the parser.

Ni-t<=1

— (L

There are now more statements we cannot préve—A, ——A — A, and some of deMorgan’s laws.
But there are plenty of things we can prove, and this is a goatt o assign some proof exercises —once
students implement the necessary changes to the parggrieter, type checking, and type inference
functions, because these are also reasonable programmengjses. Each connective requires a very
small number of additional lines of code.

While we are writing proof terms that are functions in a laage tantalizingly close to the one we
are programming in, there is no notion of computation in thaguage so far. We draw conclusions
about the AST, but we do not interpret or otherwise execwdethof-programs. In effect, we have only
an evocative tree representation using S-expressions.withchange in the next section.

3 PredicatelLogic

A conventional treatment introduces predicate logic byirgldelational symbols and first-order quan-
tification to propositional logic, possibly followed by axns for equality and arithmetic. But just as
students benefit from the use of higher-order functions ag@mmming, they can benefit from the in-
creased expressivity of higher-order logic. Our goal iis gection, and in the development of Proust,
is to reach the point where we can state and prove a suitaislation of “For all natural numbers
plus(n,0) = n", whereplusis a user-implemented function using structural inductiorthe first argu-
ment (necessitating a proof by induction).
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In the previous section, we maintained a grammatical distn between terms and types. But this
example illustrates the need to eliminate this distincti¥ve rewind to the first program of sectigh 3,
handling the implicational fragment of propositional logvithout holes, and merge the grammar rules.

expr = (A x => expr)
| (expr expr)
| (expr : expr)
|
|
|

X
(expr -> expr)
X

The grammar is too permissive. We enforce well-formednessde, adding @ype structure which
will be the type inferred for a term which satisfies the pregigrammar rule for types. We will soon
addTypeto the term language, but not yet, as we need to refactor tigrgon so that the structure of our
functions mirrors that of the merged grammar. Having doag tlie are ready to consider quantification.
As before, we will reason about what the proof rules shouldabd what proof terms should look like.

We will write a for-all statement ag(x: T) — W, whereT andW are terms (Agda uses a similar
syntax). How do we use such a statement in an informal proogZindtantiatex with a specific value
t of type T, substitutingt for x everywhere thak occurs inW. Using the notatiotW|[x — t] for this
substitution, and leaving the proof terms unspecified femttoment, the rule looks like this:

FrE?2=vx:T) ->W MN-t<=T
[ -2<W[x— t]

(Ve)

If we consider the special case wh&tedoes not use, the substitution has no effect, and the rule
looks like implication elimination. This suggests that-&dris a generalization of implication, that the
introduction proof term should be a generalization of lamtahd that the elimination proof term should
be function application. We can keep implication in the téainguage for convenience, and desugar it to
an equivalent for-all. This version of for-all is a dependgroduct type, often writtefl in the literature
(as in the title of[[2]).

Frx:THEt<=W NrMf=vx:T)->W Mt<=T

FE At v T) ow Y FEfte=W[Xxet (ve)

Once we addypeas a constant to the language of terms, we can, for exampte,the polymorphic
identity function asAx.x: V(y: Type — (y — y). We remove propositional variables from the term
language; we only have variables that are parameters. Bypiis a value, what is its type? Here |
make a decision that is contrary to our goal of a reliable passistant:Typehas typeType This was
done by Martin-Lof in the earliest version of his type thedmyt it was shown by Girard [7] to result
in an inconsistent logic. The proof is complicated and nangke, direct construction as in Russell's
paradox, so it is unlikely to be an issue for students. Inisteiscy can be avoided by a hierarchy of types
(Typg : Typq, etc.), and this is what is done in Coq and Agda, though Cogshille details from the
user until they become relevant. Managing this hierarchyotsdifficult, but it is tedious, and some of
the tutorial materials discussed in secfidn 1 choose talavii the same fashion as | havel([2],[8[.[11]),
while others tackle it [[4]). Avoidance seems best in a canighere we are moving towards use of
full-featured assistants.
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Implementing the above rules requires implementing stibistn, with attention to variable reuse and
variable capture. There are places in the code where theeRpatdicatesqual? is used to compare
types for structural equality (for example, in the implertaion of the “turn” rule). But the polymorphic
identity function mentioned above could equally well bedgi@asy(z: Type — (z— z). The name of
the variable should not matter. In other words, we need adgfisvalence. These topics are typically
covered in a full treatment of the lambda calculus (and iniecipled treatment of predicate logic), but
students in L&C will not have seen them. Since one goal isHent to understand the implementation,
they should be covered in lecture.

