
P. Bahr (Ed.): 11th International Workshop on

Computing with Terms and Graphs (TERMGRAPH 2020)

EPTCS 334, 2021, pp. 62–77, doi:10.4204/EPTCS.334.5

© T. Boy de la Tour

This work is licensed under the

Creative Commons Attribution License.

Parallel Independence in Attributed Graph Rewriting

Thierry Boy de la Tour

Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France

thierry.boy-de-la-tour@imag.fr

In order to define graph transformations by the simultaneous application of concurrent rules, we have

adopted in previous work a structure of attributed graphs stable by unions. We analyze the conse-

quences on parallel independence, a property that characterizes the possibility to resort to sequential

rewriting. This property turns out to depend not only on the left-hand side of rules, as in algebraic ap-

proaches to graph rewriting, but also on their right-hand side. It is then shown that, of three possible

definitions of parallel rewriting, only one is convenient in the light of parallel independence.

1 Introduction

The notion of parallel independence from [18, 12] has been studied mostly in the algebraic approaches

to graph rewriting, see [7]. It basically consists in a condition on concurrent transformations of an object

that not only guarantees but characterizes the possibility to apply the transformations sequentially in any

order such that all such sequences of transformations yield the same result.

When two transformations are involved, with rules r1 and r2, this takes the form of the diamond

property and is known as the Local Church-Rosser Problem [7]; it consists in finding a condition (called

parallel independence) on direct transformations H1
r1←− G

r2−→ H2 that is equivalent to the existence of

direct transformations H1
r2−→ H

r1←− H2 with the same redexes, hence to the existence of two equivalent

sequences of transformations G
r1−→ H1

r2−→ H and G
r2−→ H2

r1−→ H . It is obvious that non overlapping

redexes always entail parallel independence, the difficulty of the problem is that the reverse does not

hold and that, depending on the rules, some amount of overlap may be allowed. The notion of parallel

independence is also instrumental in defining Critical Pairs (as pairs of transformations that are not

parallel independent) that are central in proving confluence of sets of production rules [14, 8].

This notion should therefore also be considered in algorithmic approaches to graph rewriting. Indeed,

the informal description of parallel independence given above makes perfect sense out of the algebraic

approach; it is purely operational. Consider for instance Python’s multiple assignment a,b := b,a, an

elegant expression that swaps the values of a and b. We naturally understand this as a parallel expression

a := b ‖ b := a. If a and b have the same value then the two assignments can be evaluated in sequence

in any order, yielding the same result independently of the chosen order; they are parallel independent.

If however they have distinct values, the two sequential evaluations yield different results (and none

corresponds to the intended meaning); the two assignments are parallel dependent. Parallel dependence

also typically occurs in cellular automata when rules are applied to neighbor cells, because of the over-

lap. Hence sequential applications of rules in an undetermined order would result in non deterministic

automata.

These examples show that there is a legitimate way of computing by applying simultaneously concur-

rent transformations that may not be parallel independent, even though the result may not be reachable

by sequential transformations. Swapping the values of a and b cannot be performed by applying a := b

or b := a sequentially. This calls for a notion of parallel transformation for defining the result of such

simultaneous applications of rules.
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One such transformation has been defined in [5], in an algorithmic approach that is adopted here. It

is based on directed graphs where vertices and arrows are equipped with sets of attributes and enables a

definition of a union of such graphs, given in Section 2. This is a fundamental difference with terms or

termgraphs and leads to a natural definition of parallel transformation in Section 3.

The consequences of these definitions on parallel independence are analyzed in Sections 4 and 5.

The results of these sections are also from [5], we give them here in a slightly simpler setting and

without proofs, focusing on comparisons with the algebraic approach to graph rewriting where parallel

independence has been originally formulated.

In Section 6 we analyze the notion of parallel rewriting. We first define a notion of regularity that

ensures the absence of conflicts between concurrent rules. We then show that this notion is too restricted

to encompass parallel independence, and generalize it to the effective deletion property (also from [5]).

Section 7 is devoted to comparisons with the algebraic notion of parallel coherence from [4]. It

is shown that its translation to the present framework, though more general than regularity, is still too

restricted to encompass parallel independence. It is also shown to be the right algebraic translation of the

effective deletion property. Concluding remarks and related works are presented in Section 8.

2 Attributed Graphs

We assume a many-sorted signature Σ and a set V of variables, disjoint from Σ, such that every variable

has a Σ-sort. For any finite X ⊆ V , T (Σ ,X) denotes the algebra of Σ-terms over X . For any Σ-algebra

A , let ⌊A ⌋ be the disjoint union of the carrier sets of the Σ-sorts in A .

An attributed graph (or graph for short) G is a tuple (Ġ, ~G,Ǵ,G̀,AG,G̊) where Ġ, ~G are sets whose

elements are respectively called vertices and arrows, Ǵ,G̀ are the source and target functions from ~G to

Ġ, AG is a Σ-algebra and G̊ is an attribution of G, i.e., a function from Ġ∪ ~G to P(⌊AG⌋). The elements

of ⌊AG⌋ are called attributes, and we assume that Ġ, ~G and ⌊AG⌋ are pairwise disjoint. G is unlabeled

if G̊(x) = ∅ for all x ∈ Ġ∪ ~G, it is finite if the sets Ġ, ~G and G̊(x) are finite. The carrier of G is the set

⌊G⌋
def
= Ġ∪ ~G∪⌊AG⌋.

A graph H is a subgraph of G, written H ⊳G, if the underlying graph (Ḣ, ~H,H́,H̀) of H is a subgraph

of G’s underlying graph (in the usual sense), AH = AG and H̊(x) ⊆ G̊(x) for all x ∈ Ḣ ∪ ~H.

Graphs are better specified as pictures. Vertices and arrows will be named and their attributes will be

listed after each name, separated from it by | (which is omitted if the attribute is ∅). Since graphs may

not be connected, they will be surrounded by a rectangle with rounded corners, as in:

H =
x y | 1

f
⊳ x | 1 y | 0,1 z

f

g | 0

= G

where H is the graph such that Ḣ = {x,y}, ~H = { f}, H́( f ) = x, H̀( f ) = y, H̊(x) = H̊( f ) =∅, H̊(y) = {1}
and similarly for G (the Σ-algebra AH = AG must contain at least 0 and 1).

