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What would you teach if you had only one course to help stugdgrasp the essence of computation
and perhaps inspire a few of them to make computing a subjdgttber study? Assume they have
the standard college prep background. This would includickelgebra, but not necessarily more
advanced mathematics. They would have written a few ternensapput would not have written
computer programs. They could surf and twitter, but couldexelusive-or and nand. What about
computers would interest them or help them place their égpee in context? This paper provides
one possible answer to this question by discussing a couasdas completed its second iteration.
Grounded in classical logic, elucidated in digital cirsu#tnd computer software, it expands into
areas such as CPU components and massive databases. T$elmmsucceeded in garnering the
enthusiastic attention of students with a broad range efésts, exercising their problem solving
skills, and introducing them to computational thinking.

1 One and Done

What would you teach if you had only dheourse to help students grasp the essence of computation
and perhaps inspire a few of them to make computing a subfdattber study? Assume they have the
standard college prep background. This would include kagebra, but not necessarily more advanced
mathematics. They would have written a few term papers, lmutldvnot have written computer pro-
grams. They could surf and twitter, but could not exclusiveand nand. What about computers would
interest them or help them place their experience in context

This paper discusses one of the many possible answers tgubssion. It describes experiences in
teaching an honors course for students from a variety ofglises at the University of Oklahoma. The
students have varied interests and come from all collegddgfirst year to fourth year. They can choose
from many courses to satisfy their honors requirementsn fBeatles History to Moby Dick to What is
Science? This course, called “How Computers Work: Logic atign,” has succeeded in getting the
enthusiastic attention of some of these students and iciskey their problem solving skills.

The course includes some computer programming, but doedwwlt on it. Students get enough
experience to know what software is, but not enough to takgeoious software development projects.
The material helps students understand what makes autbroateputation possible by expanding on
computational principles and overarching insights rathan the details needed in the practice of engi-
neering. Most of the students will not continue with addiibstudy in computer science. They will not
become practicing engineers in hardware or software dpnedat.

*This material is based upon work supported by the Nation@rse Foundation under Grant No. 1016532.

1Exceptional athletes in American colleges sometimes kmith the intention of turning professional after one year.
Coaching vernacular for these athletes is “one and doneg'tifle of this section applies the term to students who mhg ta
only one course in computation.
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Computers are demystified. Students grasp the fundamdéméisiake automated computation pos-
sible. We have some objective support for these claims fioest assessments of the course and from
scores on examinations. Exam scores averaged over 90%hroffetings of the course, and we think
the exams call for comparable problem solving skills anégimtsabout concepts than other exams we
have given in computer science courses over the years.

Student assessments (which are discussed in more detaitiin§3) are mostly, but not uniformly,
positive about the understanding of the workings of comysutieat they have acquired through their
studies in the course. One student was disappointed thabthee failed to discuss “the actual physical
mechanisms of computers and how the different parts (e.gMRAotherboard, etc.) work together.”
Others were similarly surprised by the content of the cquistethey were happy rather than disappointed
with what they learned. Based on the overall tenor of studsséssments, we think students did acquire
a perspective on computers that make them less mysteriaurscadclusion is guided more by our past
experience in teaching computer science than in objectiErce.

The honors course is an outgrowth of a course in applied logiaired in the computer science
program at the University of Oklahoma. Other papers haveudsed the earlier course and supporting
tools [1,/2/ 3/ 4, B,16,17].

The honors course includes more material on the big pictbimmputational thinking and more
writing projects (as opposed to problem solving projedigntthe original logic course, but there is
enough overlap to make it an adequate substitute, at leagbfm students. Topics from the required
course that are omitted in the honors version to make roomnéwe coverage of the big picture include
Karnaugh maps, quicksort, and a few other algorithms. G@epf deductive reasoning is reduced in
the honors course, but equation-based reasoning is coaemmbut the same level as in the required
course. These changes make it possible to include materlatge applications such as Google’s use of
MapReducel[8] for rapid searches and Facebook’s Cassapgrazah to the massive database problem
[9].

The material gives students who are not majoring in compmaience a leg up, but does not overlap
directly with mainstream material in most computer sciepa@grams. Such programs, at least in the
United States, usually discuss logic in a required courslésitrete mathematics, but the material on logic
rarely takes up more than 20% of the discrete mathematiase@nd usually does not discuss directly
in any detail connections between logic and the design ofpcen hardware and software.

The big ideas in the honors course are

. the correspondence between digital circuits and forsninl#ogic,

. how abstractions facilitate combining solutions to dipadblems to form solutions to big ones,
. how algebraic formulas can specify computations,

how models expressed in software capture the behaviaooépses and devices,

how important, complex algorithms derive from simpldijmgonal properties,

ook w N e

how different definitional properties can produce theeassults at vastly different computational
expense,

7. how computational expense makes some useful devicabléeaad renders others infeasible,

8. and how all of these ideas bear on the ability of computedeal with information on the massive
scale needed to provide services like search enginespatistorefronts, and social networks.

The idea of deriving new properties by rigorous reasoninmfdefinitional ones is suffused through-
out the course. Algebraic equations specify software agiliadlicircuits as formulas in logic, and logic
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is employed to derive new equations. In this sense, logim$éahe basis of both the objects under study
and analysis of those objects. These ideas have been amumtbhg time. John McCarthy wrote about
them extensively over a half-century ago [EO].

Based on our observations of the understanding of the bagsitly most of the computer science
students we encounter, we think that the honors studentsi¢téde to go further have a better initial
understanding of the big ideas than many of the students whiglel early on to focus their studies in
computing. One student commented that “As someone who weaadyl acquainted with a traditional
programming language, | thoroughly enjoyed learning théhods and ideas presented in this class.”
Another said the course “helped me understand how compodensnunicate through their languages
and axioms.” We do not think many incoming computer sciertadents would mention axioms as
an element of their understanding of computers. Severaknsadhments indicating that the course
unlocked new parts of their brains, again an unusual take @onguting course compared to that of
most computer science students.

