
M. Morazán and P. Achten (Eds.): Trends in Functional
Programming in Education 2012 (TFPIE 2012).
EPTCS 106, 2013, pp. 1–19, doi:10.4204/EPTCS.106.1

How Computers Work:
Computational Thinking for Everyone

Rex Page∗

University of Oklahoma
Norman, OK, USA

Ruben Gamboa
University of Wyoming

Laramie, WY, USA

What would you teach if you had only one course to help students grasp the essence of computation
and perhaps inspire a few of them to make computing a subject of further study? Assume they have
the standard college prep background. This would include basic algebra, but not necessarily more
advanced mathematics. They would have written a few term papers, but would not have written
computer programs. They could surf and twitter, but could not exclusive-or and nand. What about
computers would interest them or help them place their experience in context? This paper provides
one possible answer to this question by discussing a course that has completed its second iteration.
Grounded in classical logic, elucidated in digital circuits and computer software, it expands into
areas such as CPU components and massive databases. The course has succeeded in garnering the
enthusiastic attention of students with a broad range of interests, exercising their problem solving
skills, and introducing them to computational thinking.

1 One and Done

What would you teach if you had only one1 course to help students grasp the essence of computation
and perhaps inspire a few of them to make computing a subject of further study? Assume they have the
standard college prep background. This would include basicalgebra, but not necessarily more advanced
mathematics. They would have written a few term papers, but would not have written computer pro-
grams. They could surf and twitter, but could not exclusive-or and nand. What about computers would
interest them or help them place their experience in context?

This paper discusses one of the many possible answers to thisquestion. It describes experiences in
teaching an honors course for students from a variety of disciplines at the University of Oklahoma. The
students have varied interests and come from all college levels, first year to fourth year. They can choose
from many courses to satisfy their honors requirements, from Beatles History to Moby Dick to What is
Science? This course, called “How Computers Work: Logic in Action,” has succeeded in getting the
enthusiastic attention of some of these students and in exercising their problem solving skills.

The course includes some computer programming, but does notdwell on it. Students get enough
experience to know what software is, but not enough to take onserious software development projects.
The material helps students understand what makes automated computation possible by expanding on
computational principles and overarching insights ratherthan the details needed in the practice of engi-
neering. Most of the students will not continue with additional study in computer science. They will not
become practicing engineers in hardware or software development.

∗This material is based upon work supported by the National Science Foundation under Grant No. 1016532.
1Exceptional athletes in American colleges sometimes enroll with the intention of turning professional after one year.

Coaching vernacular for these athletes is “one and done.” The title of this section applies the term to students who may take
only one course in computation.

http://dx.doi.org/10.4204/EPTCS.106.1

2 How Computers Work: Computational Thinking for Everyone

Computers are demystified. Students grasp the fundamentalsthat make automated computation pos-
sible. We have some objective support for these claims from student assessments of the course and from
scores on examinations. Exam scores averaged over 90% in both offerings of the course, and we think
the exams call for comparable problem solving skills and insight about concepts than other exams we
have given in computer science courses over the years.

Student assessments (which are discussed in more detail in Section 3) are mostly, but not uniformly,
positive about the understanding of the workings of computers that they have acquired through their
studies in the course. One student was disappointed that thecourse failed to discuss “the actual physical
mechanisms of computers and how the different parts (e.g. RAM, motherboard, etc.) work together.”
Others were similarly surprised by the content of the course, but they were happy rather than disappointed
with what they learned. Based on the overall tenor of studentassessments, we think students did acquire
a perspective on computers that make them less mysterious. Our conclusion is guided more by our past
experience in teaching computer science than in objective evidence.

The honors course is an outgrowth of a course in applied logicrequired in the computer science
program at the University of Oklahoma. Other papers have discussed the earlier course and supporting
tools [1, 2, 3, 4, 5, 6, 7].

The honors course includes more material on the big picture of computational thinking and more
writing projects (as opposed to problem solving projects) than the original logic course, but there is
enough overlap to make it an adequate substitute, at least for good students. Topics from the required
course that are omitted in the honors version to make room formore coverage of the big picture include
Karnaugh maps, quicksort, and a few other algorithms. Coverage of deductive reasoning is reduced in
the honors course, but equation-based reasoning is coveredat about the same level as in the required
course. These changes make it possible to include material on large applications such as Google’s use of
MapReduce [8] for rapid searches and Facebook’s Cassandra approach to the massive database problem
[9].

The material gives students who are not majoring in computerscience a leg up, but does not overlap
directly with mainstream material in most computer scienceprograms. Such programs, at least in the
United States, usually discuss logic in a required course indiscrete mathematics, but the material on logic
rarely takes up more than 20% of the discrete mathematics course and usually does not discuss directly
in any detail connections between logic and the design of computer hardware and software.

The big ideas in the honors course are

1. the correspondence between digital circuits and formulas in logic,

2. how abstractions facilitate combining solutions to small problems to form solutions to big ones,

3. how algebraic formulas can specify computations,

4. how models expressed in software capture the behavior of processes and devices,

5. how important, complex algorithms derive from simple, definitional properties,

6. how different definitional properties can produce the same results at vastly different computational
expense,

7. how computational expense makes some useful devices feasible and renders others infeasible,

8. and how all of these ideas bear on the ability of computers to deal with information on the massive
scale needed to provide services like search engines, internet storefronts, and social networks.

The idea of deriving new properties by rigorous reasoning from definitional ones is suffused through-
out the course. Algebraic equations specify software and digital circuits as formulas in logic, and logic

Rex Page and Ruben Gamboa 3

is employed to derive new equations. In this sense, logic forms the basis of both the objects under study
and analysis of those objects. These ideas have been around for a long time. John McCarthy wrote about
them extensively over a half-century ago [10].2

Based on our observations of the understanding of the big ideas by most of the computer science
students we encounter, we think that the honors students that decide to go further have a better initial
understanding of the big ideas than many of the students who decide early on to focus their studies in
computing. One student commented that “As someone who was already acquainted with a traditional
programming language, I thoroughly enjoyed learning the methods and ideas presented in this class.”
Another said the course “helped me understand how computerscommunicate through their languages
and axioms.” We do not think many incoming computer science students would mention axioms as
an element of their understanding of computers. Several made comments indicating that the course
unlocked new parts of their brains, again an unusual take on acomputing course compared to that of
most computer science students.

2 Demographics

“How Computers Work: Logic in Action” has been offered twice, so far, as part of a collection of “per-
spectives courses” in the Honors College at the University of Oklahoma. As one of many requirements
for earning a degree with honors, students must complete twoperspectives courses. The first offering of
this perspectives course was in spring, 2011. By popular demand, a repeat offering took place in spring,
2012, and the course is scheduled again for 2013.

Perspectives courses in the Honors College are limited to nineteen students.3 Nineteen students
enrolled in the 2011 offering, but two dropped the course after a few weeks. The 2012 offering was
oversubscribed at twenty students. One dropped, leaving a full contingent of 19 to complete the course.