A morphism α from graph H to graph G, written α : H→G, is a function from ⌊H⌋ to ⌊G⌋ such that

the restriction of α to Ḣ ∪ ~H is a morphism from H’s to G’s underlying graphs (that is, Ǵ◦α = α ◦ H́

and G̀◦α = α ◦ H̀ , this restriction of α is called the underlying graph morphism of α), the restriction of

α to ⌊AH⌋ is a Σ-homomorphism from AH to AG, denoted α̊ , and α̊ ◦ H̊(x)⊆ G̊◦α(x) for all x ∈ Ḣ∪ ~H.

Note that H ⊳ G iff ⌊H⌋ ⊆ ⌊G⌋ and the canonical injection from ⌊H⌋ to ⌊G⌋ is a morphism from H to
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G. For all F ⊳ H , the image α(F) is the smallest subgraph of G w.r.t. the order ⊳ such that α |⌊F⌋ is a

morphism from F to α(F).
An isomorphism is a morphism that has an inverse morphism. We write H ≃G if there is an isomor-

phism from H to G. A morphism µ : H → G is a matching if the underlying graph morphism of µ is

injective. For any F ⊳ H it is then easy to see that

µ(F) = (µ(Ḟ), µ(~F), µ ◦ F́ ◦µ−1, µ ◦ F̀ ◦µ−1, AG, µ̊ ◦ F̊ ◦µ−1 ).

Given two attributions l and l′ of G let l \ l′ (resp. l ∩ l′, l∪ l′) be the attribution of G that maps any

x to l(x)\ l′(x) (resp. l(x)∩ l′(x), l(x)∪ l′(x)). If l is an attribution of a subgraph H ⊳ G, it is implicitly

extended to the attribution of G that is identical to l on Ḣ ∪ ~H and maps any other entry to ∅.

Unions of graphs can only be formed between joinable graphs, i.e., graphs that have a common part.

We start with a simpler notion of joinable functions.

Definition 2.1 (joinable functions). Two functions f : D→C and g : D′→C′ are joinable if f (x) = g(x)
for all x ∈D∩D′. Then, the meet of f and g is the function f fg : D∩D′→C∩C′ that is the restriction

of f (or g) to D∩D′. The join f gg is the unique function from D∪D′ to C∪C′ such that f = ( f gg)|D
and g = ( f gg)|D′ .

For any set I and any I-indexed family ( fi : Di→Ci)i∈I of pairwise joinable functions, let gi∈I fi be

the only function from
⋃

i∈I Di to
⋃

i∈I Ci such that fi =
(

gi∈I fi

)

|Di
for all i ∈ I.

We see that any two restrictions f |A and f |B of the same function f are joinable, and then f |Af f |B =
f |A∩B and f |A g f |B = f |A∪B. Conversely, if f and g are joinable then each is a restriction of f gg.

Definition 2.2 (joinable graphs). Two graphs H and G are joinable if AH = AG, Ḣ ∩ ~G = ~H ∩ Ġ = ∅,

and the functions H́ and Ǵ (and similarly H̀ and G̀) are joinable. We can then define the graphs

H ⊓G
def
= ( Ḣ ∩ Ġ, ~H ∩ ~G, H́ f Ǵ, H̀ f G̀, AH , H̊ ∩ G̊ ),

H ⊔G
def
= ( Ḣ ∪ Ġ, ~H ∪ ~G, H́ g Ǵ, H̀ g G̀, AH , H̊ ∪ G̊ ).

Similarly, if (Gi)i∈I is an I-indexed family of graphs that are pairwise joinable, and A is an algebra such

that A = AGi
for all i ∈ I, then let

⊔

i∈I

Gi
def
= (

⋃

i∈I

Ġi,
⋃

i∈I

~Gi, gi∈IǴi, gi∈IG̀i, A ,
⋃

i∈I

G̊i ).

It is easy to see that these structures are graphs: the sets of vertices and arrows are disjoint and the

adjacency functions have the correct domains and codomains. If I =∅ the chosen algebra A is generally

obvious from the context. Note that if H and G are joinable then H ⊓G ⊳ H ⊳ H ⊔G. Similarly, if the

Gi’s are pairwise joinable then G j ⊳
⊔

i∈I Gi for all j ∈ I. We see that any two subgraphs of G are

joinable, and that H ⊳ G iff H⊓G = H iff H ⊔G = G. These operations are commutative and, on triples

of pairwise joinable graphs, they are associative and distributive over each other. For any two graphs

H,G there exists G′ ≃ G such that H and G′ are joinable (one possibility is to take Ġ′ ∩ ~H = ∅ and
~G′∩ (Ḣ ∪ ~H) =∅).

For any sets V , A and attribution l, we say that G is disjoint from V,A, l if Ġ∩V =∅, ~G∩A =∅ and

G̊(x)∩ l(x) = ∅ for all x ∈ Ġ∪ ~G. We write G \ [V,A, l] for the largest subgraph of G (w.r.t. ⊳) that is

disjoint from V,A, l. This provides a natural way of removing objects from an attributed graph. It is easy

to see that this subgraph always exists (it is the union of all subgraphs of G disjoint from V,A, l), hence

rewriting steps will not be restricted by a gluing condition as in the Double-Pushout approach (see [11]).
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3 Applying Rules in Parallel

Definition 3.1 (rules, matchings). For any finite X ⊆ V , a (Σ,X)-graph is a finite graph G such that

AG = T (Σ ,X). Let Var(G)
def
=

⋃

x∈Ġ∪~G

(

⋃

t∈G̊(x) Var(t)
)

, where Var(t) is the set of variables occurring

in t.

A rule r is a triple (L,K,R) of (Σ,X)-graphs such that L and R are joinable, L⊓R ⊳ K ⊳ L and

Var(L) = X (see Remark 3.2 below). The rule r is unlabeled if L, K and R are unlabeled.

