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We commonly think of mathematics as bringing precision to application domains, but its relationship
with computer science is more complex. This experience report on the use of Racket and Haskell to
teach a required first university CS course to students with very good mathematical skills focusses
on the ways that programming forces one to get the details right, with consequent benefits in the
mathematical domain. Conversely, imprecision in mathematical abstractions and notation can work
to the benefit of beginning programmers, if handled carefully.

1 Introduction

Mathematics is often used to quantify and model what would otherwise be poorly-understood phenom-
ena. However, as an activity carried out by humans for humans, it can and does take advantage of
imprecision: using ambiguous notation, omitting cases that are “similar,” and eliding details. The ma-
chines that mediate activity by humans for humans in computer science introduce an element of forced
precision. The thesis of this paper is that pedagogical attention to this relationship can enhance learning
in both disciplines, by introducing more precision to mathematics, and by careful use of imprecision in
computer science.

The University of Waterloo has the world’s largest Faculty of Mathematics, with six departments
(including a School of Computer Science), over 200 faculty members, and about 1400 undergraduate
students entering each year. These students are required totake two CS courses, and they have a choice
of three streams. Two are aimed at majors and non-majors respectively; the third is aimed at students
with high mathematical aptitude. A similar high-aptitude stream has existed for the two required math
sequences (Calculus and Algebra) for decades, but the CS advanced stream is relatively recent, starting
with a single accelerated course in 2008 and moving to a two-course sequence in 2011-2012.

The CS advanced stream currently has a target of 50-75 students per year. Admission is by instruc-
tor consent, or by scoring sufficiently high on math or programming contests at the senior high-school
level. Consequently, a significant fraction (sometimes more than half) of the students taking the advanced
stream are not CS majors (and many who are will take a second major in one of the other Math depart-
ments). Some students have considerable experience in imperative programming, while others have no
programming experience at all. Functional programming, with its low barriers to entry and its elegant
abstractions, is well-suited to provide the right sort of challenges for such a diverse population.

Our major and non-major streams use Racket [6] exclusively in the first course, with the “How To
Design Programs” (HtDP) textbook [2] and the Program By Design (PBD) methodology [5]. (The second
courses make a gradual transition to C for majors and Python for non-majors.) Because of the difficulty
of assessing placement (many non-majors would be better offwith the moderate challenge of the major
course, and the advanced course also draws from both groups)and consequent student migration between
streams, the advanced stream cannot stray too far from this model, but some deviation is possible. The
rest of the curriculum ignores functional programming, so upward compatibility is not an issue.
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There are thus some major similarities among the first courses in all three streams, and indeed with
courses on functional programming using other languages and textbooks: starting with the manipulation
of numbers and structures with a fixed number of fields, introducing recursion with lists, and continuing
with trees. PBD emphasizes data-directed design, and the use of examples and tests to guide code
development.

In the remainder of this paper, I will describe some unusual choices that I made in the design of the
first advanced course, some techniques that seemed to find favour with students, and some issues that
remain to be overcome.

2 The roles of Racket and Haskell

Among institutions using a functional-first approach, Haskell [3] is a popular choice. Haskell is an
elegant and highly-expressive language, and its proximityto mathematics would make it a natural choice
for students in the advanced stream. Thus the reader may be surprised at the choice I made in the first
advanced course: while the first set of lectures uses Haskellexclusively, and students see it throughout
the advanced course, all of their assignment programming isdone in Racket. Haskell is used as functional
pseudocode.

Conventional pseudocode, at its best, resembles untyped Pascal: imperative, with loops manipulating
arrays and pointers. In comparison, code written in a functional language is transparent enough that
it often serves the same purpose. However, there are degreesof transparency, and some functional
languages are more readable than others. Haskell, with patterns in function definitions and local bindings,
and infix notation, is rich in expressivity, and it is highly readable as long as care is taken to not make it
too terse (at least on early exposure).

However, students actually programming in Haskell (as opposed to just reading it for comprehension)
have to learn about operator precedence, and have to learn the pattern language. Mistakes in these areas
often manifest themselves as type errors, aggravated by type inference making interpretations that the
student does not yet know enough to deliberately intend or avoid, and compiler errors designed to inform
the expert. Well-written Haskell code is a joy to read; poorly-written, incorrect Haskell code can be a
nightmare for the beginner to fix.