As our proof terms are going to get more complicated, we adsaociation list of global definitions,
managed by functions such asf, which typechecks an annotated term and adds it to the list wi
a symbolic name. But substituting such a definition for the oa name will result in expressions
that require simplification through reduction. We haveadsecoded the basic substitution mechanism.
Reduction to weak normal head form suffices in some placésstimng reduction (full beta-reduction)
is needed in others. Definitional equality is the alpha-egjance of two strongly-reduced expressions.

All of this takes considerably more care to present in thestlzom than | have taken here. A
proper presentation takes students through the reasoesadbradditional requirement, by pointing out
expressions that we would expect to typecheck but do not in@mplete implementation. The code
base is still under two hundred lines (an additional 10 lioeslpha equivalence, 30 for substitution, 30
for reduction and equivalence, 20 for support for definijon

The reward for all this work is a surprisingly expressivegaage, considering its size. To start
with, we can implement Church encodings. The Boolean tyjrafgemented by its eliminator, namely
if-then-else, which makes it easy to implement other Baokeactions.

(def 'bool '((V (x : Type) -> (x -> (x -> x))) : Type))

(def 'true '((A x=> (A y=> (A z =>1y))) : bool))

(def 'false '((A x => (A y => (A z =>2))) : bool))

(def 'band '(((A x => (A y => (((x bool) y) false))))
: (bool -> (bool -> bool))))

We can implement logical ANDA), and show that it commutes. Logical OR)(is also possible.

(def 'and '((A p => (A q => (¥ (c : Type) -> ((p -> (g -> ¢)) -> c))))
: (Type -> (Type -> Type))))
(def 'conj '"(Ap=>Ag=>Azx=>Ay=>NAc=>ATFf=>fx)WYWNN)
: (V (p : Type) -> (V (q : Type) -> (p -> (q -> ((and p) q)))))))
(def 'projl '(A p=> A g=> A a=> (ap) A x=>Ay=>x))))))
: (V (p : Type) -> (V (q : Type) -> (((and p) q) -> p)))))
(def 'proj2 '((A p=> (A qg=> A a=>({(aq Ax=Ay=>7y))))))
: (Y (p : Type) -> (V (q : Type) -> (((and p) q) -> q)))))
(def 'and-commutes
"((A p=> (A q=> (A a=> ((((conj @) p) (((proj2 p) q) a)) (((projl p) q) a)))))
: (¥ (p : Type) -> (V (q : Type) -> (((and p) q) -> ((and q) p))))))
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Arithmetic can be implemented using Church numerals.

(def 'mat '((V (x : Type) -> (x -> ((x -> x) -> x))) : Type))

(def 'z '"((A x => (A zf => (A sf => zf))) : nat))

(def 's '"((A n=> WA x=> (A zf => (A sf => (sf (((n x) zf) sf)))))) : (nat -> nat)))
(def 'one '((s z) : nat))

(def 'two '((s (s z)) : nat))

(def 'plus '((A x => (A y => (((x nat) y) 8))) : (nat -> (nat -> nat))))

We can check that(plus one) one) andtwo are definitionally equivalent, but we have no way of
expressing this in our term language. The next step is to gddligy. From this point on, algorithmic
descriptions are shorter and clearer than proof rules.

The proof term(eq-refl t) will have type(t = t). The type(t = w) will have a proof term

exactly whent andw are definitionally equal. The elimination foreg-elim implements the principle
that “equals may be substituted for equals”. It is appliefive things: a ternt of typeT, a “property”
P that has type(T -> Type), a termpt of type (P t) (that is, a proof that has property,), a term
w of type T, and a ternpeq of type (t = w). The application okg-elim has type(P w) (that is, it
proves thats has propertyP), and the reduction rule produces the result of redugitigAll this takes
more space to describe in English than does the implementdtiere are some proofs.