A matching of r in a graph G is a matching µ from L to G that is consistent, i.e., such that µ̊(L̊(x)\
K̊(x))∩ µ̊(K̊(x)) =∅ (or equivalently µ̊(L̊(x)\ K̊(x)) = µ̊(L̊(x))\ µ̊(K̊(x))) for all x∈ K̇∪~K. We denote

M (r,G) the set of all matchings of r in G (they all have domain ⌊L⌋).
We consider finite sets R of rules such that for all r,r′ ∈R, if (L,K,R) = r 6= r′ = (L′,K′,R′) then

⌊L⌋ 6= ⌊L′⌋, so that M (r,G)∩M (r′,G)=∅ for any graph G; we then write M (R,G) for
⊎

r∈R M (r,G).
For any µ ∈M (R,G) there is a unique rule rµ ∈R such that µ ∈M (rµ ,G), and its components are

denoted rµ = (Lµ ,Kµ ,Rµ).

Remark 3.2. If X were allowed to contain a variable v not occurring in L, then v would freely match any

element of AG and the set M (r,G) would contain as many matchings with essentially the same effect.

Also note that Var(R)⊆ Var(L), R and K are joinable and R⊓K = L⊓R. The fact that K is not required

to be a subgraph of R allows the possible deletion by other rules of data matched by K but not by R.

A rewrite step may involve the creation of new vertices in a graph, corresponding to the vertices of a

rule that have no match in the input graph, i.e., those in Ṙ\ L̇ (or similarly may create new arrows). These

vertices should really be new, not only different from the vertices of the original graph but also different

from the vertices created by other transformations (corresponding to other matchings in the graph). We

simply reuse the vertices x from Ṙ\ L̇ by indexing them with any relevant matching µ , each time yielding

a new vertex (x,µ) which is obviously different from any new vertex (x,ν) for any other matching ν 6= µ ,

and also from any vertex of G. This is similar to a construction of colimits in the category of sets.

Definition 3.3 (graph G
↑
µ and matching µ↑). For any rule r = (L,K,R), graph G and µ ∈M (r,G) we

define a graph G
↑
µ together with a matching µ↑ of R in G

↑
µ . We first define the sets

Ġ
↑
µ

def
= µ(Ṙ∩ K̇)∪ ((Ṙ\ K̇)×{µ}) and ~G

↑
µ

def
= µ(~R∩ ~K)∪ ((~R\~K)×{µ}).

Next we define µ↑ by: µ̊↑
def
= µ̊ and for all x ∈ Ṙ∪~R, if x ∈ K̇∪~K then µ↑(x)

def
= µ(x) else µ↑(x)

def
= (x,µ).

Since the restriction of µ↑ to Ṙ∪~R is bijective, then µ↑ is a matching from R to the graph

G
↑
µ

def
= ( Ġ

↑
µ , ~G

↑
µ , µ↑◦ Ŕ◦µ↑−1, µ↑◦ R̀◦µ↑−1, AG, µ̊↑◦ R̊◦µ↑−1 ).

By construction µ↑(R) = G
↑
µ , the matchings µ and µ↑ are joinable and µ f µ↑ is a matching from

R⊓K to µ(R⊓K). It is easy to see that the graph G and the graphs G
↑
µ are pairwise joinable.

For any set M ⊆M (R,G) of matchings in a graph G we define below how to transform G by

applying simultaneously the rules associated with matches in M. This simply consists in first removing

simultaneously all the vertices, arrows and attributes that are matched by Lµ but not by Kµ for any µ ∈M,

and then in adding simultaneously all the images of the right-hand sides Rµ .

Definition 3.4 (graph G‖M). For any graph G and set M ⊆M (R,G) let

G‖M

def
= G\ [VM,AM, ℓM]⊔

⊔

µ∈M

G
↑
µ where
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VM
def
=

⋃

µ∈M

µ(L̇µ \ K̇µ), AM
def
=

⋃

µ∈M

µ(~Lµ \~Kµ) and ℓM
def
=

⋃

µ∈M

µ̊ ◦ (L̊µ \ K̊µ)◦µ−1.

If M is a singleton {µ} we write G‖µ for G‖M , Vµ for VM, etc.

Example 3.5. We represent the simultaneous assignment a,b := b,a by two rules that correspond to the

simple assignments a := b and b := a. For this we use a signature Σ with two constants a and b of sort

identifier, and a set of variables V with two variables u and v of sort integer. The environment

is represented by two nodes x and y, each attributed by an identifier and its value. More precisely, let

A be the Σ-algebra where the sort integer is interpreted as Ainteger = Z, the sort identifier as

Aidentifier = {a,b} and each constant as itself. We consider the environment where a = 1 and b =−1;

this is represented by the graph

G = x | a,1 y | b,−1

We consider the rules

r1 = ( x1 | a,u y1 | b,v , x1 | a y1 | b,v , x1 | a,v )

r2 = ( x2 | a,u y2 | b,v , x2 | a,u y2 | b , y2 | b,u )

that correspond to a := b and b := a respectively. We see that r1 removes the content u associated to

a and replaces it by the content v associated to b. There is exactly one matching µi of rule ri in G for

i = 1,2, given by

x1 y1 a b u v

µ1 x y a b 1 −1

x2 y2 a b u v

µ2 x y a b 1 −1

Let M = {µ1,µ2}. Since no vertex or arrow is removed we have VM = AM =∅. We also have

ℓM(x) =
(

µ̊1 ◦ (L̊µ1
\ K̊µ1

)◦µ−1
1 (x)

)

∪
(

µ̊2 ◦ (L̊µ2
\ K̊µ2

)◦µ−1
2 (x)

)

= µ̊1

(

L̊µ1
(x1)\ K̊µ1

(x1)
)

∪ µ̊2

(

L̊µ2
(x2)\ K̊µ2

(x2)
)

= µ̊1({u})∪ µ̊2(∅)

= {1}

and similarly ℓM(y) = {−1}, so that G\ [VM,AM, ℓM] = x | a y | b . Finally, we see that

G
↑
µ1

= µ1↑(Rµ1
) = µ1↑( x1 | a,v ) = x | a,−1

G
↑
µ2

= µ2↑(Rµ2
) = µ2↑( y2 | b,u ) = y | b,1

and hence

G‖M = x | a y | b ⊔ x | a,−1 ⊔ y | b,1 = x | a,−1 y | b,1

that represents the environment where a = −1 and b = 1, i.e., where the initial values of a and b have

been swapped. Note that the same transformation can obviously be performed by the single rule

( x1 | a,u y1 | b,v , x1 | a y1 | b , x1 | a,v y1 | b,u )

More importantly, this rule can be computed from r1 and r2 (see [4]).
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In Definition 3.4 G‖M is guaranteed to be a graph since the ⊔ operation is only applied on joinable

graphs. Every morphism µ↑ is a matching from the right-hand side Rµ to the result G‖M of the trans-

formation. The case where M is a singleton defines the classical semantics of one sequential rewrite

step.