2 Demographics

“How Computers Work: Logic in Action” has been offered twic® far, as part of a collection of “per-
spectives courses” in the Honors College at the Universitldahoma. As one of many requirements
for earning a degree with honors, students must completgéngpectives courses. The first offering of
this perspectives course was in spring, 2011. By populatadelra repeat offering took place in spring,
2012, and the course is scheduled again for 2013.

Perspectives courses in the Honors College are limited rteteén studens. Nineteen students
enrolled in the 2011 offering, but two dropped the courseradt few weeks. The 2012 offering was
oversubscribed at twenty students. One dropped, leavinlj eohtingent of 19 to complete the course.

Eight of the total of 36 students in the two offerings of theirse had major fields of study outside
science and engineering: history, letters, philosopmguistics, economics, drama, psychology, and
business. Sixteen were majoring in science, eleven wermesng students, and one, a first-year
student, had not yet decided on a major. One of the engirgestirdents was in computer science, and
three were in computer engineering. Engineering studeotgd, on the average, three percentage points
higher on examinations than students in science and fiveégloigher than students outside science and
engineering.

Almost 80% of the students (28 of 36) were in their first tworgeaf college. About 60% of the
students had some prior experience in programming. In nas&iscthis was a course in high-school or
college, but five students had been programming for moretthaears. None had any prior experience

2In a sense the course originates from in-person interactigih McCarthy. He visited the University of Oklahoma foraw
days in 1996 at the invitation of the School of Geology andfibgsics to speak about the sustainability of human progiidss
School was attracted to McCarthy by some material on his iteetigt was favorable to their interest in expanding exgiion
for oil. The geophysicists did not feel that they could pretiltely entertain McCarthy for two days, so they asked theaior
of the School of Computer Science (which happened to be otfeatuthors) to escort McCarthy for meals and to arrange for
him to deliver a separate seminar for the School of ComputiEnge. It was a thrilling opportunity.

At breakfast one morning, the subject of introducing an ugideluate course on reasoning about software arose. MgCart
remarked that logic would be the essence of the course. €hiank provided the inspiration for organizing the coursthwi
logic as the main theme and with reasoning about softwargging examples of logic in action. It was truly an “aha” mamhe
leading, albeit by a long and circuitous route, to the cotiaéthis paper describes.

3The reason for the limit of nineteen, rather than twenty ensother number, has been lost. It was decided over fifteen
years ago, and no member of the current Honors College Yaguitaff has been with the College that long.
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in functional programming. Students with prior programgi#xperience scored, on the average, four
percentage points higher on examinations than studertsutiprogramming experience.

All students in the course are honors students, which mesaysheld a grade-point average of at
least 3.4 (out of a possible 4.0) at the time of joining thedrerprogram and would need to maintain
at least that average to have an honors designation (“cude’lawn their diploma at graduation. In
addition, enrolling in honors courses suggests a high eha&blf motivation. Honors students tend to be
well-engaged in their studies, and they participate etiedly in class. They ask interesting questions,
and vague or sloppy answers seldom go unremarked.

To summarize, about 20% of students enrolled in the course wajoring in humanities, social
sciences, or business. About 30% were engineering majash@mical, electrical, chemical, computer
engineering, computer science), and about 45% were scieaf@Es (physics, chemistry, biochemistry,
microbiology, meteorologﬁ Two of the science students were simultaneously working dagree in
mathematics. Almost 80% of the students were in their firstyears of college. Engineering students
scored higher, on the average, on examinations than studeiatrts and sciences, but not by much.
Among arts and science students, science students didrmabydbetter, but the margin was only two
percentage points.

3 Assessment

Near the end of the course, the university asks studentsnplete a 20-question assessment of their
experience in each of their courses. The full record of studesponses to these questions for both
offerings of the course is accessible onlinel[11]. We prevadsummary in this section that we think
gives an accurate picture of the range of student opinionoufB0% of the students completed the
guestionnaire in both offerings of the course. The questor has fifteen questions requiring a ranking
on a five-point scale (5 for “far above average” down to 1 far‘below average”) and five questions
calling for free-form comments.

Assessments of both offerings of the course were mosthtipesiThe ratings in 2012 were a bit
higher than in 2011. For example, the median responses tpugsions “How intellectually stimulating
was this course?” and “How much did this course help you dgvegbur critical thinking skills?” were
4in 2011, but 5 in 2012. In both years the median rating was 5dweerall this course wag'),” but the
mean went from 4.75 in 2011 to 4.9 in 2012.

Responses to the question “What were the specific strongspofrthe course?” included observa-
tions about interesting, novel concepts and readings, tléty of posted lecture notes, and improve-
ments in critical thinking coming from challenging concepind homework. One student responding
to a question about the weak points of the course said thatgheof the course was tedious at times.
Another said that the overall goal of the course was uncl@eérer comments pointed out that the con-
cepts were difficult for people not familiar with computetisat there was too much jargon, and that
explanations in the textbook were sometimes incompletensatisfactory. Some students complained
that the course did not cover as many big concepts and idelagveras many in-class discussions as
other perspectives courses in the Honors College.

Another question asked for an overall opinion of the coutdest responses to the question were
positive: “This course was beyond excellent.” “It was a lbtvmrk, and very difficult, but | enjoyed it
and am glad | took it.” The course “encourages difficult,icait thinking.” There were three negative

4The percentages do not add up to 100 because one studentthad cloosen a major.
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responses to the question. One student asked for moregvaisisignments to make the course more like
other perspectives courses, and two students wanted meeeighan the “big picture.”

The Honors College administration was pleased enough wittest reactions in both years to ask
for another offering in 2013.