Eight of the total of 36 students in the two offerings of the course had major fields of study outside
science and engineering: history, letters, philosophy, linguistics, economics, drama, psychology, and
business. Sixteen were majoring in science, eleven were engineering students, and one, a first-year
student, had not yet decided on a major. One of the engineering students was in computer science, and
three were in computer engineering. Engineering students scored, on the average, three percentage points
higher on examinations than students in science and five points higher than students outside science and
engineering.

Almost 80% of the students (28 of 36) were in their first two years of college. About 60% of the
students had some prior experience in programming. In most cases this was a course in high-school or
college, but five students had been programming for more thantwo years. None had any prior experience

2In a sense the course originates from in-person interactions with McCarthy. He visited the University of Oklahoma for two
days in 1996 at the invitation of the School of Geology and Geophysics to speak about the sustainability of human progress. The
School was attracted to McCarthy by some material on his website that was favorable to their interest in expanding exploration
for oil. The geophysicists did not feel that they could productively entertain McCarthy for two days, so they asked the director
of the School of Computer Science (which happened to be one ofthe authors) to escort McCarthy for meals and to arrange for
him to deliver a separate seminar for the School of Computer Science. It was a thrilling opportunity.

At breakfast one morning, the subject of introducing an undergraduate course on reasoning about software arose. McCarthy
remarked that logic would be the essence of the course. This remark provided the inspiration for organizing the course with
logic as the main theme and with reasoning about software providing examples of logic in action. It was truly an “aha” moment
leading, albeit by a long and circuitous route, to the coursethat this paper describes.

3The reason for the limit of nineteen, rather than twenty or some other number, has been lost. It was decided over fifteen
years ago, and no member of the current Honors College faculty or staff has been with the College that long.

4 How Computers Work: Computational Thinking for Everyone

in functional programming. Students with prior programming experience scored, on the average, four
percentage points higher on examinations than students without programming experience.

All students in the course are honors students, which means they held a grade-point average of at
least 3.4 (out of a possible 4.0) at the time of joining the honors program and would need to maintain
at least that average to have an honors designation (“cum laude”) on their diploma at graduation. In
addition, enrolling in honors courses suggests a high levelof self motivation. Honors students tend to be
well-engaged in their studies, and they participate energetically in class. They ask interesting questions,
and vague or sloppy answers seldom go unremarked.

To summarize, about 20% of students enrolled in the course were majoring in humanities, social
sciences, or business. About 30% were engineering majors (mechanical, electrical, chemical, computer
engineering, computer science), and about 45% were sciencemajors (physics, chemistry, biochemistry,
microbiology, meteorology).4 Two of the science students were simultaneously working on adegree in
mathematics. Almost 80% of the students were in their first two years of college. Engineering students
scored higher, on the average, on examinations than students in arts and sciences, but not by much.
Among arts and science students, science students did marginally better, but the margin was only two
percentage points.

3 Assessment

Near the end of the course, the university asks students to complete a 20-question assessment of their
experience in each of their courses. The full record of student responses to these questions for both
offerings of the course is accessible online [11]. We provide a summary in this section that we think
gives an accurate picture of the range of student opinion. About 70% of the students completed the
questionnaire in both offerings of the course. The questionnaire has fifteen questions requiring a ranking
on a five-point scale (5 for “far above average” down to 1 for “far below average”) and five questions
calling for free-form comments.

Assessments of both offerings of the course were mostly positive. The ratings in 2012 were a bit
higher than in 2011. For example, the median responses to thequestions “How intellectually stimulating
was this course?” and “How much did this course help you develop your critical thinking skills?” were
4 in 2011, but 5 in 2012. In both years the median rating was 5 for “Overall this course was〈r〉,” but the
mean went from 4.75 in 2011 to 4.9 in 2012.

Responses to the question “What were the specific strong points of the course?” included observa-
tions about interesting, novel concepts and readings, the quality of posted lecture notes, and improve-
ments in critical thinking coming from challenging concepts and homework. One student responding
to a question about the weak points of the course said that therigor of the course was tedious at times.
Another said that the overall goal of the course was unclear.Other comments pointed out that the con-
cepts were difficult for people not familiar with computers,that there was too much jargon, and that
explanations in the textbook were sometimes incomplete or unsatisfactory. Some students complained
that the course did not cover as many big concepts and ideas orhave as many in-class discussions as
other perspectives courses in the Honors College.

Another question asked for an overall opinion of the course.Most responses to the question were
positive: “This course was beyond excellent.” “It was a lot of work, and very difficult, but I enjoyed it
and am glad I took it.” The course “encourages difficult, critical thinking.” There were three negative

4The percentages do not add up to 100 because one student had not yet chosen a major.

Rex Page and Ruben Gamboa 5

responses to the question. One student asked for more writing assignments to make the course more like
other perspectives courses, and two students wanted more material on the “big picture.”

The Honors College administration was pleased enough with student reactions in both years to ask
for another offering in 2013.

4 Course Content

4.1 Equations

Much of the material in the course centers around equations.For example, software is introduced as
operations that transform operands to results. This is the standard viewpoint of functional programming.
Of course any software (or hardware), transforms input signals to output signals, which makes it possible
to take the functional viewpoint regardless of paradigm. However, this is only a high-level picture, and
the details will differ substantially in different paradigms.

In this course, all software is described in the form of equations. That is, all programs in the course
are functional programs. This is partly to keep the amount ofmaterial within reasonable bounds for a
one-semester course, but mostly to simplify reasoning about software and digital circuits and to make it
possible to use a mechanized logic to formalize some of the proofs.

Operations are described informally, through templates that relate inputs to results. For example we
define the list constructor,cons, with the following informal equation.

(cons x [x1 x2 ... xn]) = [x x1 x2 ... xn] {cons}

The traditional definition ofcons would avoid informality by introduction the constructor and its
destructors together and avoid the need for names of elements of the list:

(first (cons x xs)) = x {fst-id formal}
(rest (cons x xs)) = xs {rst-id formal}

We think it works better to start with a less formal approach and work towards greater formality. That
is why our initial presentation ofcons has a list template with a name for each list element.

Informally, we use square brackets to delimit templates forlists andn to denote an arbitrary natural
number. In this case (and most cases) subscripts distinguish the names of individual elements in the list.
In the above example[x1 x2 ... xn] stands for a list withn elements, and[x x1 x2 ... xn] is a list withn+1
elements whose first element isx and whose subsequent elements arex1, x2, and so on up toxn.

We put labels for equations on the right in curly braces. Later, we refer to an equation by its label.
We would refer to the foregoing equations as{cons}, {fst-id formal}, and{rst-id formal}.

To be consistent, we use informal list templates in our initial definitions offirst andrest, as with
did with cons, instead of the more formal presentation in{fst-id formal} and{rst-id formal}.

(first [x1 x2 ... xn+1]) = x1 {fst}
(rest [x1 x2 ... xn+1]) = [x2 ... xn+1] {rst}

We ask students to specify tests that the operations would have to satisfy if they were functioning
correctly. The equations{fst-id formal} and{rst-id formal} provide an example of tests of this kind.
Following our usual habits, we present the tests informally:

(first (cons x [x1 x2 ... xn])) = x {fst-id}
(rest (cons x [x1 x2 ... xn])) = [x1 x2 ... xn] {rst-id}

Students have no difficulty convincing themselves that ifcons, first, andrest fail to satisfy either
of the equations,{fst-id} and{rst-id}, there must be something wrong with at least one of the operators.