Definition 3.6 (sequential rewriting). For any finite set of rules R, we define the relation −→R of

sequential rewriting by stating that, for all graphs G and H ,

G−→R H iff there exists some µ ∈M (R,G) such that H ≃ G‖µ .

4 Sequential Independence

In the Double-Pushout approach to graph rewriting (see [11]), production rules are spans L← K → R,

with two morphisms from an interface K to the left- and right-hand sides L, R. These objects and

morphisms are taken in a category, possibly of some sort of graphs. Direct derivations are diagrams

H

RKL

DG

µ1

where the two squares are pushouts, i.e., a form of union. Since objects, say D and R, can always be

understood modulo isomorphisms, their union cannot be defined without specifying what they have in

common; this is the rôle of K and of the morphisms from K to D and R. If for instance K is empty then

the pushout H is the disjoint union (or direct sum, or co-product) of D and R. Hence the right square adds

something to D, and inversely the left square removes something from G. Hence H is obtained from G

by removing an image of L and writing an image of R, with the possibility that L and R share a common

part given by K. This very general approach has a drawback: depending on G and µ1 the object D may

not exist, and if it does it may not be unique.

In this approach sequential independence is a property of two consecutive direct transformations,

formulated as the existence of two commuting morphisms j1 and j2 as shown below.

L2 K2 R2

H1 D2 H2

µ2

R1K1L1

D1G

µ1 j1j2

It is then proven by the Local Church-Rosser Theorem that the two production rules can be applied in

reverse order to G and yield the same result H2 (we may call this the swapping property). Of course,

the matchings µ1 : L1 → G and µ2 : L2 → H1 are then replaced by other matchings µ ′1 : L1 → H ′1 and

µ ′2 : L2→ G that are related to µ1 and µ2. A drawback of this definition is that it does not account for

longer sequences of direct transformations. Indeed, if three consecutive steps are given by (µ1,µ2,µ3), it

is possible to swap µ1 with µ2 if they are sequential independent, and similarly for µ2 and µ3, but this does

not imply that µ1 and µ3 can be swapped under these hypotheses (because the matchings, and hence the

direct transformations, are modified by the swapping operations). We would need to express sequential

independence between µ1 and µ3, but the definition does not apply since they are not consecutive steps.
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More elaborate notions of equivalence between sequences of direct transformations are thus required

(see the notion of shift equivalence in [7, chapter 3.5]).

Because of the specificities of our framework (no pushouts, horizontal morphisms are only canonical

injections, and there may be no such morphism from K to R) we need a different definition of sequen-

tial independence. It is natural to think of the swapping property itself as the definition of sequential

independence, since it describes the operational meaning of parallel independence, but we are faced with

another problem. We are dealing with possibly infinite sets of matchings of rules in a graph, and we

cannot form a notion of infinite sequences of rewrite steps (because each step may both remove and add

data). Yet we do not wish to restrict the notion to finite sets, not simply for the sake of generality but also

because it is closely related to parallel independence, a notion that can naturally be defined on infinite

sets (see Section 5).

We may however use Definition 3.4 to handle infinite sets of matchings, by using the graph G‖M to

stand for the result of an (independent) sequence of transformations. We may thus express sequential

independence as a generalized swapping property, where the swap is performed between one transfor-

mation and all the others (taken in parallel). Yet this definition would not imply that all subsets of a

sequential independent set are sequential independent, hence it needs to be stated in a more general way,

by swapping any transformation with any others (and not only with all the others).

Definition 4.1. [sequential independence] For any graph G and set M ⊆M (R,G), we say that M is

sequential independent if for all N ⊆M and all µ ∈M \N,

• µ(Lµ)⊳ G‖N , hence there is a canonical injection j from µ(Lµ) to G‖N ,

• there exists an isomorphism α such that α(G‖N∪{µ}) =
(

G‖N

)

‖ j◦µ and α is the identity on G.

The isomorphism α in Definition 4.1 is necessary to account for the difference between the iso-

morphic graphs µ↑(Rµ) and ( j ◦µ)↑(Rµ), i.e., to transform vertices or arrows of the form (x,µ) into

(x, j ◦µ) (but there is no need to be that specific in the definition).

It is then easy to see (by induction on the cardinality of M) that

Proposition 4.2. For any graph G and finite set M ⊆M (R,G), if M is sequential independent then

G−→⋆
R G‖M .

Of course there is usually more than one sequence of rewriting steps from G to G‖M, since under the

hypothesis they can be swapped; but without it there is generally none (as illustrated in Example 3.5).

And the fact that there is one such sequence does not imply sequential independence, i.e., the converse

of Proposition 4.2 is obviously not true.

5 Parallel Independence

In the Double-Pushout approach, parallel independence is a property of two direct transformations of the

same object G, formulated as the existence of two commuting morphisms j1 and j2 as shown below.

L2 K2 R2

G D2 H2

ν

L1K1R1

D1H1

µ
j1j2
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The Local Church-Rosser Theorem mentioned above actually shows that µ and ν are parallel inde-

pendent iff they correspond to a sequential independent pair (µ ,ν ′) (where ν ′ : L2 → H1 is related to

ν). It is the symmetry between µ and ν that entails the swapping property. This is remarkable since

parallel independence does not refer to the results of the transformations involved, while the result of the

sequences of transformations is central in the swapping property (as in Definition 4.1).

This definition of parallel independence can easily be lifted to sets M of matchings (or direct trans-

formations) by considering all possible pairs µ ,ν ∈ M, with a slight caveat. In this definition the two

direct transformations may be identical, thus stating a property of a single transformation that is not

shared by all direct transformations. But Definition 3.4 does not allow to apply any member µ of M

more than once (because applying µ any number of times in parallel would jeopardize determinism of

Z=⇒R , see Definition 6.6 below). For this reason we will only consider pairs of distinct matchings (so

that singletons M shall be considered as parallel independent, see below).