4 Course Content

4.1 Equations

Much of the material in the course centers around equatiéas.example, software is introduced as
operations that transform operands to results. This istdreard viewpoint of functional programming.
Of course any software (or hardware), transforms inputaigto output signals, which makes it possible
to take the functional viewpoint regardless of paradigmweler, this is only a high-level picture, and
the details will differ substantially in different paradig.

In this course, all software is described in the form of emquist That is, all programs in the course
are functional programs. This is partly to keep the amoumhaferial within reasonable bounds for a
one-semester course, but mostly to simplify reasoning tedmmftware and digital circuits and to make it
possible to use a mechanized logic to formalize some of thefpr

Operations are described informally, through templatasrtlate inputs to results. For example we
define the list constructoeons, with the following informal equation.

(cons X [X1 X2 ... Xn]) = [X X1 X2 ... Xn] {cong
The traditional definition okons would avoid informality by introduction the constructorcdaits
destructors together and avoid the need for names of elsroétite list:

(first (cons X X9) = X {fst-id formal}
(rest (cons X X9) =Xs {rst-id formal}

We think it works better to start with a less formal approacti @ork towards greater formality. That
is why our initial presentation afons has a list template with a name for each list element.

Informally, we use square brackets to delimit templatedi$ts andn to denote an arbitrary natural
number. In this case (and most cases) subscripts distmghgsnames of individual elements in the list.
In the above examplp Xz ... Xy] stands for a list witih elements, angk x3 X ... X] is a list withn+ 1
elements whose first elementdisind whose subsequent elementsxare,, and so on up ta,.

We put labels for equations on the right in curly braces. Late refer to an equation by its label.
We would refer to the foregoing equations{fa®ns, {fst-id formal}, and{rst-id formal}.

To be consistent, we use informal list templates in ourahiefinitions offirst andrest, as with
did with cons, instead of the more formal presentation{fet-id formal} and{rst-id formal}.

(first [Xg X2 ... Xn41]) = X1 {fst}
(rest [Xg X2 ... Xnt1]) = [X2 .- Xnt1] {rst}

We ask students to specify tests that the operations wowlel teasatisfy if they were functioning
correctly. The equationéfst-id formall and {rst-id formal} provide an example of tests of this kind.
Following our usual habits, we present the tests informally

(first (cons X [X1 X2 ... Xp])) =X {fst-id}
(rest (cons X [X1 X2 ... Xp])) = [X1 X2 ... Xp] {rst-id}

Students have no difficulty convincing themselves thabifs, first, andrest fail to satisfy either

of the equations{fst-id} and{rst-id}, there must be something wrong with at least one of the oparat
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4.2 Tests

In tandem with informal templates, we introduce a formalation, DoubleChecK [2], to specify tests
expressing our expectations about the values that fornsteasl fofd

This makes it possible for students to practice expressiaig €xpectations in a form that allows the
computer system to perform tests automatically using nandata.

(defproperty fst-id
(x :value (random-integer)
xs :value (random-list-of (random-integer)))
(equal (first (cons x xs))
x))
(defproperty rst-id
(x :value (random-integer)
xs :value (random-list-of (random-integer)))
(equal (rest (comns x xs))

xs))

Some students complain about oddities in the notatiequ&l” for “=", prefix notation instead of
infix, fully parenthesized formulas instead of relying oteruof precedence, etc. But, they accept these
things as necessary for communicating with the computistesy. We think one reason for uncomplain-
ing acceptance is that students are struggling with mucte mifficult concepts, and details of notation
provide a welcome retreat into the trivi§.

Complaints fade quickly. There are plenty of more challaegghings for the students to think about.
Besides, having multiple notations for the same mathemilailgect is a theme that comes up again when
students see the correspondence between formulas in Boaligebra and diagrams of digital circuits,
with decimal numerals and binary numerals as represensatibnatural numbers, and in other examples.

DoubleCheck properties employ mutable state and higher agkrations to generate random values
from type specifications. This is impossible in ACL2 becadgd 2 does not support those language
characteristics, but Dracula [4] runs property-based iegshe Racket [12] environment (the successor to
DrSchemel[18]), which does support them. We do not explarhtgher-order nature of DoubleCheck
properties in the course. Based on student reactions, nisealikely that adding such a discussion
would bring more clarity to the materil.

5DoubleCheck is similar to QuickChedk [14], except that Dietheck is embedded in the Dracula environment for ACL2
and QuickCheck is embedded in Haskell. DoubleCheck doelsavatthe sophisticated facility for narrowing counteregpben
that QuickCheck provides, which means the DoubleCheck avbalmuch less effective for industrial-strength usage weut
have found it to be effective for the purposes of our course.

6Sometimes students do not accept arbitrary concepts dy. d&mi example, some students object strenuously to tttle tru
table for the implication operator. The table is derivednhirthe basic equations, so their objection in this matter isemo
philosophical than technical. They think the truth tablaly fails to capture the usual meaning of implication. Oefethse
avoids philosophy altogether. We point out that we are nimtguegic for discussing issues from everyday life. We areagis
it to explain the inner workings of digital circuits and seétre. The implication operation is useful in this entempriwhether
or not its properties conform to normal expectations. Ofrseuwe know that it does conform to standard uses in natural
language, but getting into a debate about that point doedmotuch to advance the educational goals of the course.

"More recently we have been using a programming environnadiedProof Pad developed by Caleb Eggensperder [15].
It lacks some of the facilities of Dracula, especially a medisystem for packaging and controlling the visibility déntifiers,
but is easier to install and runs fastetoof Pad does provide adequate facilities, including DoubleChéaka course with
logic as its central theme
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4.3 Inductive Definitions

Inductive definitions appear painlessly in the context eftidsting of expectations. An early example is
an operatoappend for concatenating lists.