6 How Computers Work: Computational Thinking for Everyone

4.2 Tests

In tandem with informal templates, we introduce a formal notation, DoubleCheck [2], to specify tests
expressing our expectations about the values that formulasstand for.5

This makes it possible for students to practice expressing their expectations in a form that allows the
computer system to perform tests automatically using random data.

(defproperty fst-id

(x :value (random-integer)

xs :value (random-list-of (random-integer)))

(equal (first (cons x xs))

x))

(defproperty rst-id

(x :value (random-integer)

xs :value (random-list-of (random-integer)))

(equal (rest (cons x xs))

xs))

Some students complain about oddities in the notation: “equal” for “=”, prefix notation instead of
infix, fully parenthesized formulas instead of relying on rules of precedence, etc. But, they accept these
things as necessary for communicating with the computing system. We think one reason for uncomplain-
ing acceptance is that students are struggling with much more difficult concepts, and details of notation
provide a welcome retreat into the trivial.6

Complaints fade quickly. There are plenty of more challenging things for the students to think about.
Besides, having multiple notations for the same mathematical object is a theme that comes up again when
students see the correspondence between formulas in Boolean algebra and diagrams of digital circuits,
with decimal numerals and binary numerals as representations of natural numbers, and in other examples.

DoubleCheck properties employ mutable state and higher order operations to generate random values
from type specifications. This is impossible in ACL2 becauseACL2 does not support those language
characteristics, but Dracula [4] runs property-based tests in the Racket [12] environment (the successor to
DrScheme [13]), which does support them. We do not explain the higher-order nature of DoubleCheck
properties in the course. Based on student reactions, it seems unlikely that adding such a discussion
would bring more clarity to the material.7

5DoubleCheck is similar to QuickCheck [14], except that DoubleCheck is embedded in the Dracula environment for ACL2
and QuickCheck is embedded in Haskell. DoubleCheck does nothave the sophisticated facility for narrowing counterexamples
that QuickCheck provides, which means the DoubleCheck would be much less effective for industrial-strength usage, butwe
have found it to be effective for the purposes of our course.

6Sometimes students do not accept arbitrary concepts so easily. For example, some students object strenuously to the truth
table for the implication operator. The table is derived from the basic equations, so their objection in this matter is more
philosophical than technical. They think the truth table simply fails to capture the usual meaning of implication. Our defense
avoids philosophy altogether. We point out that we are not using logic for discussing issues from everyday life. We are using
it to explain the inner workings of digital circuits and software. The implication operation is useful in this enterprise, whether
or not its properties conform to normal expectations. Of course, we know that it does conform to standard uses in natural
language, but getting into a debate about that point does notdo much to advance the educational goals of the course.

7More recently we have been using a programming environment calledProof Pad developed by Caleb Eggensperger [15].
It lacks some of the facilities of Dracula, especially a modules system for packaging and controlling the visibility of identifiers,
but is easier to install and runs faster.Proof Pad does provide adequate facilities, including DoubleCheck,for a course with
logic as its central theme.

Rex Page and Ruben Gamboa 7

4.3 Inductive Definitions

Inductive definitions appear painlessly in the context of the testing of expectations. An early example is
an operatorappend for concatenating lists.

(append [x1 x2 ... xm] [y1 y2 ... yn]) = [x1 x2 ... xm y1 y2 ... yn]

Students recognize that if the operatorappend failed to pass either of the following tests,{app1}
and{app0}, it could not be functioning properly.

(append (cons x xs) ys) = (cons x (append xs ys)) {app1}
(append [] ys) = ys {app0}

Initially, we avoid viewing these equations as an inductivedefinition. They are billed as simple tests
that a correctly functioning operator would pass. Later, weassert that any such collection of equations
actually defines an operator, provided the equations have the following characteristics:

1. Consistent: no two equations specify different results for the same input;

2. Comprehensive: all forms of input must match the operands on the left side ofat least one equation;

3. Constructive: any inductive reference to an operator must comprise a reduced computation.

Students learn that under these conditions, all propertiesof the operator derive from the definitional
equations. In other words, the equations define the operator. We refer to these characteristics as “the
three C’s.” They are recurring theme from early on and throughout the course.

We describe an inductive reference to an operator,op, as an invocation ofop on the right-hand side
of an equation,{eqn}, that also refers toop on the left-hand side. The operands in the inductive reference
must match the operands on the left-hand side of a non-inductive equation more closely than they match
the operands on the left-hand side of{eqn}. That is, the reference on the right-hand side of the equation
represents a reduced computation compared to the formula onthe left-hand side.

We do not attempt a rigorous definition of the term “reduced computation.” We do not go into detail
about the degree of matching between operands, either. The reduced computation issue, especially, can
be subtle, but is not subtle in any of the inductive references used as examples in the course. In many
cases the operands in inductive references are lists that are shorter than the corresponding operands on
the left-hand side of the equation, and the corresponding operands in non-inductive equations are of a
fixed, shorter length, usually zero, sometimes one or two. Inother cases, an argument that is expected
to be a natural number is smaller in the inductive reference than on the left-hand side, and non-inductive
equations specify the corresponding operand as a fixed, smaller value, usually zero.

Since students do not encounter in the course subtle reductions in the size of the computation ex-
pressed by inductive references, we think that including a definition of computation size or degree of
matching in operands would be more obfuscatory than helpful. Similarly, we believe that a discussion of
fixpoints would take us far afield of what we are tying to communicate in the course. Accordingly, we
have not tried to include these ideas in the discussion.

However, offering students the opportunity to explore these ideas in one or more of the writing
projects they are required to complete as part of their course work could bring substantial rewards to
capable students. Probably, one-on-one discussions of theideas during office hours would be a necessary
form of guidance, and that could be rewarding to both studentand instructor. We are intrigued by the
notion of going in this direction in future offerings of the course.

Another subtle issue has to do with matching in data structures and substitution of new, equivalent
formulas into parts of existing formulas. We point out to students that this is a non-trivial activity and that
early explorations in formal logic got the definition of matching and substitution wrong more than once

8 How Computers Work: Computational Thinking for Everyone

before arriving at a correct definition. In this case, too, werely on students to figure it out from practice
rather from a formal definition, which we believe students would find more confusing than helpful.

We think there is some evidence for our position in this matter in our discussion of the correspon-
dence between digital circuit diagrams and Boolean formulas. We do present a formal definition of the
isomorphism, but students routinely ignore it. They manageto work out correspondences between for-
mulas and circuit diagrams in practice without referring tothe formal definition. When they try to apply
the formal definition, they usually get lost in details and technicalities.

4.4 Inductive Proofs

Theappend operator is associative.

(append xs(append ys zs)) = (append (append xs ys) zs)

Students express this property formally in the notation of the DoubleCheck facility. They run the test
and find that it succeeds.