Our goal is therefore to formulate parallel independence in the present framework, in order to obtain

an equivalence similar to the Local Church-Rosser Theorem. Considering that the pushout complement

D1 is replaced by the graph G \ [Vµ ,Aµ , ℓµ ], the commuting property of j2 amounts to ν(L2) ⊳ G \
[Vµ ,Aµ , ℓµ ], that can be more elegantly expressed as ν(L2)⊓µ(L1)⊳ µ(K1), or ν(Lν)⊓µ(Lµ)⊳ µ(Kµ)
using our notations. This simply means that any graph item that is matched by two concurrent rules

cannot be removed. The commuting property of j1 is obtained by swapping µ and ν .

However, our treatment of attributes makes it possible to recover in the right-hand side an attribute

that has been deleted in the left-hand side (this is of course not possible for vertices or arrows). This

possibility should therefore be accounted for in the notion of parallel independence, i.e., an attribute that

is matched twice may be deleted provided it is recovered. This can be expressed as

ν(Lν)⊓µ(Lµ)⊳ µ(Kµ)⊔µ↑(Rµ) for all µ ,ν ∈M such that µ 6= ν .

However, this is not a sufficient condition for sequential independence.

Example 5.1. We consider the following graph and rules:

G = x | 0 where ⌊AG⌋= {0}

r1 = ( x1 | 0 , x1 , x1 )

r2 = ( x2 , x2 , x2 | 0 )

There is a unique matching µ of r1 (resp. ν of r2) in G, given by µ(x1) = ν(x2) = x and µ̊(0) = ν̊(0) = 0.

We see that M = {µ ,ν} is not sequential independent. Indeed, let N = {ν}, then G = µ(Lµ)⊳ G‖N = G

(hence j is the identity morphism of G), but
(

G‖N

)

‖µ = G‖µ = x is not isomorphic to G‖M = G.

Yet we see that

ν(Lν)⊓µ(Lµ) = x ⊳ x = µ(Kµ)⊔µ↑(Rµ)

µ(Lµ)⊓ν(Lν) = x ⊳ x | 0 = ν(Kν)⊔ν↑(Rν),

which proves that this condition is true for all pairs of distinct elements of M; hence it is not sufficient to

ensure sequential independence.

The problem in Example 5.1 is that the attribute 0 of x is considered as being matched only once (by

Lµ), while it is actually also matched by Rν . This leads to the following definition.
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Definition 5.2 (parallel independence). For any graph G and set M⊆M (R,G), we say that M is parallel

independent if

(ν(Lν)⊔ν↑(Rν))⊓µ(Lµ) ⊳ µ(Kµ)⊔µ↑(Rµ) for all µ ,ν ∈M such that µ 6= ν .

This definition may seem strange, but it is easy to see that on unlabeled graphs it amounts to ν(Lν)⊓
µ(Lµ)⊳ µ(Kµ) for all µ 6= ν , i.e., to the standard algebraic notion of parallel independence (translated

to the present framework).

It turns out that Definition 5.2 provides the expected characterization of sequential independence.

Theorem 5.3. For any graph G and set M ⊆M (R,G), M is parallel independent iff M is sequential

independent.

The (rather long) proof of Theorem 5.3 can be found in [5].

We therefore see that Definition 5.2 arises as a characterization of sequential independence that does

not refer to the results of the transformations, and indeed that does not rely on the definition of G‖M

(Definition 3.4), though of course it does rely on the definitions of unions of graphs, of rules and of

the matchings µ↑ (Definitions 2.2, 3.1 and 3.3). Note also that Definition 5.2 depends explicitly on the

right-hand sides of rules, in contrast with the general algebraic definition of parallel independence given

above, or with the Essential Condition of parallel independence in [6].

6 Parallel Rewriting

We have not yet defined a relation of parallel rewriting as we did for sequential rewriting (Definition 3.6).

The reason is that two matchings may conflict as one retains (in R⊓K) what another removes.

Example 6.1. We consider the following unlabeled rule r and graph G.

r = ( x x′
f

f ′
, x , x ) G = y z

g

h

There are two matchings µ1,µ2 of r in G, given by

x x′ f f ′

µ1 y z g h

x x′ f f ′

µ2 z y h g

According to rule r with matching µ1, the node µ1(x
′) = z and the arrows µ1( f ) = g and µ1( f ′) = h

have to be removed, and the node µ1(x) = y should occur in the result of the transformation. But with

matching µ2, the node µ2(x
′) = y should be removed and the node µ2(x) = z should be preserved. There

is a conflict between µ1 and µ2 on the nodes of G (but not on its arrows).

Let M = {µ1,µ2}, then VM = µ1({x
′})∪µ2({x

′}) = {y,z} = Ġ hence G\ [VM,AM , ℓM] is empty and

G‖M = µ1( x )⊔µ2( x ) = y ⊔ z = y z

The transformation offered by Definition 3.4 performs deletions before unions, which means that

these conflicts are resolved by giving priority to retainers over removers. But if the deletion actions of

a rule are not executed in a parallel transformation, how can we claim that this rule has been executed

(or applied) in parallel with others? Thus, in order to define parallel rewriting with a clear semantics we

need to rule out such conflicts.

A natural restriction is therefore to make sure that the items that should be removed, i.e., those

contained in VM, AM or ℓM, have indeed been removed from the result.
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Definition 6.2 (regularity). For any graph G and set M ⊆M (R,G), we say that M is regular if G‖M is

disjoint from VM,AM, ℓM.

As for sequential independence, this property of M can be characterized as a property of pairs of

elements of M.

Lemma 6.3. For any graph G and set M ⊆M (R,G),

M is regular iff ν↑(Rν)⊓µ(Lµ)⊳ µ(Kµ) for all µ ,ν ∈M.

Proof. Let H =
⊔

ν∈M G
↑
ν , then G‖M = G \ [VM,AM, ℓM]⊔H is disjoint from VM,AM, ℓM iff H is. We

have

Ḣ ∩VM =
(

⋃

ν∈M

Ġ
↑
ν

)

∩
(

⋃

µ∈M

µ(L̇µ \ K̇µ)
)

=
⋃

µ ,ν∈M

ν↑(Ṙν)∩µ(L̇µ)\µ(K̇µ)

hence Ḣ ∩VM =∅ iff ν↑(Ṙν)∩µ(L̇µ)\µ(K̇µ) =∅ for all µ ,ν ∈M, but this is equivalent to ν↑(Ṙν)∩

µ(L̇µ)⊆ µ(K̇µ). Similarly we see that ~H ∩AM =∅ iff ν↑(~Rν)∩µ(~Lµ)⊆ µ(~Kµ) for all µ ,ν ∈M.