(append [X1 X2 ... Xm] [Y1 Y2 --- ¥n]) = [X1 X2 ... Xm Y1 Y2 --- Yn)]

Students recognize that if the operatgpend failed to pass either of the following tests&app1}
and{app0}, it could not be functioning properly.

(append (cons X X9 y9) = (cons X (append XS y3) {app1}
(append []y9) =ys {appQ
Initially, we avoid viewing these equations as an inductiedéinition. They are billed as simple tests
that a correctly functioning operator would pass. Laterassert that any such collection of equations
actually defines an operator, provided the equations havtowing characteristics:

1. Consistentno two equations specify different results for the sametnp
2. Comprehensiveall forms of input must match the operands on the left sid® tdast one equation;
3. Constructive any inductive reference to an operator must comprise aestloomputation.

Students learn that under these conditions, all propesfidlse operator derive from the definitional
equations. In other words, the equations define the opersiterrefer to these characteristics as “the
three C’s.” They are recurring theme from early on and thihaudg the course.

We describe an inductive reference to an operataras an invocation op on the right-hand side
of an equation{eqn}, that also refers top on the left-hand side. The operands in the inductive reteren
must match the operands on the left-hand side of a non-ivdustjuation more closely than they match
the operands on the left-hand side{efin}. That is, the reference on the right-hand side of the equatio
represents a reduced computation compared to the formulsedaft-hand side.

We do not attempt a rigorous definition of the term “reduceahgotation.” We do not go into detalil
about the degree of matching between operands, either.etlveed computation issue, especially, can
be subtle, but is not subtle in any of the inductive referencged as examples in the course. In many
cases the operands in inductive references are lists thaharter than the corresponding operands on
the left-hand side of the equation, and the correspondimganyls in non-inductive equations are of a
fixed, shorter length, usually zero, sometimes one or twaotter cases, an argument that is expected
to be a natural number is smaller in the inductive referehaa bn the left-hand side, and non-inductive
equations specify the corresponding operand as a fixedlegnaalue, usually zero.

Since students do not encounter in the course subtle redacin the size of the computation ex-
pressed by inductive references, we think that includingfandion of computation size or degree of
matching in operands would be more obfuscatory than hel@fnhilarly, we believe that a discussion of
fixpoints would take us far afield of what we are tying to comioate in the course. Accordingly, we
have not tried to include these ideas in the discussion.

However, offering students the opportunity to explore ¢hakeas in one or more of the writing
projects they are required to complete as part of their eowsrk could bring substantial rewards to
capable students. Probably, one-on-one discussions ifehs during office hours would be a necessary
form of guidance, and that could be rewarding to both studedtinstructor. We are intrigued by the
notion of going in this direction in future offerings of theurse.

Another subtle issue has to do with matching in data strastand substitution of new, equivalent
formulas into parts of existing formulas. We point out todgnts that this is a non-trivial activity and that
early explorations in formal logic got the definition of miaiteg and substitution wrong more than once
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before arriving at a correct definition. In this case, too,relg on students to figure it out from practice
rather from a formal definition, which we believe studentsuledind more confusing than helpful.

We think there is some evidence for our position in this mmdatteour discussion of the correspon-
dence between digital circuit diagrams and Boolean formulde do present a formal definition of the
isomorphism, but students routinely ignore it. They manag&ork out correspondences between for-
mulas and circuit diagrams in practice without referringhte formal definition. When they try to apply
the formal definition, they usually get lost in details anchtgcalities.

4.4 Inductive Proofs

The append operator is associative.

(append Xxs(append ys z3) = (append (append XS Y9 29
Students express this property formally in the notatiorhefoubleCheck facility. They run the test
and find that it succeeds.

(defproperty app-assoc
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer))
zs :value (random-list-of (random-integer)))
(equal (append xs (append ys zs))
(append (append xs ys) zs)))

Of course the associativity property, like all propertiéshe append operator, can be derived from
its definitional propertiesiappl} and{appC}. We derive properties of operations mostly by substituting
new, equivalent, formulas at strategic points to form neuagigns, a method entirely familiar from high-
school algebra, except that the operators involved, idstéaeing addition, multiplication and the like,
often deal with non-numeric data, such as lists. Since tffiaitlenal equations are usually inductive,
most of our derivations cite an induction hypothesis at spoiet to justify moving from one formula to
another, equivalent one.

A pencil-and-paper proof of the associativity propertynirthe informal equations could be carried
out as an induction on the lengthxaf The base case, whagis the empty list, cites théapp0O} equation
twice.

(append [] (append ys z9)
(append ys z9) {appQt
(append (append [ ] ys) z9 {appQ

In the inductive case, the length g§ is non-zero. That isxs= [X; X2 ... Xn4+1] for some natural

numbem. So, the inductive case can be argued as follows.

(append [X1 X2 ... Xn11] (append ys z3)

= (append (cons X1 [X2 ... Xn+1]) (append ys z3) {cong
= (cons X; (append [X2 ... Xn11] (append ys z3)) {appl}
= (cons X; (append (append [X2 ... Xnt+1] Y9 29) {ind hyp}
= (append (cons X1 (append [Xz ... Xn41] Y9 29) {appL
= (append (append (cons X1 [Xz ... Xn11]) Y9 29 {appL
= (append (append [X1 X2 ... Xn+1] Y9 29 {cons

The DoubleCheck propergpp-assoc is a formal statement of associativity, and students cacdir
Dracula to submit the property to the ACL2 theorem provel] b8 formal, mechanized verification.
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In this way, students gain experience with inductive defing and with expressing expectations both
formally and informally. The also learn to do informal, pa@a&d pencil proofs, and they see how a
mechanized logic can be used to produce formal proofs. Bh@iimportant point, philosophically,
because students observe that it is easy to get paper-and{p®ofs wrong. Formalization is necessary
for assurance that claims about properties of software miwee are correct.