Racket’s uniform, parenthesized syntax (inherited from Lisp and Scheme) is by contrast relatively
straightforward; the teaching language subsets implemented by the DrRacket IDE limit student errors that
produce “meaningful nonsense”; and testing is lightweight, facilitating adherence to the PBD method-
ology. Seeing two languages from the beginning lets students distinguish between concepts and surface
syntax (in effect providing them with a basis for generalization), while programming in just one mini-
mizes operational confusion. When I introduce more advanced features available in full Racket (such
as pattern matching and macros), students can appreciate them (with the foreshadowing provided by
Haskell) and put them to use immediately.

Following Hutton, who in his textbook “Programming In Haskell” [4] does not even mention lazy
evaluation until the penultimate chapter, I am vague about the computational model of Haskell at the
beginning. But a precise computational model is important in debugging, and the simplified reduction
semantics that HtDP presents is quite useful, especially combined with the DrRacket tool (the Stepper)
that illustrates it on student code.
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In fact, though the code I show is legal Haskell (with a few elisions, such as the use ofderiving Show

or type signatures necessary to assuage the compiler), as pseudocode it should perhaps be called “Raskell,”
because, in early computational traces and later analysis of running time, I assume strict (not lazy) se-
mantics corresponding to those of Racket.

3 Computation and proof

Here is the first program that the students see.

data Nat = Z | S Nat

plus x Z = x

plus x (S y) = S (plus x y)

Peano arithmetic is not normally treated in a first course on computing, though it may show up in
a later course on formal logic or a deep enough treatment of Haskell to show its utility in advanced
notions of types. One reason to introduce it here is that the Algebra course my students are taking
simultaneously is not linear algebra, but “classical algebra”, which uses elementary number theory to
illustrate the process of doing mathematics. However, thatcourse assumes the properties of integers as
a ring and rational numbers as a field (without using those terms), as does every math course before a
formal treatment of groups, rings, and fields. This gives us an opportunity to show that computers cannot
just assume these operations exist, but must implement them.

HtDP distinguishes three kinds of recursion: structural recursion, where the structure of the code
mirrors a recursive data definition (as above); accumulative recursion, where structural handling of one
or more parameters is augmented by allowing other parameters to accumulate information from earlier
in the computation (illustrated below); and generative recursion, where the arguments in a recursive
application are “generated” from the data (early examples include GCD and Quicksort).

A computational treatment of Peano arithmetic respects this hierarchy (the code above is structurally
recursive) while immediately serving notice that mathematical assumptions will be challenged and details
are important. Being precise about addition, an activity students have carried out almost as long as
they can remember, but which they likely have not examined carefully, gives a fresh perspective on
mathematics. This approach also permits me to address in a timely fashion the notion of proofs and their
importance to computer science.

The first proof they see is an example of classic∀-introduction, where a free variable in a proved
statement can be quantified. Here is a proof of “add x (S (S Z)) = S (S x)”.

add x (S (S Z)) = S (add x (S Z))

= S (S (add x Z))

= S (S x)

We can now conclude “For allNats x, add x (S (S Z)) = S (S x)”. I describe this to the
students as “the anonymous method”; the emphasis here is another example of greater precision in math-
ematics than is typical at this level, where implicit for-all quantification is a source of much confusion.
(Note the computational model here, a restricted form of equational reasoning where the clauses of the
function definition are treated as rewriting rules. This meshes quite well with the reduction semantics
given for Racket.)

The anonymous method is inadequate for a proper explorationof proof, even at this point. At-
tempts to prove, for example, commutativity or associativity (other concepts they have taken for granted)
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founder. An even simpler example is “For allNats x, add Z x = x”. We can prove this for small
examples, such asx = S (S (S Z)):

add Z (S (S (S Z))) = S (add Z (S (S Z)))

= S (S (add Z (S Z)))

= S (S (S (add Z Z)))

= S (S (S Z))

At this point the student can see the proof for the casex = S (S Z), on the right hand side if one
layer ofS is stripped away. In this way, we arrive at the need for and justification of structural induction
on our definition ofNat. They see induction in their Algebra sequence (immediatelyin the advanced
stream, after a few weeks in the regular stream) but it is not applied to “fundamental” properties of
arithmetic, which are taken for granted.