For every vertex or arrow x of G‖M we have

H̊(x)∩ ℓM(x) =
⋃

ν∈M

ν̊ ◦ R̊ν ◦ν−1(x)∩ ℓM(x)

=
⋃

µ ,ν∈M

ν̊ ◦ R̊ν ◦ν−1(x)∩ µ̊ ◦ (L̊µ \ K̊µ)◦µ−1(x)

=
⋃

µν∈M

ν̊ ◦ R̊ν ◦ν−1(x)∩ µ̊ ◦ L̊µ ◦µ−1(x)\ µ̊ ◦ K̊µ ◦µ−1(x)

by using the fact that µ is consistent. We therefore see that H̊(x)∩ ℓM(x) =∅ holds iff ν̊ ◦ R̊ν ◦ν−1(x)∩
µ̊ ◦ L̊µ ◦ µ−1(x) ⊆ µ̊ ◦ K̊µ ◦ µ−1(x) holds for all µ ,ν ∈ M. By definition M is regular iff Ḣ ∩VM =
~H ∩AM = ∅ and H̊ ∩ ℓM is empty everywhere, hence M is regular iff ν↑(Rν)⊓ µ(Lµ) ⊳ µ(Kµ) for all

µ ,ν ∈M.

Corollary 6.4. M is regular iff all its subsets are regular.

These nice properties, and the fact that regularity ensures the absence of conflicts, are however not

sufficient in the light of parallel independence. Indeed, we now show that a parallel independent set may

not be regular.

Example 6.5. Let us consider rules r1 = (L1,K1,R1) and r2 = (L2,K2,R2) where the graphs L1, K1 and

R1 have only one vertex x1, the graphs L2, K2 and R2 have only one vertex x2, and the attributes are as

pictured below (u,v are variables and f is a unary function symbol). Let AG be the algebra with carrier

set {0} where f is interpreted as the constant function 0, and let G be the graph that has a unique vertex

x with attribute 0.

0

u f (u)

v f (v)

{u}= L̊1(x1) = K̊1(x1) R̊1(x1) = {u, f (u)}

G̊(x) = {0}

{v}= L̊2(x2)

K̊2(x2) =∅

R̊2(x2) = { f (v)}

µ̊1 µ̊1

µ̊2 µ̊2
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There are exactly two matchings of {r1,r2} in G: µ1 and µ2 defined by µ1(x1) = µ2(x2) = x and

µ̊1(u) = µ̊2(v) = 0. Let M = {µ1,µ2}, we see by Lemma 6.3 that M is not regular since

µ1↑(R1)⊓µ2(L2) = µ1( x1 | u, f (u) )⊔µ2( x2 | v ) = x | 0 = G

is not a subgraph of µ2(K2) = µ2( x2 ) = x (or equivalently because G‖M = G is not disjoint from ℓM).

However, we see that M is sequential independent since the matchings can be applied sequentially in

any order, yielding in both cases the graph G. Equivalently, M is parallel independent since

(µ2(L2)⊔µ2↑(R2))⊓µ1(L1) = (G⊔G)⊓G = G ⊳ G⊔G = µ1(K1)⊔µ1↑(R1)

(µ1(L1)⊔µ1↑(R1))⊓µ2(L2) = (G⊔G)⊓G = G ⊳ x ⊔G = µ2(K2)⊔µ2↑(R2).

Note that conversely a set may be regular and not parallel independent, as is the case of the set M in

Example 3.5.

We obviously need a more comprehensive notion of parallel rewriting, one that applies at least on all

parallel independent sets of matchings. We see in Example 6.5 that the two rules do clash on the attribute

0 of x, but the clash is settled by their right-hand sides. This leads to the following definition from [5].

Definition 6.6 (effective deletion property, parallel rewriting). For any graph G, a set M ⊆M (R,G) is

said to satisfy the effective deletion property if G‖M is disjoint from VM,AM, ℓM \ ℓ
↑
M, where

ℓ
↑
M

def
=

⋃

µ∈M

µ̊ ◦ (R̊µ \ K̊µ)◦µ−1.

For any finite set of rules R, we define the relation =⇒R of parallel rewriting by stating that, for all

graphs G and H , G =⇒R H iff there exists a set M ⊆M (R,G) that has the effective deletion property

and such that H ≃ G‖M. We write G Z=⇒R H if M = M (R,G).

The effective deletion property is obviously more general than regularity. The example below shows

that it is strictly more general than regularity.

Example 6.7. We consider again Example 5.1 where M = {µ ,ν} is not sequential independent, hence by

Theorem 5.3 M is not parallel independent. We have VM =AM = /0 and ℓM(x) = {0}. Since G‖M = x | 0

is not disjoint from VM,AM, ℓM then M is not regular. But

ℓ
↑
M(x) = µ̊ ◦ (R̊1 \ K̊1)◦µ−1(x) ∪ ν̊ ◦ (R̊2 \ K̊2)◦ν−1(x) = {0},

hence ℓM(x)\ ℓ↑M(x) =∅ and therefore M has the effective deletion property.

It has been shown in [5] that Z=⇒R is deterministic up to isomorphism, that is, if G Z=⇒R H ,

G′ Z=⇒R H ′ and G ≃ G′ then H ≃ H ′. In particular, it is possible to represent any cellular automa-

ton by a suitable rule r and a class of graphs that correspond to configurations of the automaton (every

vertex corresponds to a cell), such that Z=⇒r (restricted to such graphs) is the transition function of the

automaton. Furthermore, it is proved in [5] (as a lemma to Theorem 5.3) that

Theorem 6.8. For any graph G and set M ⊆M (R,G) if M is parallel independent then M has the

effective deletion property.

Hence effective deletion supports a definition of parallel rewriting that is general enough to handle

parallel independence. Besides, Example 6.7 also shows that the effective deletion property is strictly

more general than parallel independence.

We also see that
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Corollary 6.9. If M ⊆M (R,G) is finite and parallel independent then G−→⋆
R

G‖M and G =⇒R G‖M.