(defproperty app-assoc

(xs :value (random-list-of (random-integer))

ys :value (random-list-of (random-integer))

zs :value (random-list-of (random-integer)))

(equal (append xs (append ys zs))

(append (append xs ys) zs)))

Of course the associativity property, like all properties of the append operator, can be derived from
its definitional properties,{app1} and{app0}. We derive properties of operations mostly by substituting
new, equivalent, formulas at strategic points to form new equations, a method entirely familiar from high-
school algebra, except that the operators involved, instead of being addition, multiplication and the like,
often deal with non-numeric data, such as lists. Since the definitional equations are usually inductive,
most of our derivations cite an induction hypothesis at somepoint to justify moving from one formula to
another, equivalent one.

A pencil-and-paper proof of the associativity property from the informal equations could be carried
out as an induction on the length ofxs. The base case, whenxsis the empty list, cites the{app0} equation
twice.

(append [] (append ys zs))
= (append ys zs)) {app0}
= (append (append [] ys) zs) {app0}

In the inductive case, the length ofxs is non-zero. That is,xs = [x1 x2 ... xn+1] for some natural
numbern. So, the inductive case can be argued as follows.

(append [x1 x2 ... xn+1] (append ys zs))
= (append (cons x1 [x2 ... xn+1]) (append ys zs)) {cons}
= (cons x1 (append [x2 ... xn+1] (append ys zs))) {app1}
= (cons x1 (append (append [x2 ... xn+1] ys) zs)) {ind hyp}
= (append (cons x1 (append [x2 ... xn+1] ys) zs)) {app1}
= (append (append (cons x1 [x2 ... xn+1]) ys) zs) {app1}
= (append (append [x1 x2 ... xn+1] ys) zs) {cons}

The DoubleCheck propertyapp-assoc is a formal statement of associativity, and students can direct
Dracula to submit the property to the ACL2 theorem prover [16] for formal, mechanized verification.

Rex Page and Ruben Gamboa 9

In this way, students gain experience with inductive definitions and with expressing expectations both
formally and informally. The also learn to do informal, paper and pencil proofs, and they see how a
mechanized logic can be used to produce formal proofs. This is an important point, philosophically,
because students observe that it is easy to get paper-and-pencil proofs wrong. Formalization is necessary
for assurance that claims about properties of software or hardware are correct.

4.5 Programming

Suppose a student wants to define an operator that extracts the firstn elements from a listxs. Using the
principle of the three C’s described in Section 4.3, the student looks for equations that express properties
of the operator that are consistent, comprehensive, and constructive. Students who manage to conjure up
the following equations have succeeded in writing a programfor theprefix operator.

(prefix 0 xs) = [] {pfx0}
(prefix n []) = [] {pfx−}
(prefix (n+1) (cons x xs)) = (cons x (prefix n xs)) {pfx1}

We do not pretend that inventing these equations is easy. It calls for creativity and insight, and those
things come from practice. Students need to do lots of exercises to learn the material. Gradually, they
build up their expertise, and along with it comes the abilityto derive new properties of operators from
definitional ones. The entire mechanism is built on ordinary, algebraic equations and classical logic.8

To run their program for theprefix operator, they must formalize it in ACL2 [16]. Since there
are three equations, the definition will need to say which formula for (prefix n xs) applies in what
circumstances. It can use the “if” operator to make the appropriate selection. In this example, even
though there are three equations, there are only two distinct formulas for the value of (prefix n xs)
because the empty list is the result thatprefix delivers in two of the equations. So, the “if” operator
only needs to choose between two formulas, and the definitioncould be written as follows.9

(defun prefix (n xs)

(if (and (consp xs) (not (zp n)))

(cons (first xs) (prefix (- n 1) (rest xs))) ; {pfx1}

nil)) ; {pfx0}

At this point, students can think about other properties of the prefix operator and test their ex-
pectations with DoubleCheck. One property they might thinkof is a relationship betweenprefix and
append.

(prefix (len xs) (append xs ys)) = xs {app-pfx}

A formal, DoubleCheck definition of this property would mechanize the test.

8One could provide guidelines beyond the three C’s, such as mimicking in function definitions the patterns of induction
found in data structure definitions, following, for example, the pedagogy of the textbookHow to Design Programs[17]. How-
ever, we do not expect students to become accomplished programmers. We want them to experience a few creative insights and
to understand how computers can interpret algebraic equations as programs. We hope that a few of them may be inspired to
study software development more seriously. At that point they can acquire a facility with design patterns that will enable them
to be good programmers.

9ACL2 is based on Common Lisp. To run ACL2 programs, the Dracula programming environment converts them to Scheme
and employs Racket [12] to interpret them. However, Draculauses the ACL2 mechanized logic to prove theorems.

10 How Computers Work: Computational Thinking for Everyone

(defproperty app-pfx ; preliminary version

(xs :value (random-list-of (random-integer))

ys :value (random-list-of (random-integer)))

(equal (prefix (len xs) (append xs ys))

xs))

All of the random tests that DoubleCheck generates pass, so the next step is a paper-and-pencil proof
that the property holds for all lists. That proof, an induction on the length ofxs, succeeds.

Unfortunately, ACL2 fails to complete a formal proof of the theorem corresponding to theapp-pfx
property. The problem is that, while the property holds for all of the random tests that DoubleCheck
generates, it does not hold under all circumstances. Ifxs is not a list, but is, instead, some other kind
of object, the property fails. To be an ACL2 theorem, the property must constrainxs to the domain of
lists.10

(defproperty app-pfx ; provable version

(xs :value (random-list-of (random-integer))

ys :value (random-list-of (random-integer)))

(implies (true-listp xs)

(equal (prefix (len xs) (append xs ys))

xs)))

Even then, ACL2 does not succeed with a proof until it importsthe standard theorems of numeric
algebra, which have been derived in a certified package distributed with the ACL2 system [18]. So, in
this example, students must deal with a few of the complications that can arise when moving from an
informal environment to a formal one.

One of the reasons we chose ACL2 for this course rather than another mechanized logic, such as
Isabelle [19], Coq [20], or Agda [21] is because the learningcurve for ACL2 allows students to succeed
quickly in problems of moderate complexity. Other theorem proving systems may be equally effective.
We have not tried others in the classroom, so we are guessing based on our own assessment of the
difficulty of applying other systems in the types of examplesthat we use in our course.

Our guess is based in part on the collections of powerful theorems that come with ACL2. Students
import theorem collections when ACL2 gets stuck. The two collections they learn to import are the ones
that imbue ACL2 with facilities for manipulating formulas in numeric algebra. One of the collections
concerns ordinary arithmetic, the other, modular arithmetic. These collections of theorems provide the
support needed to complete homework projects.

Examples and projects in the course progress from simple ones like prefix to complex ones like
merge-sort and AVL tree operations. All of them include testing and deriving, informally and formally,
additional properties from definitional ones. Students arenot asked to create programs of this complexity
from scratch, but they are required in homework projects andon exams to extend properties to wider
domains and to develop new properties. They are given guidelines for developing such properties [22].

4.6 Propositional Logic and Digital Circuits

Equations provide a basic theme that permeates the course. Because the equations of Boolean algebra
are so much like those of numeric algebra, which students arefamiliar with, the technical part of the

10This is, of course, a vestige of type, and we do not talk much about types. Our students have raised questions on many topics
in the course, but none have ever asked about types, so we think our decision to avoid the issue and use ad hoc explanations
where necessary works in the ACL2 environment, at least at the level presented in this course.