This approach falls short of full formalism, either througha proof assistant such as Coq or ACL, or
through a classic presentation of Peano arithmetic in the context of formal logic, either of which would
be overkill for an introductory course. Instead, it uses computer science and mathematics together to
yield more insight than traditional pedagogical approaches at this level in either discipline.

Discussing proofs by induction also reinforces the idea that structural recursion, should it work for
the problem at hand, is a preferable approach, as it is easierto reason about, even informally. We look at
a non-structurally-recursive version of addition:

data Nat = Z | S Nat

add x Z = x

add x (S y) = add (S x) y

This function uses accumulative recursion (the first parameter is an accumulator), and it is harder to
prove properties such as the one above, commutativity, or associativity. In fact, the easiest way to do this
is to prove thatadd is equivalent toplus, and then prove the properties forplus.

Surprisingly, this situation carries over into many early uses of accumulative recursion, such as to add
up or reverse a list. An accumulator resembles a loop variable, and the correspondence is direct in the
case of tail recursion. The conventional approach to proving correctness is to specify a loop invariant that
is then proved by induction on the number of iterations (or, in the functional case, the number of times
the recursive function is applied). But it turns out that a direct proof (by structural induction) that the
accumulatively-recursive function was equivalent to the structurally-recursive version is, in many cases,
easier and cleaner. The reason is that many of the standard proofs of loop invariants involve definitions
that use notation (such asΣ for addition) whose properties themselves require recursive definitions and
proofs.

As an example, consider adding up a list.

sumh [] acc = acc

sumh (x:xs) acc = sumh xs (x+acc)

sumlist2 xs = sumh xs 0

An informal proof of correctness ofsumlist2, based on Hoare logic, would use an invariant such as “In
every application of the formsumh ys acc, the sum of the whole list is equal toacc plus the sum of
theys.” But there really is no better formalization of “the sum of”in this statement than the structurally
recursive definition ofsumlist:

sumlist [] = 0

sumlist (x:xs) = x + sumlist xs
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At which point it is easier and more straightforward to prove“For all xs, for all acc, sumh xs acc =

acc + sumlist xs” by structural induction onxs. We arrive at this only by trying to prove the more
obvious statement “For allxs, sumh xs 0 = sumlist xs” and failing, because the inductive hypothe-
sis is not strong enough. The difficulty of finding an appropriate generalization to capture the role of the
accumulator (which gets harder with more complex code) underlines the difficulty of understanding and
informally justifying code that uses an accumulator.

The strong connection between structural recursion and structural induction makes it possible to
discuss rigourous proofs of correctness in a way that is not overwhelming (as it typically is for Hoare
logic), and this extends to most uses of accumulative recursion. Traditional invariants are easier to
work with in the absence of mutation than if it is present, butthey still require more work than the
direct approach of structural induction. Strong induction, or induction on time or number of recursive
applications, can thus be deferred until generative recursion is taught.

4 Analyzing efficiency

A traditional CS1-CS2 approach defers discussion of algorithm analysis and order notation to the sec-
ond course, leaving the first one to concentrate on the low-level mechanics of programming. However,
efficiency influences not only the design of imperative languages, but the ways in which elementary
programming techniques are taught. Efficiency is also the elephant in the room in a functional-first ap-
proach, though the source of the problem is different. A structurally-recursive computation where it
is natural to repeat a subexpression involving a recursive application (for example, finding the maxi-
mum of a nonempty list) leads to an exponential-time implementation, with noticeable slowdown even
on relatively small instances. The fix (moving code with repeated subexpressions to a helper function)
is awkward unless local variables are prematurely introduced, and even then, the motivation has to be
acknowledged. Accumulative recursion is also primarily motivated by efficiency.