4.5 Programming

Suppose a student wants to define an operator that extractisstn elements from a lisks Using the
principle of the three C’s described in Section| 4.3, theesttitboks for equations that express properties
of the operator that are consistent, comprehensive, argtrogtive. Students who manage to conjure up
the following equations have succeeded in writing a prodi@mnthe prefix operator.

(prefix 0x9 =[] {pfx0}
(prefixn[]) =] {pfx—}
(prefix (N+1) (cons X X9)) = (cons X (prefix N X9) {pfx1}

We do not pretend that inventing these equations is easgllstfor creativity and insight, and those
things come from practice. Students need to do lots of esesdio learn the material. Gradually, they
build up their expertise, and along with it comes the abilityderive new properties of operators from
definitional ones. The entire mechanism is built on ordinpalyebraic equations and classical Ic@ic.

To run their program for therefix operator, they must formalize it in ACL2 [16]. Since there
are three equations, the definition will need to say whiclmida for prefix n x9 applies in what
circumstances. It can use thef” operator to make the appropriate selection. In this examgen
though there are three equations, there are only two didtinmulas for the value ofprefix n x9
because the empty list is the result thaef ix delivers in two of the equations. So, thef® operator
only needs to choose between two formulas, and the defirdtiatd be written as fO||0V\,E.

(defun prefix (n xs)
(if (and (comsp xs) (mot (zp n)))
(cons (first xs) (prefix (- n 1) (rest xs))) ; {pfx1l}
nil)) ; {pfx0}

At this point, students can think about other propertieshefirefix operator and test their ex-
pectations with DoubleCheck. One property they might thohis a relationship betweeprefix and
append.

(prefix (1en x9) (append XS y3) = XS {app-pf¥

A formal, DoubleCheck definition of this property would madize the test.

80ne could provide guidelines beyond the three C’s, such asigking in function definitions the patterns of induction
found in data structure definitions, following, for examplee pedagogy of the textbodkow to Design ProgramfL7]. How-
ever, we do not expect students to become accomplishedgonogers. We want them to experience a few creative insiglis an
to understand how computers can interpret algebraic emsatis programs. We hope that a few of them may be inspired to
study software development more seriously. At that poiey tban acquire a facility with design patterns that will degbem
to be good programmers.

9ACL2 is based on Common Lisp. To run ACL2 programs, the Drpabgramming environment converts them to Scheme
and employs Racket [12] to interpret them. However, Draasks the ACL2 mechanized logic to prove theorems.
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(defproperty app-pfx ; preliminary version
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(equal (prefix (len xs) (append xs ys))
xs))

All of the random tests that DoubleCheck generates pashesueixt step is a paper-and-pencil proof
that the property holds for all lists. That proof, an indanton the length oks succeeds.

Unfortunately, ACL2 fails to complete a formal proof of thebrem corresponding to th@p-pfx
property. The problem is that, while the property holds fivroathe random tests that DoubleCheck
generates, it does not hold under all circumstancess i not a list, but is, instead, some other kind
of o%ect, the property fails. To be an ACL2 theorem, the progpmust constrairxsto the domain of
lists

(defproperty app-pfx ; provable version
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(implies (true-listp xs)
(equal (prefix (len xs) (append xs ys))
xs)))

Even then, ACL2 does not succeed with a proof until it impdnes standard theorems of numeric
algebra, which have been derived in a certified packagaldiged with the ACL2 system [18]. So, in
this example, students must deal with a few of the compbaoatithat can arise when moving from an
informal environment to a formal one.

One of the reasons we chose ACL2 for this course rather thatih@nmechanized logic, such as
Isabelle [19], Coq[[20], or Agda [21] is because the learringre for ACL2 allows students to succeed
quickly in problems of moderate complexity. Other theorammvg systems may be equally effective.
We have not tried others in the classroom, so we are guessisgdbon our own assessment of the
difficulty of applying other systems in the types of examilest we use in our course.

Our guess is based in part on the collections of powerfulrdras that come with ACL2. Students
import theorem collections when ACL2 gets stuck. The twdemtlons they learn to import are the ones
that imbue ACL2 with facilities for manipulating formulas numeric algebra. One of the collections
concerns ordinary arithmetic, the other, modular aritienefhese collections of theorems provide the
support needed to complete homework projects.

Examples and projects in the course progress from simple lifeeprefix to complex ones like
merge-sort and AVL tree operations. All of them includeitestand deriving, informally and formally,
additional properties from definitional ones. Studentsateasked to create programs of this complexity
from scratch, but they are required in homework projects @m@éxams to extend properties to wider
domains and to develop new properties. They are given gnaefor developing such properties [22].

4.6 Propositional Logic and Digital Circuits

Equations provide a basic theme that permeates the couesmuBe the equations of Boolean algebra
are so much like those of numeric algebra, which studentsaandiar with, the technical part of the

10This is, of course, a vestige of type, and we do not talk muchitlypes. Our students have raised questions on many topics
in the course, but none have ever asked about types, so wedhirdecision to avoid the issue and use ad hoc explanations
where necessary works in the ACL2 environment, at leastedetrel presented in this course.
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xV False=x {V identity}

XV True= True {V null}
XVy=yVXx {Vv commutative
XV (yVz)=(xVy)Vz {V associativé
XV (yAzZ) = (XVy)A(xVz) {V distributive}
X—=Yy=(-X)Vy {implication}
(xVy) = (=x) A (1Y) {Vv DeMorgar}
XV X=X {V idempoten}
X— Xx=True {self-implicatior}
—(—X) =X {double negatioh

Figure 1: Basic Boolean equations (axioms)

(XVy) Ay
= (xVy)A(yVFalse {V identity}
= (yvVx)A(yVvFalse {Vvcommutative
= yV(xAFalse {V distributive}
= yVFalse {A null}
=y {V identity}

Figure 2:{A absorptior}: (xVy)Ay=y

course starts in the domain of equations.