Rex Page and Ruben Gamboa 11

x∨False= x {∨ identity}
x∨True= True {∨ null}
x∨y= y∨x {∨ commutative}
x∨ (y∨z) = (x∨y)∨z {∨ associative}
x∨ (y∧z) = (x∨y)∧ (x∨z) {∨ distributive}
x→ y= (¬x)∨y {implication}
¬(x∨y) = (¬x)∧ (¬y) {∨ DeMorgan}
x∨x= x {∨ idempotent}
x→ x= True {self-implication}
¬(¬x) = x {double negation}

Figure 1: Basic Boolean equations (axioms)

(x∨y)∧y
= (x∨y)∧ (y∨False) {∨ identity}
= (y∨x)∧ (y∨False) {∨ commutative}
= y∨ (x∧False) {∨ distributive}
= y∨False {∧ null}
= y {∨ identity}

Figure 2:{∧ absorption}: (x∨y)∧y= y

course starts in the domain of equations.
We derive propositional logic from ten basic equations of Boolean algebra (Figure 1). The traditional

truth tables, absorption equations, and so on are derived byreasoning from the basic equations in the
standard, algebraic way.

This gives students practice, early on, in the syntax matching and step-by-step reasoning that is used
throughout the course, but in a tightly prescribed context,where keeping track of formulas is relatively
simple. Figure 2 displays a typical proof that students would see or be asked to derive from the basic
equations, or from other equations such as{∧ null} derived earlier from the basics.

After some study of propositional logic, digital circuits are introduced as an alternate notation for
Boolean formulas. We focus on and-, or-, and not-gates, but we also draw circuit diagrams with
exclusive-or, nand, nor, and other standard gate symbols. We show, by reasoning from the basic Boolean
equations, how the behavior of any circuit can be fully realized in terms of nand-gates alone. As an
exercise, students show that an implication gate is universal in the same sense as nand.

Gradually we work up to a ripple-carry adder circuit. All of the algebraic support for twos-complement
arithmetic is defined and justified using standard equationsof numeric algebra and, formally, by defining
ACL2 operators to carry out arithmetic on binary numerals. In this way, the students see a model in soft-
ware of a ripple-carry adder, along with a diagram of a digital circuit for the adder at the gate level. The
fact that the operations the circuit performs are consistent with ordinary arithmetic on numbers is proved
by induction, both informally (paper and pencil) and formally through ACL2. In addition, a software
model for bignum addition and multiplication on binary numerals is developed, and its operations are
justified by informal and formal, mechanized proofs.

This helps students understand how physical devices can perform computations, and that provides
a basis for understanding how computers work at the circuit level. Students acquire an understanding

12 How Computers Work: Computational Thinking for Everyone

of how circuits do what they do, and how engineers can know, for certain, some of the operational
properties of circuits, modulo, of course, failures in physical properties of the circuits. We define an
isomorphism between circuit diagrams and formulas in logicand discuss what this isomorphism means
about the connection between formal logic and physical devices. We claim that digital circuits are physi-
cal representations of logic formulas and the two are, therefore, subject to the same sort of mathematical
analysis.

The same goes for the equation-based software discussed in the course. Stretching this to conven-
tional software would be impractical at best, but not theoretically impossible, since conventional software
is written in a formal language. To mention just one of the many problems in this area, the lack of formal
semantics for conventional programming languages presents obstacles that current research has barely
begun to breach. We discuss these issues in class, more in thehonors course than in the version of the
course for computer science students. However, students are not required to understand it deeply in either
course. Examinations and homework problems do not call for amastery of these ideas.

4.7 Massive-Scale Computing: Websites and User-Provided Content

A course emphasizing the logical foundations of computing can leave students (computing majors, espe-
cially, but other students, too) with the erroneous impression that none of this is relevant for real-world
computing. To address this situation, students are presented with a selection of real-world applications
that they are familiar with. The applications are chosen carefully so that they resonate with students and
elaborate on principles that have already been discussed inclass.

One such application is Facebook. Students see a quick overview of the history of web applications,
with a focus on the distinction between Web 1.0 and Web 2.0 applications. Both of these are dynamic
web applications, and students learn how the dynamics are performed. In particular, they see how a
webpage consists of a template that can be “filled in” with information that may come from a product
catalog, for example. The key problem is one of searching (i.e., finding the relevant information to
display on this web page), and that is what varies between Web1.0 and Web 2.0 applications.

What students learn is that Web 2.0 applications mix contentfrom application producers with content
from consumers. Different consumers may see completely different results, due to customization and
personalization. Facebook, the ultimate Web 2.0 application, actually provides very little content in the
traditional sense. Most of the content is contributed by each user’s circle of friends.

Students also learn the concept (but not the working details) of relational databases and how they
can be used to generate content for Web 1.0 applications, such as traditional storefronts. Students see
simple SQL queries, although they do not learn how to write their own queries, nor how to interact with
a databases. Instead, they see relational databases as a solution to the key problem of finding the relevant
information to display. Students can write the program thatfinds this information in a list, and they
see relational databases as more complicated versions of this process—which is true, while being an
unmitigated oversimplification. This reinforces one of thebig ideas in the course, namely that different
definitional properties can produce the same results but at vastly different computational expense.

This point is driven further. The students then learn the Achilles heel of relational databases, namely
that join operations on large tables are prohibitively expensive. As a case in point, we observe that the join
of the “friends” and “statuses” tables that could, in principle, support Facebook is infeasible—another
big idea in the course, that computation expense can make some devices feasible and others infeasible.

So how does Facebook do it? Facebook developers solved this problem by building their own non-
relational database called Cassandra [9]. At a high level, Cassandra acts like a simple key-value store,
and the students have experience with this concept, having earlier studied AVL trees. Again, students

Rex Page and Ruben Gamboa 13

see the big idea that different (more efficient or scalable) solutions of the same principle can yield vastly
different computational expense. But Cassandra is more than just a key/value store. It features concepts
such as consistent hashing, database sharding, data replication, and eventual consistency. Although the
details of these features are very technical, at a high levelof abstraction they are accessible, even to
non-technical students. For example, students learn aboutCassandra’s famous ring architecture, and
they quickly grasp how this architecture enables both the massive throughput required by Facebook and
reliability in case of system failure, which is certain to occur from time to time in such a large application.

This discussion does not prepare students to understand howNoSQL databases such as Cassandra are
implemented, or even how to use them. Rather, it serves to convince students that ideas and techniques
that they have already seen can be scaled up to build large, important applications such as Facebook.

To give some idea of the depth of the material on Cassandra, itis discussed in one, 75-minute lecture,
including questions from students and a short discussion period near the end. These discussions have
been lively, which indicates that the majority of the students get enough out of the lecture to make
intelligent observations about the topic.