Our major stream also postpones order notation to the secondcourse, while reluctantly acknowledg-
ing the elephant where necessary. The advanced stream, however, introduces order notation early. An
intuitive illustration of time and space complexity is easywith our first example of unary numbers, as it
is clear from a few traces that our representation takes up a lot of room and computation with it is slower
than by hand. We more carefully exercise these ideas by moving at this point into a sequence of lectures
on representing sets of integers by both unordered and ordered lists.

Order notation shares pedagogical pitfalls with another topic commonly introduced in first year,
limits in calculus. Both concepts have precise definitions involving nested, alternating quantifiers, but
students are encouraged to manipulate them intuitively in aquasi-algebraic fashion. A typical early
assignment involves questions like “Prove that 6n2

− 9n− 7 is O(n2).” As with epsilon-delta proofs,
not only do weaker students turn the crank on the form withoutmuch understanding, but questions like
this have little to do with subsequent use of the ideas. The situation is worse with order notation (more
quantifiers, discrete domains that are difficult to visualize).

The analysis of imperative programs at the first-year level is little more than adding running times
for sequential blocks and multiplying for loop repetitions; in other words, it is compositional based
on program structure. The obvious approach for recursive functions involves recurrences. But solving
recurrences is not easy, even with standard practices such as omitting inconvenient floors and ceilings,
and setting up recurrences is not straightforward, either.I have found that a compositional approach
works for many recursive functions encountered in this course, with the aid of a table.

The tabular method works for functions that use structural or accumulative recursion, as long as
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the recursive application is done at most once on each “piece” of the argument corresponding to a self-
referential part of the data definition. For lists, this means the “rest” of the list; for binary trees, this
means the two subtrees. All the functions they need to write in early treatment of lists and binary trees
are structurally or accumulatively recursive.

Racket functions consuming data of these forms consist of acond at the top level, and the table has
one row for each question-answer pair (equivalently, for each pattern plus guard in a Haskell multipart
definition). The row contains entries for the number of timesthe question is asked (as a function of the
“size” of the argument), the cost of asking the question (nearly always constant), the number of times the
answer is evaluated, and the cost of evaluating the answer (apart from recursive applications). These are
multiplied in pairs and added to give the cost of the row, and then these costs are added up over all rows.
Here is how the table might look forsumlist (wheren is the length of the list argument):

Row #Q time Q #A time A total
1 n+1 O(1) 1 O(1) O(n)
2 n O(1) n O(1) O(n)

O(n)

For a function with more than two cases, we typically cannot be so precise about the number of
questions and answers. Order notation once again comes to the rescue.

filter p [] = []

filter p (x:xs)

| p x = x : filter p xs

| otherwise = filter p xs

Here is the tabular analysis of the running time offilter on a list of lengthn.

Row #Q time Q #A time A total
1 n+1 O(1) 1 O(1) O(n)
2 O(n) O(1) O(n) O(1) O(n)
3 O(n) O(1) O(n) O(1) O(n)

O(n)

This approach does not entirely avoid recurrences, which are necessary to explain, for example, the
exponential-time behaviour of naı̈ve list-maximum, but itlimits their use.

Here we are using the imprecision of order notation in two different ways. The loss of information
about the exact running time streamlines the analysis by notcarrying along irrelevant detail. We are
also working with an intuitive or fuzzy understanding in theheads of students as to the meaning of an
order-notation assertion (it is still easy, when using the tabular method, to erase the distinction between
then2 appearing in a table entry and the actual running time that itbounds, qualified by the appropriate
constants). While this can lead them into difficulty in more pathological situations, it suffices for the
kind of analyses necessary at the first-year level.
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5 Efficient representations of integers

The approach I take to the efficient representation of integers starts by arguing that the problem with
unary arithmetic stems from the use of a single data constructor with interpretationS:n 7→ n+1. Using
two data constructors, we must decide on interpretations.

data Nat = Z | A Nat | B Nat

Effective decoding requires that the range of the two interpretations partition the positive integers. “Deal-
ing out” the positive integers suggests an odd-even split, with interpretationsA: n 7→ 2n andB: n 7→ 2n+1.
This leads to a form of binary representation (with the rightmost bit outermost), with unique represen-
tation enforced by a rule thatA should not be applied toZ (corresponding to the omission of leading
zeroes). The interpretation easily yields a structurally recursivefromNat to convert to standard numeric
representation, and its inversetoNat.

toNat 0 = Z

toNat 1 = B Z

toNat 2 = A (B Z)

toNat 3 = B (B Z)

toNat 4 = A (A (B Z))

We cover addition and multiplication in the new representation, and analyze them. This leads to an
interesting side effect. Mutual recursion is introduced inHtDP in the context of trees of arbitrary fan-out.
But it arises naturally with the linear structures used here.