We derive propositional logic from ten basic equations obBan algebra (Figuié€ 1). The traditional
truth tables, absorption equations, and so on are derivagdsoning from the basic equations in the
standard, algebraic way.

This gives students practice, early on, in the syntax matcand step-by-step reasoning that is used
throughout the course, but in a tightly prescribed contekigre keeping track of formulas is relatively
simple. Figuré R displays a typical proof that students Wade or be asked to derive from the basic
equations, or from other equations sucH asull} derived earlier from the basics.

After some study of propositional logic, digital circuitseaintroduced as an alternate notation for
Boolean formulas. We focus on and-, or-, and not-gates, laalso draw circuit diagrams with
exclusive-or, nand, nor, and other standard gate symbaisshal, by reasoning from the basic Boolean
equations, how the behavior of any circuit can be fully @i in terms of nand-gates alone. As an
exercise, students show that an implication gate is uravérgthe same sense as nand.

Gradually we work up to a ripple-carry adder circuit. All betalgebraic support for twos-complement
arithmetic is defined and justified using standard equatibnsimeric algebra and, formally, by defining
ACL2 operators to carry out arithmetic on binary numeratsthis way, the students see a model in soft-
ware of a ripple-carry adder, along with a diagram of a digitauit for the adder at the gate level. The
fact that the operations the circuit performs are condistéth ordinary arithmetic on numbers is proved
by induction, both informally (paper and pencil) and fortmahrough ACL2. In addition, a software
model for bignum addition and multiplication on binary nuads is developed, and its operations are
justified by informal and formal, mechanized proofs.

This helps students understand how physical devices cdorpecomputations, and that provides
a basis for understanding how computers work at the cireugl! Students acquire an understanding
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of how circuits do what they do, and how engineers can knowcéstain, some of the operational
properties of circuits, modulo, of course, failures in pbgkproperties of the circuits. We define an
isomorphism between circuit diagrams and formulas in lagid discuss what this isomorphism means
about the connection between formal logic and physicalagsviWe claim that digital circuits are physi-
cal representations of logic formulas and the two are, fheresubject to the same sort of mathematical
analysis.

The same goes for the equation-based software discusskd aotirse. Stretching this to conven-
tional software would be impractical at best, but not thécadly impossible, since conventional software
is written in a formal language. To mention just one of the ynanoblems in this area, the lack of formal
semantics for conventional programming languages presistacles that current research has barely
begun to breach. We discuss these issues in class, more monloes course than in the version of the
course for computer science students. However, studemtoarequired to understand it deeply in either
course. Examinations and homework problems do not call foastery of these ideas.

4.7 Massive-Scale Computing: Websites and User-Providedo@tent

A course emphasizing the logical foundations of computingleave students (computing majors, espe-
cially, but other students, too) with the erroneous impagsthat none of this is relevant for real-world
computing. To address this situation, students are predewith a selection of real-world applications
that they are familiar with. The applications are choseeftdly so that they resonate with students and
elaborate on principles that have already been discussgdss.

One such application is Facebook. Students see a quickieweof the history of web applications,
with a focus on the distinction between Web 1.0 and Web 2.0icgtipns. Both of these are dynamic
web applications, and students learn how the dynamics aferpeed. In particular, they see how a
webpage consists of a template that can be “filled in” witloinfation that may come from a product
catalog, for example. The key problem is one of searchimg (inding the relevant information to
display on this web page), and that is what varies betweenM@and Web 2.0 applications.

What students learn is that Web 2.0 applications mix coritent application producers with content
from consumers. Different consumers may see completelgrdift results, due to customization and
personalization. Facebook, the ultimate Web 2.0 apptinatactually provides very little content in the
traditional sense. Most of the content is contributed byhaaer's circle of friends.

Students also learn the concept (but not the working dgtailselational databases and how they
can be used to generate content for Web 1.0 applicationh, asutraditional storefronts. Students see
simple SQL queries, although they do not learn how to wrigdrtbwn queries, nor how to interact with
a databases. Instead, they see relational databases asandol the key problem of finding the relevant
information to display. Students can write the program fivads this information in a list, and they
see relational databases as more complicated versionssgbribcess—which is true, while being an
unmitigated oversimplification. This reinforces one of Hig ideas in the course, namely that different
definitional properties can produce the same results bugstbydifferent computational expense.

This point is driven further. The students then learn theilleshheel of relational databases, namely
that join operations on large tables are prohibitively egiee. As a case in point, we observe that the join
of the “friends” and “statuses” tables that could, in prpiej support Facebook is infeasible—another
big idea in the course, that computation expense can make dewices feasible and others infeasible.

So how does Facebook do it? Facebook developers solvedrtikem by building their own non-
relational database called Cassandra [9]. At a high levass@ndra acts like a simple key-value store,
and the students have experience with this concept, haargrestudied AVL trees. Again, students
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see the big idea that different (more efficient or scalald&)t®ns of the same principle can yield vastly

different computational expense. But Cassandra is morejtish a key/value store. It features concepts
such as consistent hashing, database sharding, dataatigpljcand eventual consistency. Although the
details of these features are very technical, at a high levabstraction they are accessible, even to
non-technical students. For example, students learn dbassandra’s famous ring architecture, and
they quickly grasp how this architecture enables both thssia throughput required by Facebook and
reliability in case of system failure, which is certain taacfrom time to time in such a large application.

This discussion does not prepare students to understantloB8®L databases such as Cassandra are
implemented, or even how to use them. Rather, it serves taramstudents that ideas and techniques
that they have already seen can be scaled up to build largeriamt applications such as Facebook.

To give some idea of the depth of the material on Cassandsaligcussed in one, 75-minute lecture,
including questions from students and a short discussioiogeear the end. These discussions have
been lively, which indicates that the majority of the studeget enough out of the lecture to make
intelligent observations about the topic.