(def 'one-eq-one '((eq-refl one) : (one = one)))
(def 'one-plus-one-is-two '((eqg-refl two) : (((plus one) one) = two)))
(def 'eq-symm
"(A x=> (A y=>(Ap=> (eg-elim x (A w => (w = x)) (eqg-refl x) y p))))
: (V (x @ Type) -> (V (y : Type) -> ((x =y) -> (y = x))))))
(def 'eqg-trans
"(Ax=> Ay=>Az=>Ap=>0Aqg=> (egqelimy A w=>(x=w) pzq)))))
(W (x : Type) -> (¥ (y : Type) -> (V (z : Type) ->
(x=9) > ((y=2) > (x=2))))))))

The Church numerals are inefficient and awkward. Furthesmeren if we add back (which we
should do, to facilitate expressing logical negation), &e state but cannot prove(0 = 1). To address
these issues, we implement Peano numbers, withigpezeroZ and successor functiagh What should
the elimination form be? Computationally, we use naturahbers via structural recursion, witlizaase
and a function to be applied to the predecessor irsthase. We could implement this with a recursor
nat-rec, whose type would b&(T : Type - T — (T — T) — Nat— T. The reduction rules would
reduce(nat-rec ZCase SCase 0) to ZCase and would reducé€nat-rec ZCase SCase (S n)) to
(SCase (nat-rec ZCase SCase n)).

But we can generaliz& to be dependent, having it be a propeRyndexed by aNat. The type
becomes/(P: Nat— Type — (P Z) — (V(k: Nat) - (P k— P (SK)) — (V(k: Nat) — P k). This
is familiar: it is the induction principle for natural numise which we can calhat-ind. If P is the
constant function that producé&s we recover the recursor, and the reduction rulesfar-ind are the
obvious generalization of those faat-rec.
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(def 'mat-rec
"(LA C=> (A zc => (A sc => (A n => (nat-ind (A _ => C) zc (A _ => sc) n)))))
: (V (C : Type) -> (C -> (C -> C) -> Nat -> C))))

(def 'plus
"((A n => (nat-rec (Nat -> Nat) (A m =>m) (A pm => (A x => (S (pm x)))) n))
: (Nat -> Nat -> Nat)))

(def 'plus-zero-left '((A n => (eq-refl n)) : (V¥ (n : Nat) -> ((plus Z n) = n))))

(def 'plus-zero-right
"((A n => (nat-ind (A m => ((plus m Z) = m)) (eq-refl Z)
Ak=>QAp=>
(eq-elim (plus k Z) (A w => ((S (plus k Z2)) = (S w)))
(eq-refl (S (plus k Z))) k p)))
n))
: (V (n: Nat) -> ((plus n Z) = n))))

That last definition demonstrates the capability we prothesethe start of this section, and we can
also prove—(0 = 1), or more generallyy(n: Nat) — —(0 = S n). To fulfil the promise of the title of the
section, we need to add the existential quantifier. We usedketion3(x: T) — W for the dependent
sum type often called in the literature (again, see the title bf [2]). The introtloc form3-intro tuples
atypeT, a “witness”a of type T, and a valuga of typeW|x — a] (that is, a proof thaa has property
W). The elimination formd-elimis applied to a typ¥, a functionf of typeV(x:T) - (W — V), and a
valueb of type3(x: T) — W. The witness embedded it will be used as the argument fao produce
a value of typeV/, which is the type of the application of the elimination forirhe associated reduction
rule reduceg3-elim V £ (3-intro T a pa)) to (f a pa).

As was the situation in the previous section, we have impigetkintuitionistic logic, and so there
are some theorems of classical logic that we cannot prove.ekample, we can prove the theorem
=(3(x: A) - B) — (V(x: A) - —B), but=(V(x: A) —» B) — (3(x: A) — —B) eludes us. By adding the
law of the excluded middle, suitably quantified, as an amteat we can prove the latter.

Why stop here? The code base is still under three hundresl lamel there are some easy additions
that make Proust more friendly. The encodingssodnd v are not inefficient, but they are awkward to
use, and it is simple to add them as we did in sedtion 2. We cadddists as a datatype without much
difficulty. Racket supports various Ul improvements. Butny&echnical improvements significantly
complicate matters: a proper treatment of holes in the gbmtiedependent types; dependent pattern
matching to simplify the use of eliminators; a general mera for user-defined recursive datatypes; a
tactics language to avoid large explicit proof terms.