A first attempt at addition might look like this:

add x Z = x

add Z y = y

add (A x) (A y) = A (add x y)

add (A x) (B y) = B (add x y)

add (B x) (A y) = B (add x y)

add (B x) (B y) = A (add1 (add x y))

add1 Z = B Z

add1 (A x) = B x

add1 (B x) = A (add1 x)

A naı̈ve analysis ofadd first analyzesadd1, which takesO(s) time on a number of sizes (number
of data constructors used in the representation). Thenadd takes timeO(m2), wherem is the size of the
larger argument. However, this analysis is too pessimistic. add actually takes timeO(m), since the total
work done by all applications ofadd1 is O(m), not just one application. This is because the recursion in
add1 stops when anA is encountered, but the result of applyingadd1 in add is wrapped in anA.

But this argument is subtle and difficult to comprehend. It isbetter to replace the last line in the
definition ofadd with an application of an “add plus one” function.
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add (B x) (B y) = A (addp x y)

We then developaddp, which has a similar structure toadd, and recursively appliesadd. It is now easy
to see thatadd has running time linear in the size of the representation, because it (oraddp) reduces the
size of the arguments at each step.

Another surprising benefit of this approach is that we can easily represent negative numbers simply
by introducing the new nullary constructorN, representing−1. The interpretations ofA andB remain the
same, as do the representations of positive numbers; we add the rule thatB cannot be applied toN. The
resulting representation of integers is isomorphic to two’s complement notation.

toInts (-1) = N

toInts (-2) = A N

toInts (-3) = B (A N)

toInts (-4) = A (A N)

toInts (-5) = B (B (A N))

The more traditional representation of two’s complement can be seen by reading right-to-left and
making the following substitutions: 0 forA, 1 for B, the left-infinite sequence of 0’s forZ, and the left-
infinite sequence of 1’s forN.

3 = ...011

2 = ...010

1 = ...01

0 = ...0

-1 = ...11

-2 = ...10

-3 = ...101

-4 = ...100

-5 = ...1011

When we work out addition for the extended representation, we discover that the existing rules for
add stay the same, and the new ones involvingN are easy to work out. Two’s complement notation is
normally mystifying to second-year students taking a computer architecture course, because it is pre-
sented as a polished technique that “just works” (that is, reuse of the logic for unsigned binary addition,
with just a little added circuitry). Here we have not only a clear explanation of how it works, but good
motivation for the development. The internal representation of numbers in both Racket and Haskell is no
longer magic.

The savings in space and time are intuitive, but when we quantify them, we can introduce and solve
exactly the recurrence relating a natural numbern to the size of its representation, which is an effective
introduction of logarithms to the base 2 that does not duck issues of discretization.
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6 Efficient representations of sequences

Trees are often introduced to mirror structure in data: in HtDP, using family trees, and in our major
sequence, using phylogeny trees. An important insight is that introducing tree structure to data not
obviously structured in this fashion can yield improvements in efficiency. Unfortunately, the example
usually chosen to illustrate this, binary search trees, is not effective at the first-year level. The simplest
algorithms are elegant but degenerate to lists in the worst case; there are many versions of balanced
search trees, but the invariants are complex and the code lengthy, particularly for deletion. As a result,
first-year students only see artificial examples of balancedtrees, such as the ones that can be built from
an already-sorted sequence of keys.

Of course, this material is important, and we do treat it. Butthe first example should be a success.
The first introduction of a tree structure to data for purposes of efficiency should result in a quantifiable
improvement, one that is not deferred to an intermediate data structures course in second year or later.