4.8 Massive-Scale Computing: Web Search Engines

Another example, Google’s technology stack, reinforceslésson that the basic computer principles
students have studied in the course have real-world intjgit® The students are, of course, familiar
with Google products, such as the search engine and Gmagragons of web applications. Now we
expose them to a piece of Google’s technology—MapReduceT[Bis topic is discussed in a manner
similar to the discussion of Cassandra (Seclion 4.7): aigh hével only in one 75-minute lecture,
including a lively class discussion.

MapReduce is part of Google’s approach to distributed camguJobs are broken down into map
and reduce steps that operate on dictionaries (key/vahaesttaictures). A MapReduce program can be
developed entirely on a single computer. Then, the MapRethamework takes care of the details of
executing individual map and reduce tasks on hundreds os#imms of computers.

This particular technology is chosen because it is easilyvaied by Google’s massive scaling needs.
In this way students see, once more, how dealing with largke $s the main difference between com-
puting concepts as they have experienced them and engigessipracticed in real-world computing.
Another reason for choosing MapReduce is because of its indunctional programming, which im-
mediately ties into programming concepts that students hearned in the course.

Although MapReduce was originally implemented in C++, i&y kdeas can be rendered in many
other languages, such as Java in the Apache Hadoop profict [ this class, students see some
MapReduce operations expressed in the form of ACL2 funstiofhey see simple examples, such as
distributed word count and distributed grep—classic eXxamfsom the MapReduce literature.

Students also see how the MapReduce framework can be useddomp meaningful work at scale,
such as inverting the graph of internet links, which is theadito calculate PageRaink [24] for Google’s
search results.

An important aspect of this presentation is that the (adalijyt simple) programs students see are
complete. A version of the MapReduce framework is implemént ACL2, so students can see how
the map and reduce functions are combined to produce a ctargglition. This solution is sequential,
and it runs on just one machine. But students learn that thapReduce framework distributes these
tasks across hundreds, even thousands of computers. Agjaidents see the big idea that different
sets of definitional properties.€., the sequential and distributed versions of MapReducejym® the
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same results at vastly different computational expensitaat the difference is sufficient to make large
MapReduce applications (indexing the web, for exampleyifde.

This example solution to a problem of massive scale, anattherr of the big ideas in the course,
together with the Cassandra solution to accessing masasteshanging, data bases discussed in Section
[4.7, together provide some illumination of the massivessimga.

4.9 Other Big Ideas

One of the big ideas in the course is how important, complgarahms derive from simple, definitional
properties. The two most complex algorithms that we diséusdetail are merge-sort and AVL-tree
insertion. Yet, the approach to these algorithms is the saier all other software artifacts we present.

Namely, we assume someone has given us an operator thasocauti the computation of interest.
We look for properties that we expect the operator would fifitevorked properly, and we try to find a
collection of properties that are consistent, completd,@mstructive, since such properties must define
an operator. Unless we misconstrue our expectations, pleaator will be the one we want to define.

For example the merge portion of the merge-sort algorithsurags that its arguments are lists whose
elements are arranged in order by increasing value. Wegdditigl data space into three parts: (1) the first
argument is the empty list, (2) the first argument is not empiy the second argument is, and (3) both
arguments are non-empty. That covers all the possibiliind none of the three parts of the data space
overlaps with another, so our equations will automaticaélyconsistent.

When either argument is empty, the result must be the otlgeinant, so equations corresponding
to these conditions are easy to write down. In case (3), wiodm &rguments are non-empty, the first
element of the merged list must be the smaller of the first etemin the lists supplied as arguments, and
the rest of the elements must be the merge of the remainingeels of list with the smaller first element
and all of the elements in the other list. Assuming the mepgzator we were given works, that analysis
yields the following equations.

(merge (cons X X9 (cons y y9) = (cons X (merge XS(cons yy9)) if x<y {mrg<}
(merge (cons X X9 (cons y y9) = (cons y (merge (cons x X9 y9) if x>y {mrg>}

As we noted earlier, the equations will be consistent bexaes have divided the data space into
three, non-overlapping parts. They are constructive lssgan both of the inductive referencesiterge,
one of the arguments is a shorter list than the one we staiitéd which makes it closer to the corre-
sponding argument on the left-hand side of a non-inductixeagon.

Themerge-sort operator, which of course refers to therge operator, is equally straightforward
to define. None of the definitions farerge-sort and its supporting operators is more than a few lines
long. The same is true of the AVL insertion code, given an appate breakdown of the problem. So,
these complex computations derive from simple properties.

Furthermore, we can use the equations, along with a modeasit bone-step operators such as
cons, first, rest, selection (that isif, once the Boolean condition has been computed), relational
operators for numbers, and the like to derive recurrencatems for the number of steps in a merge-sort
computation. We solve these equations by proposing a snlatd proving it by induction, and we find
that merge-sort is an log(n) computation. A similar derivation of equations for insentisort and an
analysis of the number of computational steps these eausaliad to shows that insertion-sort isrgn
algorithm.

We do not discuss in the course details in the implementatidanctional languages that affect the
computational efficiency of individual operations suchcass, first, andrest in our computational
model. Instead, we focus on another big idea in the courseelyahat different definitional properties
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can produce the same results at vastly different computtiexpense. A table comparing the growth
of n log(n) with that of n? shows just how infeasible the insertion-sort algorithmoislarge data sets,
another big idea in the course.

Thus, all the big ideas listed in Sectibh 1 are discusseddrctturse, but at widely different levels
of detail. There are, of course, many different ways to slind dice the material to be covered. For
example, one could choose to cover fewer algorithms anéaeephe omitted ones with more material
on interactive software. As it stands, we talk about intévacsoftware early in the course and discuss a
model for it based on the methods employed in Racket soft{i&ie But, the students neither write any
interactive software nor reason about it, so its presendkertourse is a minor one. In summary, this
report describes a particular set of choices about whailsi&danclude where, and with respect to what
big ideas in a course on computational thinking for courseshich most students are not majoring in
computer science.