4.8 Massive-Scale Computing: Web Search Engines

Another example, Google’s technology stack, reinforces the lesson that the basic computer principles
students have studied in the course have real-world implications. The students are, of course, familiar
with Google products, such as the search engine and Gmail, asparagons of web applications. Now we
expose them to a piece of Google’s technology—MapReduce [8]. This topic is discussed in a manner
similar to the discussion of Cassandra (Section 4.7): at a high level only in one 75-minute lecture,
including a lively class discussion.

MapReduce is part of Google’s approach to distributed computing. Jobs are broken down into map
and reduce steps that operate on dictionaries (key/value data structures). A MapReduce program can be
developed entirely on a single computer. Then, the MapReduce framework takes care of the details of
executing individual map and reduce tasks on hundreds or thousands of computers.

This particular technology is chosen because it is easily motivated by Google’s massive scaling needs.
In this way students see, once more, how dealing with large scale is the main difference between com-
puting concepts as they have experienced them and engineering as practiced in real-world computing.
Another reason for choosing MapReduce is because of its roots in functional programming, which im-
mediately ties into programming concepts that students have learned in the course.

Although MapReduce was originally implemented in C++, its key ideas can be rendered in many
other languages, such as Java in the Apache Hadoop project [23]. In this class, students see some
MapReduce operations expressed in the form of ACL2 functions. They see simple examples, such as
distributed word count and distributed grep—classic examples from the MapReduce literature.

Students also see how the MapReduce framework can be used to perform meaningful work at scale,
such as inverting the graph of internet links, which is then used to calculate PageRank [24] for Google’s
search results.

An important aspect of this presentation is that the (admittedly simple) programs students see are
complete. A version of the MapReduce framework is implemented in ACL2, so students can see how
the map and reduce functions are combined to produce a complete solution. This solution is sequential,
and it runs on just one machine. But students learn that the full MapReduce framework distributes these
tasks across hundreds, even thousands of computers. Again,students see the big idea that different
sets of definitional properties (i.e., the sequential and distributed versions of MapReduce) produce the

14 How Computers Work: Computational Thinking for Everyone

same results at vastly different computational expense, and that the difference is sufficient to make large
MapReduce applications (indexing the web, for example) feasible.

This example solution to a problem of massive scale, anotherother of the big ideas in the course,
together with the Cassandra solution to accessing massive,fast changing, data bases discussed in Section
4.7, together provide some illumination of the massive scale idea.

4.9 Other Big Ideas

One of the big ideas in the course is how important, complex algorithms derive from simple, definitional
properties. The two most complex algorithms that we discussin detail are merge-sort and AVL-tree
insertion. Yet, the approach to these algorithms is the sameas for all other software artifacts we present.

Namely, we assume someone has given us an operator that carries out the computation of interest.
We look for properties that we expect the operator would haveif it worked properly, and we try to find a
collection of properties that are consistent, complete, and constructive, since such properties must define
an operator. Unless we misconstrue our expectations, that operator will be the one we want to define.

For example the merge portion of the merge-sort algorithm assumes that its arguments are lists whose
elements are arranged in order by increasing value. We divide the data space into three parts: (1) the first
argument is the empty list, (2) the first argument is not empty, but the second argument is, and (3) both
arguments are non-empty. That covers all the possibilities, and none of the three parts of the data space
overlaps with another, so our equations will automaticallybe consistent.

When either argument is empty, the result must be the other argument, so equations corresponding
to these conditions are easy to write down. In case (3), when both arguments are non-empty, the first
element of the merged list must be the smaller of the first elements in the lists supplied as arguments, and
the rest of the elements must be the merge of the remaining elements of list with the smaller first element
and all of the elements in the other list. Assuming the merge operator we were given works, that analysis
yields the following equations.

(merge (cons x xs) (cons y ys)) = (cons x (merge xs(cons y ys))) if x≤ y {mrg≤}
(merge (cons x xs) (cons y ys)) = (cons y (merge (cons x xs) ys)) if x> y {mrg>}

As we noted earlier, the equations will be consistent because we have divided the data space into
three, non-overlapping parts. They are constructive because, in both of the inductive references tomerge,
one of the arguments is a shorter list than the one we started with, which makes it closer to the corre-
sponding argument on the left-hand side of a non-inductive equation.

Themerge-sort operator, which of course refers to themerge operator, is equally straightforward
to define. None of the definitions formerge-sort and its supporting operators is more than a few lines
long. The same is true of the AVL insertion code, given an appropriate breakdown of the problem. So,
these complex computations derive from simple properties.

Furthermore, we can use the equations, along with a model of basic, one-step operators such as
cons, first, rest, selection (that is,if, once the Boolean condition has been computed), relational
operators for numbers, and the like to derive recurrence equations for the number of steps in a merge-sort
computation. We solve these equations by proposing a solution and proving it by induction, and we find
that merge-sort is ann log(n) computation. A similar derivation of equations for insertion-sort and an
analysis of the number of computational steps these equations lead to shows that insertion-sort is ann2

algorithm.
We do not discuss in the course details in the implementationof functional languages that affect the

computational efficiency of individual operations such ascons, first, andrest in our computational
model. Instead, we focus on another big idea in the course, namely that different definitional properties

Rex Page and Ruben Gamboa 15

can produce the same results at vastly different computational expense. A table comparing the growth
of n log(n) with that ofn2 shows just how infeasible the insertion-sort algorithm is for large data sets,
another big idea in the course.

Thus, all the big ideas listed in Section 1 are discussed in the course, but at widely different levels
of detail. There are, of course, many different ways to sliceand dice the material to be covered. For
example, one could choose to cover fewer algorithms and replace the omitted ones with more material
on interactive software. As it stands, we talk about interactive software early in the course and discuss a
model for it based on the methods employed in Racket software[12]. But, the students neither write any
interactive software nor reason about it, so its presence inthe course is a minor one. In summary, this
report describes a particular set of choices about what details to include where, and with respect to what
big ideas in a course on computational thinking for courses in which most students are not majoring in
computer science.

5 Related Work

This is not the first course that is designed to expose non-majors to computer science. There is an
ongoing effort by the College Board to promote a new introductory computer science course designed
for advanced high school students or first-year college students [25]. Computer Science: Principles
(CSP), the new course initiative, stands in contrast to the College Board’s existing introductory computer
science course and Advanced Placement (AP) Computer Science exam. The big change is that the CSP
course does not focus on programming. Instead, it spends more time on trying to develop key insights
on the nature and especially the relevance of computing in the modern world.

We share the College Board’s goals, and we consider our course to be in the spirit of the CSP ap-
proach. However, there are significant differences betweenour approach and that of the existing official
pilots for CSP [26]. Like ours, all of these courses involve programming to some extent, but without
dwelling on the programming details. However, most of thesecourses use scripting languages to fa-
cilitate programming. This makes it possible for students to build sophisticated programs with a small
amount of effort. For instance, Python is a popular choice oflanguage, and so are visual languages like
BYOB (aka SNAP!) and App Inventor [27, 28]. These languages allow students to build graphical and
mobile applications like the ones they normally interact with.

For our course we chose to use the language ACL2 instead of a scripting language because the
theorem prover that comes with ACL2 makes it easier for the students toreasonabout the programs they
build. We think the introduction of methods of ensuring software correctness adds value to discussions
about the relevance of computer software, so we chose to include material on testing and verification at
the expense of, for example, multimedia applications.