This is a natural transition point from Proust. Studentsrasely to move to a system like Agda
or Coq. Agda uses explicit proof terms (eased by pattern mragcand a nice Emacs interface); Coq
hides proof terms, though they can be exposed and evenmweitidicitly as needed. Proust’s treatment
of holes, quantifiers, typechecking, and induction pritlegpare in line with these more sophisticated
systems. We have fulfilled our twin goals of demystificatibéfuli-featured proof assistants and properly
motivated/situated exposure to logic for computer sciestodents.



74 Proust: A Nano Proof Assistant

4 Curriculum

The previous two sections focussed on the development ofPags it might be presented to students, but
a course using it will intersperse attention to relateddepiA nonstandard treatment of a subject must
take care to demonstrate connections to more traditionabaphes, and that will be a major theme in
this section.

The main point of the syntactic notion of proof is to be abletaw conclusions about the semantic
notion of truth. It is standard to write— T if there is a proof off usingl” (in our notation, if there exists
t such that™ —t : T). Students will be familiar with Boolean values and funodrom programming,
and have a tendency to confuse proof and truth, so it is béstrtmluce early the formal definition of a
valuation for variables, the value of a formula with resged valuation, and the notatidn= T if every
valuation that makes the formulaslirirue also makes true.

One can then discuss the notion of soundnéss- (T always impliesl” = T) and completeness
(the converse). For a CS student, soundness is the mord psefierty; completeness is interesting
more from a metamathematical viewpoint. Our logics are dpbat they are not complete. It is worth
mentioning the existence of alternate models for which ogick are complete (Heyting algebras, Kripke
models), and perhaps demonstrating the use of these fopvatplity results.

My experience of requiring students to write natural deidimcproofs on paper is that they are frus-
trated by the inflexibility of the formal system relative teir previous experiences with informal proofs
and what they know of Boolean algebra. While a buggy prograay atso frustrate them, they are more
inclined to see it as something worth fixing. With Proust, acoirect proof is a buggy program, and
this combined with immediate feedback on correctness patsf gwonstruction into familiar territory.
Students should still see a couple of proofs presented @s Inalt from rules in the standard fashion,
and the explicit correspondence with proof terms.

In the bidirectional system we use, an immediate applinatiba lambda cannot be typechecked;
proofs must be normal forms. But students may know from eadbourses that immediate application
of lambda is the easiest way to get local definitions (as irRaeket macro implementation of thet
construct). Proofs in propositional logic are usually nmtnplicated enough to require local definitions,
and if necessary, either the definition mechanism of sefioan be implemented earlier, or a specific
local binding construct can be added to the term language.

The treatment of propositional logic in sectidn 2, is clasa traditional approach. The main differ-
ences are the restriction to intuitionistic logic and the aéProust. Lectures should discuss the lack of
intuition and simple computational interpretations foeruthat result in classical logic (such as double
negation elimination), and that they can be added as axiofRsoust without difficulty.

The treatment of predicate logic in sectldn 3 is not at allitranal, and students will benefit from a
sketch of first-order logic, notably the rules and axiomsdeeleto add equality and arithmetic, and the
corresponding completeness and incompleteness results.

| included the Church encodings above to demonstrate theessipity of the type system, but this
material may not be suitable for all students. As an altereabne can easily add back to Proust the
mechanisms developed in the section of propositional logic

It is not clear how much time there will be, in a one-semestatinent, for students to spend much
time with Agda or Coq. At the least, a demonstration shoulthblided at the end, and perhaps a short
one at the beginning to increase motivation.

Finally, students will benefit from an understanding of tisdrical development of this material. It
is best incorporated in short vignettes through the tertherahan crammed into a history lecture full of
names and dates.
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At the time of publication, the first offering of this versiohL&C is in progress as a special enriched
section in the Fall 2016 term. | hope to use this material wattular sections in Spring 2017. The
material could be offered at the introductory graduatel]atein increased pace that permits the inclusion
of additional material (System F, Godel’'s System T) or moq@osure to Agda and/or Cog. The section
on predicate logic could be adapted as an introductory @llpatutorial for a graduate course that makes
heavy use of these proof assistants. The advantage of Rnaersthe tutorials cited earlier is primarily
due to the low overhead of Racket and an S-expression repatisa of proofs and logical statements,
the ease of minor uses of mutation (counters, hash tabled)ihe advantages of the DrRacket IDE.
It is possible that use of a dynamically-typed language tplément typechecking may avoid student
confusion between levels of abstraction.
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