5 Related Work

This is not the first course that is designed to expose noofdap computer science. There is an
ongoing effort by the College Board to promote a new intrédyccomputer science course designed
for advanced high school students or first-year collegeestisd[25]. Computer Science: Principles
(CSP), the new course initiative, stands in contrast to thikeGe Board'’s existing introductory computer
science course and Advanced Placement (AP) Computer 8oixarn. The big change is that the CSP
course does not focus on programming. Instead, it spends timoe on trying to develop key insights
on the nature and especially the relevance of computinggimtbdern world.

We share the College Board’s goals, and we consider our &€tarBe in the spirit of the CSP ap-
proach. However, there are significant differences betweempproach and that of the existing official
pilots for CSP[[26]. Like ours, all of these courses involvegramming to some extent, but without
dwelling on the programming details. However, most of theserses use scripting languages to fa-
cilitate programming. This makes it possible for studentbuild sophisticated programs with a small
amount of effort. For instance, Python is a popular choickiejuage, and so are visual languages like
BYOB (aka SNAP!) and App Inventor [27, 28]. These languagdkesvestudents to build graphical and
mobile applications like the ones they normally interadtwi

For our course we chose to use the language ACL2 instead afiirsg language because the
theorem prover that comes with ACL2 makes it easier for thdesits taeasonabout the programs they
build. We think the introduction of methods of ensuring s@fite correctness adds value to discussions
about the relevance of computer software, so we chose tadachaterial on testing and verification at
the expense of, for example, multimedia applications.

Other courses aimed at the same audience, with “compushtibimking” as an organizing theme,
have been springing up at many universities| [29]. Commoeatls in these courses include a brief
introduction to programming, societal impacts of computeience, and discussions on the limits of
computing. The big ideas in our honors course include motitese ideas, but our approach is a logic-
based introduction to computational thinking.

An examination of computing programs at fifteen large ursiters in the central United States sug-
gests that about a third of such programs require a coursagin that is separate from the required
discrete math course. In many cases, the required logicsedocuses on digital circuits, and those
courses rarely include any material on reasoning abouteptieg of circuits. However, three of the
fifteen programs did offer a course on reasoning about ¢&reund/or software.
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Evidence of the integration of mechanized logic into undetgate courses is harder to find. Mano-
lios uses ACL2, via the ACL2 Sedan [30], in a lower divisiogiocourse at Northeastern University
that was introduced in an experimental form by Felleiser].[3he Manolios course, which is called
“Logic and Computation,” is probably the work that relatesstclosely to this paper. Our reading of the
course description is that it covers ACL2 in greater detaihtour course, but contains less “big picture”
material.

Harper, Pfenning, and Erdmann have revised computer siemgrses at Carnegie Mellon Uni-
versity to incorporate reasoning about software throughioe curriculum, right from the beginning.
Erdmann’s noted [32] on a lower division course called “Biptes of Programming” and Pfenning’s
notes [38] on “Principles of Imperative Computation” pm&isome insight into how Carnegie Mellon
is dramatically recasting computer science to have reagas a central element of computer program-
ming.

Tinelli [34] has included assignments in the use of K&Y] [2b}pol for theorems and proofs about
programs written in a subset of Java. Courses employing éflasken use QuickCheck [14], which
gives students practice in stating properties as logic @itas) an important skill in using computational
logic systems. Jackson’s Alloy system is used in undergri@dclasses and exposes students to logic as
a tool for stating and verifying properties of software caments([36].

Our review of related work is not comprehensive. No doubtdfaee many efforts that we have not
managed to find. The literature in this area is sparse, buhimk the papers and projects discussed in
this section provide a context in which to consider the weqarted in this paper.

6 Where Do We Go from Here and Why?

A course including topics in classical logic, digital ciits) programming, testing, verification, and other
major computing concepts, all of it couched in terms of a femform of reasoning, hamely algebraic
equations, can provide a comfortable, yet challengingrenment for interested students, regardless
of background, assuming a standard, college-prep eductiat includes high-school algebra. Such a
course can provide a basis for understanding in a fundameatawhat computers do and how they do
it. It is one way to introduce students to computationalkfng.

This is not a “soft skills” course. It calls for careful thiimg, and it rewards studious attention. Yet,
it is accessible and interesting to a broad base of collegkests. This combination of depth, challenge,
and reward offers students something new and valuable.

An essential component of this enterprise is an equatisaddprogramming language with a property-
based testing facility. A mechanized logic with a quickrgméarning curve enhances the experience and
the educational impact relative to the learning effort #tatlents invest. A conventional programming
language will not serve because it cannot be understoodriimstef classical logic and the standard
mechanisms of algebraic reasoning. The theme of equatemsot be carried throughout a course in
which the programming component relies on the imperativagigm.

We are writing a textbook that takes the approach and inslticke material discussed in this paper.
Drafts of the text have been used to provide readings in theseo We plan to develop interactive, web-
accessible learning tools, including mini-tutorials, rexges, and automated assessment of solutions for
instant feedback. Lecture notes, homework projects, aath&ations are available upon request to
educators who want to incorporate some of these ideas iaiovifork.

The new course in the principles of computer science prapbgehe College Board is designed for
college preparatory students and first-year college stad@E]. It emphasizes computational thinking.
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The proposal elaborates seven big ideas and key concep#givity, abstraction, data, algorithms, pro-
gramming, internet, and impact. Based on the descriptiotiseir proposal, we believe that the material
in our course and its accompanying text provide an effedtimening environment for those ideas and
concepts. A course following this approach would be one wagttoduce computational thinking to a

broad range of students.
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