Proof. By Theorem 6.8 we have G =⇒R G‖M. By Theorem 5.3 M is sequential independent, hence by

Proposition 4.2 we have G−→⋆
R

G‖M.

Hence in this case parallel and sequential rewriting meet, and parallel rewriting can be said to yield

a correct result w.r.t. sequential rewriting.

7 Parallel Coherence

One drawback of the effective deletion property is that it cannot be characterized as a property of pairs

of elements of M, as the following example shows.

Example 7.1. We consider the following graph and rule

G = x | 0 where ⌊AG⌋= {0,1}

r3 = ( x3 | 0 , x3 | 0 , x3 | 0,1 )

and also the rules r1, r2 of Example 5.1. For i = 1,2,3 let µi be the unique matching of ri in G such that

µ̊i is the identity function of {0,1}. Let M = {µ1,µ2,µ3} and N = {µ1,µ3}. We obviously have VM =
VN = AM = AN =∅. We see that ℓµ1

(x) = {0} and ℓµ2
(x) = ℓµ3

(x) =∅, so that ℓN(x) = ℓM(x) = {0},

G‖N = x ⊔ x ⊔ x | 0,1 = x | 0,1 and G‖M = x ⊔ x ⊔ x | 0 ⊔ x | 0,1 = x | 0,1

We then see that ℓ
↑
µ1
(x) = ∅, ℓ

↑
µ2
(x) = {0} and ℓ

↑
µ3
(x) = {1}, so that ℓ

↑
N(x) = {1} and ℓ

↑
M(x) = {0,1}.

Hence ℓM(x)\ ℓ↑M(x) =∅ and ℓN(x)\ ℓ
↑
N(x) = {0}, and M but not N has the effective deletion property.

The reader may find strange that the conflict between r1 and r3 could be settled by some other rule,

here r2. This means that we need the whole of M to decide wether all conflicts are settled. For this reason

the effective deletion property may appear as too general.

Another possibility for defining parallel rewriting is to translate to the present framework the notion

of parallel coherence that has been devised in order to define algebraic parallel graph transformation (see

[4]). In that paper we used production rules of the form L← K← I→ R that do not require a morphism

from K to R. Direct derivations are commuting diagrams

L K I R

G D H

where the squares are pushouts. Note that a standard Double-Pushout can be obtained with K = I.

Parallel coherence, as a property of two direct transformations of the same object G, is defined as the

existence of two commuting morphisms j1 and j2 as shown below.

L2 K2 I2 R2

G D2 H2

ν

L1K1I1R1

D1H1

µj1 j2
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This notion clearly generalizes algebraic parallel independence and is therefore a good candidate. In

the present framework the object I2 is replaced by the graph R2⊓K2, hence the commuting property of j2
amounts to ν(R2⊓K2)⊳ G\ [Vµ ,Aµ , ℓµ ], that can be expressed as µ(Lµ)⊓ν(Rν ⊓Kν)⊳ µ(Kµ). This

simply means that any graph item that is matched by some R⊓K cannot be removed by any rule.

Definition 7.2 (parallel coherence). For any graph G and set M ⊆M (R,G), we say that M is parallel

coherent if

ν(Rν ⊓Kν)⊓µ(Lµ)⊳ µ(Kµ) for all µ ,ν ∈M.

We easily show that this notion is more general than regularity.

Lemma 7.3. For any graph G and set M ⊆M (R,G), if M is regular then M is parallel coherent.

Proof. By Lemma 6.3 we have ν↑(Rν)⊓ µ(Lµ) ⊳ µ(Kµ) for all µ ,ν ∈M. Since Rν ⊓Kν ⊳ Rν then

ν(Rν ⊓Kν) = ν↑(Rν ⊓Kν) ⊳ ν↑(Rν), hence ν(Rν ⊓Kν)⊓µ(Lµ) ⊳ ν↑(Rν)⊓µ(Lµ )⊳ µ(Kµ), hence

M is parallel coherent.

It is easy to see that the converse does not hold (use for instance Example 5.1). We now show that

parallel coherence is a restriction of the (possibly too general) effective deletion property.

Theorem 7.4. For any graph G and set M⊆M (R,G), if M is parallel coherent then M has the effective

deletion property.

Proof. Let H = G‖M then as in the proof of Lemma 6.3 we have

Ḣ ∩VM =
⋃

µ ,ν∈M

ν↑(Ṙν)∩µ(L̇µ)\µ(K̇µ).

But µ(L̇µ)⊆ Ġ and by Definition 3.3 we have

Ġ∩ν↑(Ṙν) = Ġ∩ Ġ
↑
ν

= Ġ∩
(

ν(Ṙν ∩ K̇ν)∪ ((Ṙν \ K̇ν)×{ν})

= ν(Ṙν ∩ K̇ν),

hence

Ḣ ∩VM =
⋃

µ ,ν∈M

ν(Ṙν ∩ K̇ν)∩µ(L̇µ)\µ(K̇µ) =∅

since by parallel coherence ν(Ṙν ∩ K̇ν)∩µ(L̇µ)⊆ µ(K̇µ) for all µ ,ν ∈M. Similarly ~H ∩AM =∅.

For all x ∈ Ḣ ∪ ~H, if x 6∈ Ġ∪ ~G then ℓM(x) =∅ and obviously H̊(x)∩ ℓM(x)\ ℓ↑M(x) =∅. Otherwise

x ∈ Ġ∪ ~G hence ν↑−1(x) = ν−1(x) so that

H̊(x) =
(

G̊(x)\ ℓM(x)
)

∪
⋃

ν∈M

ν̊ ◦ R̊ν ◦ν−1(x).