The treatment of natural numbers in the previous section provides a path to an effective introduction
of logarithmic-height binary trees. Consider the problem of representing a sequence of elements so as to
allow efficient access to theith element. A list can be viewed as being indexed in unary, with the element
of indexZ stored at the head and the tail containing the sequence of elements of indexS x, stored in the
same fashion but with the commonS removed from all indices. The reason it takesO(i) time to access
the ith element of a list is similar to the reason it takesO(i) time to add the unary representation ofi to
another number.

Binary representation of numbers suggests storing two subsequences instead of one: the sequence of
elements of indexA x, and the sequence of elements of indexB x. This leads to the idea of a binary tree
where an element of indexA x is accessed by looking for the element of indexx in the left (“A”) subtree,
and an element of indexB x is accessed by looking for the element of indexx in the right (“B”) subtree.
This is just an odd-even test, as used intoNat, and the reader will recognize the concept of a binary trie.

But there is a problem in this particular application, stemming from the lack of unique representation
and our ad-hoc rule to get around it. Not all sequences ofA’s andB’s are possible, sinceA cannot be
applied toZ. This means that roughly half the nodes (every left child) have no element stored at them,
since that element would have an index ending withA Z. We can avoid this problem by starting the
indexing at 1, or, equivalently, retaining indexing starting at 0 but “shifting” to 1-based before apply-
ing/removingA or B and then shifting back. In other words, we can replace theA-B representation with
aC-D representation, with interpretationC(n) = A(n+1)−1 andD(n) = B(n+1)−1.

This results in the interpretationC: n 7→ 2n+1 andD: n 7→ 2n+2. Conversion between the newC-D
representation and built-in integers is as simple as with the oldA-B representation. The new representa-
tion is naturally unique (without the need for extra rules),and all sequences are possible, so there are no
empty nodes in the tree with “C” left subtrees and “D” right subtrees. It is easy to show (again, by solving
a recurrence exactly) that the tree has depth logarithmic inthe total number of elements. Furthermore,
not only does access to theith element takes timeO(log i) by means of very simple purely-functional
code, but standard list operations (cons, first, rest) take logarithmic time in the length of the sequence.
We have rederived the data structure known as a Braun tree [1]. The code for deletion (rest) is no more
complicated than the code for addition; indeed, there is a pleasant symmetry.

Our attention to mathematical detail in the treatment of natural numbers has paid off with an un-
expected and fruitful connection to purely-functional data structures. We see that a more mathematical
treatment of fundamentals is not in conflict with core computer science content; on the contrary, it sup-
ports the content and increases accessibility by providingsensible explanations for choices.
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7 Conclusions

Course evaluations indicate that students greatly appreciate the first advanced course. The use of Haskell
as pseudocode does not seem to confuse them. They can translate it into Racket when asked to do so, and
the Racket code they write on exams does not have Haskell elements creeping into it. This is probably
due to the fact that they never have to write Haskell, even as pseudocode, during the course. Haskell
intrigues them, and some students express interest in usingit. I hope to develop some optional learning
materials for such students in the near future.

There is more than enough material to fill a first course with topics approached in a purely functional
manner (and one that largely emphasizes structural recursion). The only real difficulty with content is
the necessity to leave out favourite topics due to the finite length of the term.

The second advanced course, which needs to move towards mainstream computer science, is more
problematic. The advanced sequence shares some issues withthe major sequence: the more complicated
semantics of mutation; the increased difficulty of testing code written in a primarily imperative language;
the confusing syntax, weak or absent abstractions, and lackof good support tools associated with pop-
ular languages. Added to these for the advanced sequence arethe disappointment associated with the
comparative lack of elegance and the relatively low-level nature of problem solving typical with such
material. It is not the best advertisement for computer science.

Despite this, students appreciate the second advanced course, perhaps because all of these elements
are present and have even more impact on students in the second regular course (for majors). They also
voice some of the frustrations that I feel as instructor. Thesecond course remains a work in progress,
with hope sustained by the fact that Racket is a good laboratory for language experimentation. With luck
I will soon be able to report on a second course which is as rewarding for students as the first one.
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