Other courses aimed at the same audience, with “computational thinking” as an organizing theme,
have been springing up at many universities [29]. Common threads in these courses include a brief
introduction to programming, societal impacts of computerscience, and discussions on the limits of
computing. The big ideas in our honors course include most ofthese ideas, but our approach is a logic-
based introduction to computational thinking.

An examination of computing programs at fifteen large universities in the central United States sug-
gests that about a third of such programs require a course in logic that is separate from the required
discrete math course. In many cases, the required logic course focuses on digital circuits, and those
courses rarely include any material on reasoning about properties of circuits. However, three of the
fifteen programs did offer a course on reasoning about circuits and/or software.

16 How Computers Work: Computational Thinking for Everyone

Evidence of the integration of mechanized logic into undergraduate courses is harder to find. Mano-
lios uses ACL2, via the ACL2 Sedan [30], in a lower division logic course at Northeastern University
that was introduced in an experimental form by Felleisen [31]. The Manolios course, which is called
“Logic and Computation,” is probably the work that relates most closely to this paper. Our reading of the
course description is that it covers ACL2 in greater detail than our course, but contains less “big picture”
material.

Harper, Pfenning, and Erdmann have revised computer science courses at Carnegie Mellon Uni-
versity to incorporate reasoning about software throughout the curriculum, right from the beginning.
Erdmann’s notes [32] on a lower division course called “Principles of Programming” and Pfenning’s
notes [33] on “Principles of Imperative Computation” provide some insight into how Carnegie Mellon
is dramatically recasting computer science to have reasoning as a central element of computer program-
ming.

Tinelli [34] has included assignments in the use of KeY [35],a tool for theorems and proofs about
programs written in a subset of Java. Courses employing Haskell often use QuickCheck [14], which
gives students practice in stating properties as logic formulas, an important skill in using computational
logic systems. Jackson’s Alloy system is used in undergraduate classes and exposes students to logic as
a tool for stating and verifying properties of software components [36].

Our review of related work is not comprehensive. No doubt there are many efforts that we have not
managed to find. The literature in this area is sparse, but we think the papers and projects discussed in
this section provide a context in which to consider the work reported in this paper.

6 Where Do We Go from Here and Why?

A course including topics in classical logic, digital circuits, programming, testing, verification, and other
major computing concepts, all of it couched in terms of a familiar form of reasoning, namely algebraic
equations, can provide a comfortable, yet challenging environment for interested students, regardless
of background, assuming a standard, college-prep education that includes high-school algebra. Such a
course can provide a basis for understanding in a fundamental way what computers do and how they do
it. It is one way to introduce students to computational thinking.

This is not a “soft skills” course. It calls for careful thinking, and it rewards studious attention. Yet,
it is accessible and interesting to a broad base of college students. This combination of depth, challenge,
and reward offers students something new and valuable.

An essential component of this enterprise is an equation-based programming language with a property-
based testing facility. A mechanized logic with a quick-entry learning curve enhances the experience and
the educational impact relative to the learning effort thatstudents invest. A conventional programming
language will not serve because it cannot be understood in terms of classical logic and the standard
mechanisms of algebraic reasoning. The theme of equations cannot be carried throughout a course in
which the programming component relies on the imperative paradigm.

We are writing a textbook that takes the approach and includes the material discussed in this paper.
Drafts of the text have been used to provide readings in the course. We plan to develop interactive, web-
accessible learning tools, including mini-tutorials, exercises, and automated assessment of solutions for
instant feedback. Lecture notes, homework projects, and examinations are available upon request to
educators who want to incorporate some of these ideas into their work.

The new course in the principles of computer science proposed by the College Board is designed for
college preparatory students and first-year college students [25]. It emphasizes computational thinking.

Rex Page and Ruben Gamboa 17

The proposal elaborates seven big ideas and key concepts: creativity, abstraction, data, algorithms, pro-
gramming, internet, and impact. Based on the descriptions in their proposal, we believe that the material
in our course and its accompanying text provide an effectivelearning environment for those ideas and
concepts. A course following this approach would be one way to introduce computational thinking to a
broad range of students.

Acknowledgments.

The authors are grateful to the reviewers for their thoughtful and detailed comments and suggestions.
Their ideas led to significant improvements in the paper, especially in the level of detail describing
elements of the course, relating those to its big ideas, and in discussing the experiences that students
reported in their assessments of the course.

References

[1] R. Page (2009):Computational Logic in the Undergraduate Curriculum. In S. Ray & D. Russinoff, editors:
Proceedings of the8th International Workshop on the ACL2 Theorem Prover and Its Applications, pp. 29–32.

[2] C. Eastlund (2009):DoubleCheck Your Theorems. In S. Ray & D. Russinoff, editors:Proceedings of the8th

International Workshop on the ACL2 Theorem Prover and its Applications, pp. 42–46.

[3] R. Page, C. Eastlund, & M. Felleisen (2008):Functional Programming and Theorem Proving for Undergrad-
uates: A Progress Report. In F. Huch & A. Martin, editors:Proceedings of the ACM SIGPLAN 2008 Workshop
on Functional and Declarative Programming in Education, pp. 21–29, doi:10.1145/1411260.1411264.

[4] D. Vaillancourt, R. Page, & M. Felleisen (2006):ACL2 in DrScheme. In P. Manolios & M. Wilding, editors:
Proceedings of the6th International Workshop on the ACL2 Theorem Prover and its Applications, pp. 107–116,
doi:10.1145/1217975.1217999.

[5] R. Page (2003):Software Is Discrete Mathematics. In C. Runciman & O. Shivers, editors:Proceedings
of the 8th International Conference on Functional Programming, SIGPLAN Notices 38(3), pp. 79–86,
doi:10.1145/944746.944713.

[6] R. Page (2001):Functional Programming ... and Where You Can Put It. In C. Norris & J. Fenwick Jr., editors:
ACM SIGPLAN Notices 36(9), pp. 19–24, doi:10.1145/609769.609771.

[7] R. Page (2007): Engineering Software Correctness. J. Functional Programming 17(6), pp. 675–686,
doi:10.1017/S095679680700634X.

[8] J. Dean & S. Ghemawat (2008):MapReduce: Simplified Data Processing on Large Clusters. Commun. ACM
51 (1), pp. 107-113, doi:10.1145/1327452.1327492.

[9] A. Lakshman & P. Malik (2010):Cassandra: A Decentralized Structured Storage System. ACM SIGOPS
Operating Systems Review 44(2), pp. 35–40, doi:10.1145/1773912.1773922.

[10] J. McCarthy (1960):Recursive functions of symbolic expressions and their computation by machine, Part I.
Communications of the ACM 3(4), pp. 184–195, doi:10.1145/367177.367199.