Using the identity A = (A\B)∪ (A∩B) for all sets A and B we have

ν̊ ◦ R̊ν ◦ν−1(x) =
(

ν̊ ◦ R̊ν ◦ν−1(x)\ ν̊ ◦ (R̊ν ∩ K̊ν)◦ν−1(x)
)

∪
(

ν̊ ◦ R̊ν ◦ν−1(x)∩ ν̊ ◦ (R̊ν ∩ K̊ν)◦ν−1(x)
)
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for all ν ∈M. By parallel coherence we have ν̊ ◦(R̊ν ∩ K̊ν)◦ν−1(x)∩ µ̊ ◦ L̊µ ◦µ−1(x)⊆ µ̊ ◦ K̊µ ◦µ−1(x)
for all µ ,ν ∈M, and since µ is consistent we get

ν̊ ◦ (R̊ν ∩ K̊ν)◦ν−1(x)∩ ℓM(x) =
⋃

µ∈M

ν̊ ◦ (R̊ν ∩ K̊ν)◦ν−1(x)∩ µ̊ ◦ (L̊µ \ K̊µ)◦µ−1(x)

=
⋃

µ∈M

ν̊ ◦ (R̊ν ∩ K̊ν)◦ν−1(x)∩ µ̊ ◦ L̊µ ◦µ−1(x)\ µ̊ ◦ K̊µ ◦µ−1(x)

=∅,

hence

H̊(x)∩ ℓM(x) =
⋃

ν∈M

ν̊ ◦ R̊ν ◦ν−1(x)∩ ℓM(x)

=
⋃

ν∈M

(

ν̊ ◦ R̊ν ◦ν−1(x)\ ν̊ ◦ (R̊ν ∩ K̊ν)◦ν−1(x)
)

∩ ℓM(x).

Finally, by using the obvious fact that f (A)\ f (A∩B)⊆ f (A\B) for any function f , we get

H̊(x)∩ ℓM(x)⊆
⋃

ν∈M

ν̊ ◦ (R̊ν \ K̊ν)◦ν−1(x)∩ ℓM(x)⊆ ℓ
↑
M(x)

hence H̊(x)∩ ℓM(x)\ ℓ↑M(x) =∅. This proves that H is disjoint from VM, AM, ℓM \ ℓ
↑
M and therefore that

M has the effective deletion property.

Yet parallel coherence is not sufficient in the light of parallel independence, as we now show.

Proposition 7.5. Parallel coherence does not generalize parallel independence.

Proof. In Example 6.5 is exhibited a set M = {µ1,µ2} that is shown to be parallel independent. But we

see that

µ1(R1⊓K1)⊓µ2(L2) = µ1( x1 | u )⊓µ2( x2 | v ) = x | 0 = G

is not a subgraph of µ2(K2) = x , hence M is not parallel coherent.

Parallel coherence is therefore too restricted to support a definition of parallel rewriting in the present

framework. The problem here as above is that deleted attributes can be recovered by the right-hand side

of rules, and that this possibility is not accounted for in the algebraic definitions, since these do not

distinguish between graph items and attributes.

To summarize, we have established that the following implications hold, and no other:

regularity ⇒ parallel coherence ⇒ effective deletion property ⇐ parallel independence.

We see this as an endorsement of parallel rewriting based on the effective deletion property (Defini-

tion 6.6), even if it is the only property that cannot be characterized simply on pairs of matchings. This

suggests that the effective deletion property would be worth transposing to an algebraic framework. But

there is no straightforward way of doing this, as can now be shown.

Corollary 7.6. For any set of unlabeled rules R, any unlabeled graph G and any subset M ⊆M (R,G),

M is regular iff M is parallel coherent iff M has the effective deletion property.
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Proof. Assume that M has the effective deletion property, then G‖M is disjoint from VM,AM, ℓM \ ℓ
↑
M

hence so is
⊔

ν∈M ν↑(Rν). For all µ ∈M we have Vµ ⊆VM and Aµ ⊆AM, hence
⊔

ν∈M ν↑(Rν) is disjoint

from Vµ , Aµ , ∅ and therefore so is ν↑(Rν) for every ν ∈M. Thus ν↑(Ṙν)∩ µ(L̇µ) \µ(K̇µ ) = ∅ and

ν↑(~Rν)∩µ(~Lµ)\µ(~Kµ) =∅, which is equivalent to ν↑(Ṙν)∩µ(L̇µ)⊆ µ(K̇µ) and ν↑(~Rν)∩µ(~Lµ)⊆

µ(~Kµ). Since these graphs are unlabeled, this entails that ν↑(Rν)⊓ µ(Lµ) ⊳ µ(Kµ) for all µ ,ν ∈ M,

hence that M is regular by Lemma 6.3. The equivalences follow by Lemma 7.3 and Theorem 7.4.

Hence an algebraic approach to parallel graph transformation that would apply to the category of

(unlabeled) graphs could not distinguish these notions. In this sense parallel coherence is already the

right algebraic translation of the effective deletion property (and of regularity), even if it is too weak to

account for the special treatment of attributes in the present non algebraic framework.

8 Related Work and Conclusion

Many notions of attributed graphs exist in the literature. For instance, in [17, 10] graph items can hold at

most one attribute. This means that concurrent rules could possibly conflict because of their right-hand

sides, if two rules required to attribute distinct values to the same graph item. Our choice of attaching

sets of attributes to vertices and arrows means that new attributes are freely included in those sets, and

thus avoids conflicting right-hand sides. Indeed, we see from Definition 6.6 that a conflict must involve

an element of VM, AM or ℓM. Hence the right-hand sides of rules never create conflicts, though they may

settle the conflicts created in the left-hand sides and are therefore relevant to parallel independence.

Other notions of attributed graphs that allow unbounded attributes are possible, for instance the E-

graphs from [11]. But the fact that in E-graphs a single value can be referenced several times as attribute

of a vertex or arrow means that the number of matchings of rules may uselessly inflate.

Another approach to parallelism is to accept overlapping, non independent matchings and ask the

user to decide what to do in particular situations [13]. The present approach shows that the user can be

spared this work not just on parallel independent matchings, but on the larger class of sets that satisfy the

effective deletion property (or parallel coherence in an algebraic framework).

It is also possible to restrict by design all overlaps to vertices, as is the case in Hyperedge Replace-

ment Systems [9], and still be able to specify powerful parallel transformations [15], though in a non

deterministic way. Note that these are asynchronous models of parallelism, where determinism amounts

to confluence. This property has been widely studied in term rewriting; it becomes more subtle when

acyclic term graphs are considered [16], and more elusive when cycles are allowed [2, 1]. Our model of

parallelism is a synchronous one where deterministic transformations can be designed without reference

to confluence [3], as in cellular automata.

The use of parallel transformations to define sequential independence in an algebraic approach to

graph rewriting (as in Definition 4.1) could be worth investigating.
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