[11] University of Oklahoma Honors Students (2011 & 2012): Student assessments of the course “How Comput-
ers Work: Logic in Action.” Available athttp://www.cs.ou.edu/~rlpage/hcw/StudEvalHCW.pdf

[12] Racket Programming Language. Available athttp://racket-lang.org/

[13] R. Findler, J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi, P. Steckler, & M. Felleisen (2002):
DrScheme: A Programming Environment for Scheme. J. Functional Programming 12(2), pp. 159–182,
doi:10.1017/S0956796801004208.

http://dx.doi.org/10.1145/1411260.1411264
http://dx.doi.org/10.1145/1217975.1217999
http://dx.doi.org/10.1145/944746.944713
http://dx.doi.org/10.1145/609769.609771
http://dx.doi.org/10.1017/S095679680700634X
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1773912.1773922
http://dx.doi.org/10.1145/367177.367199
http://www.cs.ou.edu/~rlpage/hcw/StudEvalHCW.pdf
http://racket-lang.org/
http://dx.doi.org/10.1017/S0956796801004208

18 How Computers Work: Computational Thinking for Everyone

[14] K. Claessen & J. Hughes (2000):QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs.
In M. Odersky & P. Wadler, editors:Proceedings of the5th ACM SIGPLAN International Conference on
Functional Programming, ACM SIGPLAN 35(9), pp. 268–279, doi:10.1145/351240.351266.

[15] C. Eggensperger (2012):Proof Pad. Available athttp://proofpad.org/

[16] M. Kaufmann, P. Manolios, & J.S. Moore (2000):Computer-Aided Reasoning: An Approach. Kluwer Aca-
demic Publishers.

[17] M. Felleisen, R. Findler, M. Flatt & S. Krishnamurthi (2001):How to Design Programs. MIT Press.

[18] W. Hunt, R. Krug, & J. Moore (2003):Linear and nonlinear arithmetic in ACL2. In D. Geist & E. Tronci,
editors:Correct Hardware Design and Verification Methods, Proceedings of CHARME 2003. Springer-Verlag.
pp. 319–333, doi:10.1007/978-3-540-39724-329.

[19] L. Paulson (1994): Isabelle: A Generic Theorem Prover, LNCS 828. Springer-Verlag,
doi:10.1007/BFb0030541.

[20] Y. Bertot & P. Castèran (2004):Interactive Theorem Proving and Program Development, Coq’Art: The
Calculus of Inductive Constructions. Springer-Verlag, doi:10.1093/comjnl/bxh141.

[21] A. Bove, P. Dybjer, & U. Norell (2009):A Brief Overview of Agda – A Functional Language with De-
pendent Types. In S. Berghofer, T. Nipkow, C. Urban, & M. Wenzel, editors:Proceedings of the Interna-
tional Conference on Theorem Proving in Higher Order Logics, LNCS 5674. Springer-Verlag. pp. 73–78,
doi:10.1007/978-3-642-03359-96.

[22] R. Page (2011):Property-Based Testing: A Catalog of Classroom Examples. In A. Gill & J. Hage, editors:
Proceedings of the 2011 Symposium on Implemenation and Application of Functional Languages, LNCS 7257.
Springer-Verlag. pp. 134–147, doi:10.1007/978-3-642-34407-79.

[23] Apache Hadoop.http://hadoop.apache.org.

[24] L. Page (2007):Scoring Documents in a Linked Database. U.S. Patent 7,269,587.

[25] The College Board (2011):Computer Science: Principles. Available at
http://www.collegeboard.com/prod_downloads/computerscience/ComputationalThinkingCS_Principles.pdf

[26] The College Board (2012):CS Principles Pilot Sites. Available at
http://www.csprinciples.org/home/pilot-sites

[27] B. Harvey & J. Mönig (2010):Bringing “No Ceiling” to Scratch: Can One Language Serve Kids and
Computer Scientists?In: Constructionism 2010.

[28] Y.C. Hsu, K. Rice, & L. Dawley (2012):Empowering Educators with Google’s Android App Inventor: An
Online Workshop in Mobile App Design. British Journal of Educational Technology 43, pp. E1–E5,
doi:10.1111/j.1467-8535.2011.01241.x.

[29] Center for Computational Thinking: Education. Available at
http://www.cs.cmu.edu/~CompThink/resources/education.html

[30] P. Dillinger, P. Manolios, D. Vroon, & J. Moore (2007):ACL2s: “The ACL2 Sedan”. In: User Interfaces for
Theorem Provers WorkshopElectronic Notes in Theoretical Computer Science 174(2). Available at
http://www.sciencedirect.com/science/journal/15710661, Elsevier Science Publishers, pp. 3–18,
doi:10.1016/j.entcs.2006.09.018.

[31] C. Eastlund, D. Vaillancourt, & M. Felleisen (2007):ACL2 for Freshman: First Experiences. In R. Gamboa,
J. Sawada, & J. Cowles, editors:Proceedings of the7th International Workshop on the ACL2 Theorem Prover
and Its Applications, pp. 200–211.

[32] M. Erdmann (2011):Notes on Principles of Programming. Available at
http://www.cs.cmu.edu/afs/cs/user/me/www/courses/212/

[33] F. Pfenning (2011):Notes on Principles of Imperative Computation. Available at
http://www.cs.cmu.edu/~fp/courses/15122/

[34] C. Tinelli (2008):Formal Methods in Software Engineering. Available at
http://www.cs.uiowa.edu/~tinelli/classes/181/Spring08/

http://dx.doi.org/10.1145/351240.351266
http://proofpad.org/
http://dx.doi.org/10.1007/978-3-540-39724-3_29
http://dx.doi.org/10.1007/BFb0030541
http://dx.doi.org/10.1093/comjnl/bxh141
http://dx.doi.org/10.1007/978-3-642-03359-9_6
http://dx.doi.org/10.1007/978-3-642-34407-7_9
http://hadoop.apache.org
http://www.collegeboard.com/prod_downloads/computerscience/ComputationalThinkingCS_Principles.pdf
http://www.csprinciples.org/home/pilot-sites
http://dx.doi.org/10.1111/j.1467-8535.2011.01241.x
http://www.cs.cmu.edu/~CompThink/resources/education.html
http://www.sciencedirect.com/science/journal/15710661
http://dx.doi.org/10.1016/j.entcs.2006.09.018
http://www.cs.cmu.edu/afs/cs/user/me/www/courses/212/
http://www.cs.cmu.edu/~fp/courses/15122/
http://www.cs.uiowa.edu/~tinelli/classes/181/Spring08/

Rex Page and Ruben Gamboa 19

[35] B. Beckert, R. Hähnle, & P. Schmitt, editors (2007):Verification of Object-Oriented Software: the KeY
approach, LNCS 4334, Springer-Verlag, doi:10.1007/978-3-540-69061-0.

[36] D. Jackson (2012):Software Abstractions – Logic, Language, and Analysis, Revised edition, MIT Press.

http://dx.doi.org/10.1007/978-3-540-69061-0

	1 One and Done
	2 Demographics
	3 Assessment
	4 Course Content
	4.1 Equations
	4.2 Tests
	4.3 Inductive Definitions
	4.4 Inductive Proofs
	4.5 Programming
	4.6 Propositional Logic and Digital Circuits
	4.7 Massive-Scale Computing: Websites and User-Provided Content
	4.8 Massive-Scale Computing: Web Search Engines
	4.9 Other Big Ideas

	5 Related Work
	6 Where Do We Go from Here and Why?

